What Role Does Software Play in Energy Efficiency?

Georg Hager
Erlangen Regional Computing Center (RRZE)

SC15 Workshop Panel on Energy-Efficient Supercomputing
November 15, 2015
Austin, TX
(My) Definitions

Software

```
for(k=zb; k<ze; k++) {
    for(j=yb; j<ye; j++) {
        ib=2*((k*Ny+j)*Nx+xb); ie=2*((k*Ny+j)*Nx+xe);
        for(i=ib; i<ie; i+=2) {
            ishift = i+2*(-Nx*Ny);
            Re=Exy[i]-Exy[ishift]+Exz[i]-Exz[ishift];
            Im=Exy[i+1]-Exy[ishift+1]+Exz[i+1]-Exz[ishift+1];
            t=Hyx[i]*tHyx[i]-Hyx[i+1]*tHyx[i+1]+SrcHy[i]
                -cHyx[i]*Re+cHyx[i+1]*Im;
            Hyx[i+1]=Hyx[i]*tHyx[i+1]+Hyx[i+1]*tHyx[i]
                +SrcHy[i+1]-cHyx[i+1]*Im-cHyx[i+1]*Re;
            Hyx[i] = t; }
        }
    }
}
```

Energy Efficiency

- Applications running on the system
- Auxiliary software controlling the execution of applications
- Tools that generate “advice” on or “automate” how to run apps

- Energy to solution
- Energy-delay-whatever product
- Running under a power cap
Two types of application phases

“LINPACK type”
Limiting factor: core execution

“STREAM type”
Limiting factor: saturation (bandwidth)

Change clock speed:
- 1.5x
- 0.6x
An interesting way of plotting energy: The Z-plot (a.k.a. “Zeiser Plot”)

“Isoline” of constant energy-delay product \((E \times \Delta t)\)
Finding your way in the Z-plot

- Energy
- Performance

Power „iso-line“

Code optimization w/o power boost

EDP iso-line

Energy & EDP reduction
Finding your way in the Z-plot

Energy iso-line

EDP iso-line

EDP reduction

Energy

Performance

Code optimization w/ proportional power boost
Finding your way in the Z-plot

Energy

Performance

EDP iso-line

Borderline case for code optimization @ constant EDP

EDP constant, energy rises
Finding your way in the Z-plot

- Energy
- Performance
- EDP iso-line
- Performance iso-line
- Crank up energy w/o performance gain
- EDP & energy increase
Applying it

Take control on a phase-by-phase basis.

Parameters for taking control
- Serial code performance
- Number of active cores
- Clock speed

Automated tools will never understand your code as well as you can.

Given enough knowledge about the code, energy can be modeled.
Wish list: Give me…

- A fast library for changing P-states (clock speed)
- A well-defined way of dealing with affinity with changing #threads per socket
- Tools that help in figuring out the energy cost of basic operations
 - Flops (SIMD, scalar,…)
 - Data transfers (inter-cache, memory)
 - Synchronization (barriers, MPI wait)
- Tools that help establish performance and energy models
 - Promising examples: PerfExpert, kerncraft, RL Toolkit
- Zero idle power, to make all other efforts beyond faster code more effective!