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Overview of activities

LIKWID Tools

Teaching

Consulting

Optimization

Process
Hardware Evaluation

Modelling

• CLI tool collection

• 4000 downloads

• Node info/ affinity

• HPM measurements

• Stencil optimization

• Medical imaging

• Sparse matrix alg.

• Binary search trees
• Computational Chemistry

• Fluid Dynamics

• Financial Risk Analysis

• Physics…

• 25 events in last 2 years

• Tutorials (SC, ISC, PPOPP)

• Workshops (Prace PATC)

Performance Engineering
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Where it all started: Stored Program Computer

C
P

U

Memory

Control

Unit

Arithmetic

Logical

Unit

Input Output

Architect’s view:

Make the common case fast !



7

Application work (user view)

• Flops

• LUPs

• VUPs

Processor work (architect‘s view)

• Instructions

• Data volume

Hardware-Software Co-Design?

From algorithm to execution

Algorithm

Programming language

Instruction Set Architecture

Compiler
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1. Instruction execution

Primary resource of the processor.

2. Data transfer bandwidth

Data transfers are a consequence of instruction execution.

Goal: True insight into performance properties of the code

Focus on resource utilization

What is the limiting resource?

Does the code fully utilize the offered resources?
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• A bottleneck is a performance limiting setting

• Microarchitectures expose numerous bottlenecks

• We think about execution in terms of loops (steady state)

Observation 1:

Most loops face a single (combination of) 

bottleneck(s) at a time!

Observation 2:

There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks
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Performance Engineering Process: Analysis

Pattern

Microbenchmarking
Hardware/Instruction 

set architecture

Algorithm/Code 

Analysis

Application 

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance 

patterns are 

typical 

performance 

limiting motifs 

The set of input data indicating 

a pattern is its signature
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Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
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n
g
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a
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e

rn
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Performance Engineering Process: Optimization

Optimize for better 

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance 

improves until next 

bottleneck is hit

Improves 

Performance

Step 3 Optimization: Improve utilization of offered resources.
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The whole PE process at a glance

LIKWID

LIKWID

LIKWID



PERFORMANCE MODELS

Analytical Performance Modeling
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Models in physics

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓  𝑟, 𝑡 = 𝐻𝜓  𝑟, 𝑡

 𝐹 = 𝑚  𝑎

Nonrelativistic 

quantum 

mechanics

Fails @ even smaller scales!

Relativistic 

quantum 

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Consequences

 If models fail, we learn more

 A simple model can get us very 

far before we need to refine 
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Example: Modeling customer dispatch in a bank

Revolving door 

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing 

capability:

Pmax [tasks/sec]
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Example: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max

 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: 

Best use of resources

 Roofline is an “optimistic” model 

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax
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The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over 

the slowest data path utilized (“the bottleneck”)

3. bS = Applicable peak bandwidth of the slowest data path 

utilized

Expected performance:

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s][F/B]

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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ECM (“Execution-Cache-Memory”) Model

L2

L3

A(:)=C(:)

L1

Execution

Intel SandyBridge

2.7 GHz, 8 cores

1LD + ½ST per cycle

AVX 32B wide

Cache BW:  32 B/cy

Memory BW: 15 B/cy

Cacheline size: 64B

2 cy

6 cy

6 cy

Total:  27 cycles

MEM Bandwidth (1 core):  19.2 GB/s

Saturated Bandwidth: 40 GB/s 
MEM

13 cy

Assume perfect

scaling until a 

bottleneck is hit



20

// 3D long-range (single precision)

for(j=k; k<nny-4; k++)

for(j=4; j<nny-4; j++)

for(i=4; i<nnx-4; i++) {

lap = coef0   *   V(i,j,k)

+ coef[1] * ( V(i+1,j  ,k  ) + V(i-1,j  ,k  ) )

+ coef[1] * ( V(i ,j+1,k  ) + V(i ,j-1,k  ) )

+ coef[1] * ( V(i ,j  ,k+1) + V(i ,j  ,k-1) )

+ coef[2] * ( V(i+2,j  ,k  ) + V(i-2,j  ,k  ) )

+ coef[2] * ( V(i ,j+2,k  ) + V(i ,j-2,k  ) )

+ coef[2] * ( V(i ,j  ,k+2) + V(i ,j  ,k-2) )

+ coef[3] * ( V(i+3,j  ,k  ) + V(i-3,j  ,k  ) )

+ coef[3] * ( V(i ,j+3,k  ) + V(i ,j-3,k  ) )

+ coef[3] * ( V(i ,j  ,k+3) + V(i ,j  ,k-3) )

+ coef[4] * ( V(i+4,j  ,k  ) + V(i-4,j  ,k  ) )

+ coef[4] * ( V(i ,j+4,k  ) + V(i ,j-4,k  ) )

+ coef[4] * ( V(i ,j  ,k+4) + V(i ,j  ,k-4) );

U(i,j,k) = 2.f * V(i,j,k) - U(i,j,k) + ROC(i,j,k) * lap;

}

Example: 3D long-range stencil on Sandy Bridge
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• Explain cache behavior

• Explain SIMD benefit

• Explain bandwidth scaling

ECM model usage

• Determine limiting bottleneck

• Get a clear picture about 

runtime contributions

• Couple with power model

• Architectural exploration

• Reveal architectural shortcomings

Educational
Performance 

Engineering

Research
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A simple power model for multicore chips

Model assumptions:

1. Power is a quadratic polynomial in the 

clock frequency: 𝑊 = 𝑊0 + 𝑤1𝑓 + 𝑤2𝑓
2

2. Dynamic power is linear in the number of 

active cores: 𝑊𝑑𝑦𝑛 = 𝑊1𝑓 + 𝑊2𝑓
2 𝑛

3. Performance is linear in the number of 

cores until it hits a bottleneck ( ECM 

model)

4. Performance is linear in the clock 

frequency unless it hits a bottleneck 

(simplification from the ECM model)

5. Energy to solution is power dissipation 

divided by performance

Model:                                                         𝐸 =
Power

Performance
=

𝑊0 + (𝑊1𝑓 + 𝑊2𝑓
2)𝑛

min(𝑛𝑃0 𝑓/𝑓0, 𝑃𝑚𝑎𝑥)

𝑾𝟎

𝑊
1
𝑓

+
𝑊

2
𝑓

2

...

𝑊
1
𝑓

+
𝑊

2
𝑓

2

𝑊
1
𝑓

+
𝑊

2
𝑓

2



PERFORMANCE PATTERNS

Helpful motifs for performance analysis
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1. Maximum resource utilization

2. Hazards

3. Work related (Application or Processor)

Performance pattern classification

J. Treibig, G. Hager, and G. Wellein: Performance patterns and hardware metrics on modern 
multicore processors: Best practices for performance engineering. 
DOI: 10.1007/978-3-642-36949-0_50

Classification can be

semi-automated

http://dx.doi.org/10.1007/978-3-642-36949-0_50
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 Categorize  relevant benchmarks and application classes 

according to performance patterns

Application classification using patterns

 This application map can be used:

 To get complete list of relevant patterns 

and their probability

 As a knowledge base about relevant 

performance problems and their cure

 To suggest architectural improvements



LIKWID TOOLS

A performance-oriented tool suite for multicore

processors
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LIKWID

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection 

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite 

for x86 multicore environments.

PSTI2010, Sep 13-16, 2010, San Diego, CA

DOI: 10.1109/ICPPW.2010.38

http://code.google.com/p/likwid
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
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LIKWID Tool Suite

 Command line tools for Linux:

 easy to install

 standard linux kernel

 simple and clear to use

 supports Intel and AMD

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-powermeter: Measure power, energy, temperature

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more
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Present work:

• Enable performance engineers to do the job

• Provide knowledge, methods and tools

• Concentrate on scientific computing

• Coupling performance and power models

Mid-term future research:

• Pattern classification map

• Analysis of architectures and software/hardware interfaces

Long-term future research:

• Future architectures (simple, heterogeneous, special purpose) 

• Tackle other important areas (big data, pattern recognition)

Conclusion
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Book:

G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC 

Computational Science Series, 2010. ISBN 978-1439811924
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Preprint: arXiv:1410.5242
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multicore chips via simple machine models. Computation and Concurrency: Practice and Experience 

DOI: 10.1002/cpe.3180 (2014)
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DOI: 10.1007/978-3-642-36949-0_50. 
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