
ERLANGEN REGIONAL

COMPUTING CENTER

Jan Treibig, Georg Hager

SPEC DevOps Meeting

Würzburg, 2015/02/20

Systematic Node-Level

Performance Engineering

HPC@RRZE

The team in Erlangen

3

HPC@RRZE core staff

Prof. Dr. Gerhard Wellein

Team lead

Professor for

High Performance Computing

Dr. habil. Georg Hager

User support

Teaching

Research

Dr. Thomas Zeiser

User support

Project management

System administration

Dipl.-Inf. Michael Meier

System administration

Procurements

Rasa Mabande

Team assistant

4

HPC@RRZE project staff

Dr.-Ing. Jan Treibig

HPCadd (BMBF)

FEPA (BMBF)

CAS (IBM)

Markus Wittmann

FETOL (BMBF)

SKALB (BMBF)

Moritz Kreutzer

ESSEX (DFG SPPEXA)

Faisal Shahzad

ESSEX (DFG SPPEXA)

Holger Stengel

TerraNeo (DFG)

ExaSteel (DFG)

5

Overview of activities

LIKWID Tools

Teaching

Consulting

Optimization

Process
Hardware Evaluation

Modelling

• CLI tool collection

• 4000 downloads

• Node info/ affinity

• HPM measurements

• Stencil optimization

• Medical imaging

• Sparse matrix alg.

• Binary search trees
• Computational Chemistry

• Fluid Dynamics

• Financial Risk Analysis

• Physics…

• 25 events in last 2 years

• Tutorials (SC, ISC, PPOPP)

• Workshops (Prace PATC)

Performance Engineering

6

Where it all started: Stored Program Computer

C
P

U

Memory

Control

Unit

Arithmetic

Logical

Unit

Input Output

Architect’s view:

Make the common case fast !

7

Application work (user view)

• Flops

• LUPs

• VUPs

Processor work (architect‘s view)

• Instructions

• Data volume

Hardware-Software Co-Design?

From algorithm to execution

Algorithm

Programming language

Instruction Set Architecture

Compiler

8

1. Instruction execution

Primary resource of the processor.

2. Data transfer bandwidth

Data transfers are a consequence of instruction execution.

Goal: True insight into performance properties of the code

Focus on resource utilization

What is the limiting resource?

Does the code fully utilize the offered resources?

9

• A bottleneck is a performance limiting setting

• Microarchitectures expose numerous bottlenecks

• We think about execution in terms of loops (steady state)

Observation 1:

Most loops face a single (combination of)

bottleneck(s) at a time!

Observation 2:

There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks

10

Performance Engineering Process: Analysis

Pattern

Microbenchmarking
Hardware/Instruction

set architecture

Algorithm/Code

Analysis

Application

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance

patterns are

typical

performance

limiting motifs

The set of input data indicating

a pattern is its signature

11

Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn

12

Performance Engineering Process: Optimization

Optimize for better

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance

improves until next

bottleneck is hit

Improves

Performance

Step 3 Optimization: Improve utilization of offered resources.

13

The whole PE process at a glance

LIKWID

LIKWID

LIKWID

PERFORMANCE MODELS

Analytical Performance Modeling

15

Models in physics

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

 𝐹 = 𝑚 𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Consequences

 If models fail, we learn more

 A simple model can get us very

far before we need to refine

16

Example: Modeling customer dispatch in a bank

Revolving door

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing

capability:

Pmax [tasks/sec]

17

Example: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max

 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆:

Best use of resources

 Roofline is an “optimistic” model

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax

18

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over

the slowest data path utilized (“the bottleneck”)

3. bS = Applicable peak bandwidth of the slowest data path

utilized

Expected performance:

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s][F/B]

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

19

ECM (“Execution-Cache-Memory”) Model

L2

L3

A(:)=C(:)

L1

Execution

Intel SandyBridge

2.7 GHz, 8 cores

1LD + ½ST per cycle

AVX 32B wide

Cache BW: 32 B/cy

Memory BW: 15 B/cy

Cacheline size: 64B

2 cy

6 cy

6 cy

Total: 27 cycles

MEM Bandwidth (1 core): 19.2 GB/s

Saturated Bandwidth: 40 GB/s
MEM

13 cy

Assume perfect

scaling until a

bottleneck is hit

20

// 3D long-range (single precision)

for(j=k; k<nny-4; k++)

for(j=4; j<nny-4; j++)

for(i=4; i<nnx-4; i++) {

lap = coef0 * V(i,j,k)

+ coef[1] * (V(i+1,j ,k) + V(i-1,j ,k))

+ coef[1] * (V(i ,j+1,k) + V(i ,j-1,k))

+ coef[1] * (V(i ,j ,k+1) + V(i ,j ,k-1))

+ coef[2] * (V(i+2,j ,k) + V(i-2,j ,k))

+ coef[2] * (V(i ,j+2,k) + V(i ,j-2,k))

+ coef[2] * (V(i ,j ,k+2) + V(i ,j ,k-2))

+ coef[3] * (V(i+3,j ,k) + V(i-3,j ,k))

+ coef[3] * (V(i ,j+3,k) + V(i ,j-3,k))

+ coef[3] * (V(i ,j ,k+3) + V(i ,j ,k-3))

+ coef[4] * (V(i+4,j ,k) + V(i-4,j ,k))

+ coef[4] * (V(i ,j+4,k) + V(i ,j-4,k))

+ coef[4] * (V(i ,j ,k+4) + V(i ,j ,k-4));

U(i,j,k) = 2.f * V(i,j,k) - U(i,j,k) + ROC(i,j,k) * lap;

}

Example: 3D long-range stencil on Sandy Bridge

22

• Explain cache behavior

• Explain SIMD benefit

• Explain bandwidth scaling

ECM model usage

• Determine limiting bottleneck

• Get a clear picture about

runtime contributions

• Couple with power model

• Architectural exploration

• Reveal architectural shortcomings

Educational
Performance

Engineering

Research

23

A simple power model for multicore chips

Model assumptions:

1. Power is a quadratic polynomial in the

clock frequency: 𝑊 = 𝑊0 + 𝑤1𝑓 + 𝑤2𝑓
2

2. Dynamic power is linear in the number of

active cores: 𝑊𝑑𝑦𝑛 = 𝑊1𝑓 + 𝑊2𝑓
2 𝑛

3. Performance is linear in the number of

cores until it hits a bottleneck ( ECM

model)

4. Performance is linear in the clock

frequency unless it hits a bottleneck

(simplification from the ECM model)

5. Energy to solution is power dissipation

divided by performance

Model: 𝐸 =
Power

Performance
=

𝑊0 + (𝑊1𝑓 + 𝑊2𝑓
2)𝑛

min(𝑛𝑃0 𝑓/𝑓0, 𝑃𝑚𝑎𝑥)

𝑾𝟎

𝑊
1
𝑓

+
𝑊

2
𝑓

2

...

𝑊
1
𝑓

+
𝑊

2
𝑓

2

𝑊
1
𝑓

+
𝑊

2
𝑓

2

PERFORMANCE PATTERNS

Helpful motifs for performance analysis

25

1. Maximum resource utilization

2. Hazards

3. Work related (Application or Processor)

Performance pattern classification

J. Treibig, G. Hager, and G. Wellein: Performance patterns and hardware metrics on modern
multicore processors: Best practices for performance engineering.
DOI: 10.1007/978-3-642-36949-0_50

Classification can be

semi-automated

http://dx.doi.org/10.1007/978-3-642-36949-0_50

26

 Categorize relevant benchmarks and application classes

according to performance patterns

Application classification using patterns

 This application map can be used:

 To get complete list of relevant patterns

and their probability

 As a knowledge base about relevant

performance problems and their cure

 To suggest architectural improvements

LIKWID TOOLS

A performance-oriented tool suite for multicore

processors

28

LIKWID

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite

for x86 multicore environments.

PSTI2010, Sep 13-16, 2010, San Diego, CA

DOI: 10.1109/ICPPW.2010.38

http://code.google.com/p/likwid
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38

29

LIKWID Tool Suite

 Command line tools for Linux:

 easy to install

 standard linux kernel

 simple and clear to use

 supports Intel and AMD

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-powermeter: Measure power, energy, temperature

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more

30

Present work:

• Enable performance engineers to do the job

• Provide knowledge, methods and tools

• Concentrate on scientific computing

• Coupling performance and power models

Mid-term future research:

• Pattern classification map

• Analysis of architectures and software/hardware interfaces

Long-term future research:

• Future architectures (simple, heterogeneous, special purpose)

• Tackle other important areas (big data, pattern recognition)

Conclusion

31

Book:

G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC

Computational Science Series, 2010. ISBN 978-1439811924

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

Papers:

M. Kreutzer, G. Hager, G. Wellein, A. Pieper, A. Alvermann, and H. Fehske: Performance Engineering of

the Kernel Polynomial Method on Large-Scale CPU-GPU Systems. Accepted for IPDPS15.

Preprint: arXiv:1410.5242

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties of modern

multicore chips via simple machine models. Computation and Concurrency: Practice and Experience

DOI: 10.1002/cpe.3180 (2014)

J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern multicore

processors: Best practices for performance engineering. Workshop on Productivity and Performance

(PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island, Greece.

DOI: 10.1007/978-3-642-36949-0_50.

J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for medical image

reconstruction on recent standard multicore processors. International Journal of High Performance

Computing Applications, DOI: 10.1177/1094342012442424.

J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool suite for x86

multicore environments. Proc. PSTI2010, the First International Workshop on Parallel Software Tools and

Tool Infrastructures, San Diego CA, September 13, 2010. DOI: 10.1109/ICPPW.2010.38.

References (selection)

http://www.crcpress.com/product/isbn/9781439811924
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.ipdps.org/
http://arxiv.org/abs/1410.5242
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1007/978-3-642-36949-0_50
http://dx.doi.org/10.1177/1094342012442424
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38

