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Outline rr?:

= Performance Modeling and Engineering
= Motivation
= “White Box” models: Roofline

Example: Sparse MVM

“If the model doesn’t work, we learn something”
= A starting point for refining Roofline

The ECM multi-core model

= A simple power model for multicore
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An example from physics

Newtonian mechanics Nonrelativistic
gquantum
mechani}
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even smaller scales!
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Relativistic
guantum
field theory

U(1)y ® SU(2), ® SU(3).
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White box performance modeling

Set up an (analytical) model for a given
algorithm/kernel/solver/application
on a given architecture

3/11/2013

Compare with measurements
to validate the model

(Hopefully) identify optimization
opportunities and start over
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The Performance Engineering (PE) process _

Machine characteristics Traces/HW metrics
Code optimization

Performance model

Runtime profiling
Algorithm/Code analysis

Microbenchmarking
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Al

“White Box” Performance Models
on the Chip Level

Roofline model
ECM model



An example: The Roofline Modell? rr?:

1. P, =Applicable peak performance of a loop, assuming that data
comes from L1 cache

2. | = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (“the bottleneck”)

3. bg =Applicable peak bandwidth of the slowest data path utilized

Expected performance:

P = min(Ppax, I - bs)

1W. Schoénauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)
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A simple Roofline example

Example:

do i=1,N;

s=s+a (i) ;

enddo

in double precision on hypothetical 3 GHz CPU, 4-way SIMD, N large

Performance [GF/s]

16

%]

!

0.5

0.25

/o4 1/32 116 1/8 1/4 1/2 L 2

Computational intensity [F/B]
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P = min(Ppax, I - bs)

"~ ADD peak (half of full peak)

B 5 N
5
, 4-cycle latency per ADD if not unrolled

— no SIMD

Computational intensity
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Roofline Model assumptions rr?:

= There is a clear concept of “work” vs. “traffic”
= “work” = flops, updates, iterations...
= “traffic” = required data to do “work”

= No latency effects = perfect streaming mode

= Attainable bandwidth of code = input parameter!
= Microbenchmarking may be required

= Data transfer and core execution overlap perfectly!
= “Applicable peak” can be calculated accurately
= Bottleneck is modeled only; all others are assumed to be infinitely fast

= If data transfer is the limiting factor, the bandwidth of the slowest data
path can be utilized to 100% (“saturation”)
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Using Roofline in a More Complex
Setting

Sparse matrix-vector multiply (spMVM)



Example: SpMVM node performance model rr?:

| R
= Sparse MVM In do i = 1,N;
double precision do j = row_ptr(i), row_ptr(i+l) - 1
w/ CRS data storage: C(i) = C@)|+|val(j)| *[Bflcol_idx(j)P
enddo
enddo
2 Flops
= DP CRS comp. intensity Icrs = ———
= x quantifies extra traffic 12 H{24) Ny + k:Byte
for loading RHS more than 12 e\ L Flops
once — 64+ — 4 —
Nyyr 2 Byte

= Predicted Performance = streamBW:| ¢

= Determine x by measuring performance and actual memory bandwidth
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Test matrices: Sparsity patterns rr?:

= Analysis for HMeP matrix on Nehalem EP socket

= BW used by spMVM kernel = 18.1 GB/s - should get = 2.66 Gflop/s
sSpMVM performance if k=0

= Measured spMVM performance = 2.25 Gflop/s
= Solve 2.25 Gflop/s = BW-lgg for x=2.5

HMeP
N,=92527872

N= 6201600

- 37.5 extra bytes per row
- RHS is loaded 6 times from memory
-> about 33% of BW goes into RHS

= Conclusion: Even if the roofline model does not work 100%, we can still
learn something from the deviations
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“If the model fails, we learn something”

In-core analysis of the Schonauer triad on Sandy Bridge



Example: Schénauer Vector Triad in L2 cache rr?:

= REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision
= Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

Machine characteristics: Triad analysis (per CL): Timeline:
) . 16 F/CL (AVX
Registers Registers /CLIAVK)
ADD | ADD
| MULT|MULT
T | 1LD/cy +0.5ST/cy TTT l 6 cy/CL LD s, | s | LD | | o0y
Y
L1 L1
AAAA . . . . .
I 32 B/cy (2 cy/CL) 10 cy/CL LD | LD | LD | WA | ST
Y
L2 L2 .~ Roofline prediction: 16/10 F/cy |

Arithmetic: Arithmetic:
1 ADD/cy+ 1 MULT/cy AVX: 2 cy/CL
SSE: 4 cy/CL Measurement: 16F / =17cy
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Schonauer Vector Triad in L2 cache

Triad analysis (per CL):

Registers

[T eoe

L1

e

L2

i

L3

[T e

Memory

3/11/2013

= No overlap of evict/refill with LD/ST in L1
= L1 is “single ported”

= QOther cache levels similar?

= How about overlap further down the
hierarchy?

= May be possible to get lower/upper
performance bounds

- Model for single-core execution with data
from all levels of the hierarchy!

Performance and Power Engineering
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Al

An Improved Performance Model
for Multicore

The ECM Model



Roofline sometimes fails for multicore rr?:

= Assumes one of two bottlenecks
1. In-core execution
2. Bandwidth of a single hierarchy level

(8
n

(3]
=

[~J
o

= Saturation effects in multicore —
chips are not explained

—_
Lh
|
|

Memory bandwidth [GB/s]
-2
=)

,_
=
I

i Roofline predi_cts
full socket BV1V

L
1 2 3 4 5 6 7 8

n
|

=
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The multicore saturation mystery [T =»'—

= Why is serial performance “too low?”

= Non-overlapping contributions from data transfers and in-cache execution to
overall runtime

= What determines the saturation point?
= Important for energy efficiency
= Putting cores to better use

= Saturation == Bandwidth pressure on relevant bottleneck exhausts the
maximum BW capacity

= Requirements for an appropriate multicore performance model
= Should predict single-core performance
= Should predict saturation point

- ECM (Execution — Cache — Memory) model

3/11/2013 Performance and Power Engineering
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Example: ECM model for Schdnauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX rr

7 256 bit LD
& 128 bit ST

256 bit

256 bit

Per—cycle transfer widths

107 bit
@ 2.7 GHz)

\_ (

3/11/2013

Registers

{EER

L1D

EEE

R

—
=
CL
max(2(B) + 2(C) + 2(D), 4(A))cy =6 ¢y transfer
(2(B) +2(C) +2(D)+ 4(A) cy = 10cy Write-
allocate
CL transfer

(2(B) +2(C) +2(D)+ 4(A) cy = 10cy

(5-64B-2.7Gey/s)/ (36 GB/s)= 24 cy

Achievable full-
socket BW (b)
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Full vs. partial vs. no overlap _

All caches Full overlap

No overlap single—ported beyond L2 Measured
— 0
L6 804 )
— 16 172
------- — ]2
— 20
— 24
3 263 Results
““““ = L3 suggest no

overlap!
— 34
- 52.3
,—,-SD---— Memory J
(a) (b) (c) cycles  (d)
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Multicore scaling in the ECM model rrE:

= |dentify relevant bandwidth bottlenecks

= L3 cache
= Memory interface
= Scale single-thread performance (P,) until first bottleneck is hit:

P(ny) = min(n¢Py, Proof), With Proor = min(Ppax, [ - bs)

Registers ‘ | Registers ‘ ‘ Registers | ‘ Registers ‘
A A A A A A A A A A A A
A A A A
v B| c D v B C D v B [+ D v B c D
Example:
L1D L1D L1D L1D
Scalable L3 Al A A A A a[4A A A A 2l A A A A 2[ A A A A [ ] [ o
Y B (o D \ J Bj C D \ J Bj o D A J B D
on Sandy
L2 L2 L2 L2
Brldge aA[A A A A a[h A A A 2[4h A A A 2[ A 4 4 A
¥ Bl c] o ¥ Bl ¢ b ¥ Bl ¢ b ¥ Bl ¢] o
L3 L3 L3 L3
A
B (o D
Memory
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ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:) ——
on a Sandy Bridge socket (no-overlap assumption) rr u

Or—T—T—TTT"T 7

fad
N

L
=

— Saturation point (# cores) well
predicted

]
N

—~ Measurement: scaling not perfect

Memory bandwidth [GB/s]
-2
-]

15| —
10} @—@® Schonaver triad 1 Caveat: This is specific for this
- = = ECM Model 1 architecture and this benchmark!
5 L —
oL | | Check: Use “overlappable” kernel

code
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ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:) ——
on a Sandy Bridge socket (full overlap assumption) rr o

Memory bandwidth [GB/s]

3/11/2013

@@ DIV triad (AVX) —
O—0 DIV triad (scalar) .
w ==  ECM Model (AVX) _|
— = ECM Model (scalar) |

3 4 5 6 7 8§
# cores

In-core execution is dominated by
divide operation

(44 cycles with AVX, 22 scalar)

-> Almost perfect agreement with
ECM model

Performance and Power Engineering 23



Example: Lattice-Boltzmann flow solver rr7|:

= D30Q19 model

Registers _ _
= Empty channel, 2283 fluid lattice
mi $l9 432 cy (IACA throughput) sites (3.7 GB of memory)
= AVX implementation with compiler
L1D Intrinsics
wl *19 $|9 3.19-2cy=1l4cy
= ECM model input
L2 = Core execution from Intel IACA tool
lgi *19 $|9 3.19.2¢y= 114cy = Max. memory bandwidth from multi-
stream measurements
L3

(3-19-64-27/32.3)cy=305cy (@ 2.7 GHz)
or
(3-19-64-1.6/30.6)cy =191 cy (@ 1.6 GHz)

BW (b,) degradation @ lower
frequencies and large # of streams

3/11/2013 Performance and Power Engineering 24



Lattice-Boltzmann solver: ECM (no-overlap) vs. measurements rr?_

L tip—
Saturation point again predicted O T—T—T T T T
70
— 60
Saturation performance matches multi- ;
stream benchmarks (by construction’(:;
=
5 40
=
. i c
No-overlap assumption seems a little = 30
pessimistic o / , o—e AVX 27 GHy
Not all execution is LD and ST 204 O- -OAVX 1.6 GHz ~
(IACA predicts ADD bottleneck) i ECM 2.7 GHz -
ok ECM 1.6 GHz _|

=
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Why the fuss about
the saturation point?

(1) Putting cores to good use

(2) Energy consumption

3/11/2013 Performance an d Power Engineering 26



Al

A simple power model for the Sandy
Bridge processor

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and
power properties of modern multicore chips via simple machine models.
Submitted. Preprint: arXiv:1208.2908



http://arxiv.org/abs/1208.2908

A model for multicore chip power rrT'

= Goal: Establish model for chip power and program energy consumption
with respect to

= Clock speed
= Number of cores used
= Single-thread program performance

= Choose different characteristic benchmark applications to measure a
chip’s power behavior

= Matrix-matrix-multiply ("DGEMM?): “Hot” code, well scalable
= Ray tracer: Sensitive to SMT execution (15% speedup), well scalable

= 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip
= AVX variant
= Scalar variant

= Measure characteristics of those apps and establish a power model

3/11/2013 Performance and Power Engineering
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App scaling behavior (DGEMM omitted)

1500

-
-
-

tn
=
=

Performance [MLUP/s|

O I 1
2 e RAY —
RAY SMT
=z 1.5} -
a»
=,
— I i
=
= 1f -
‘E I il
¥
0.5} —
(a)
oll—L 1L 1 1 | |
1 2 3 4 5 6 7T 8
# cores
3/11/2013

B8 Jacobi AVX
®—® Jacobi scalar

-2

3 4 5 6 7
# cores

Performance and Power Engineering
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Chip power and performance vs. clock speed
on full socket & single core

Sandy Bridge EP (8-core) processor:

120

100

80

60

Power [W]

40

DGEMM
Jacobi AVX
Jacobi scalar
RAY

RAY SMT

all cores used

oH )

20 - ——

3/11/2013

0.5 | 1.5 2
Frequency [GHz]

2.5

o onm)

0.8}

0.6

0.4

Relative performance

0.2

ignored

0.5

DGEMM 3
Jacobi AVX m‘/
Jacobi scalar o
RAY
RAY SMT
single core
(b)
N I
| 1.5 2 25

Frequency [GHz]
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Chip power and cycles per instruction (CPI) vs. # of cores rrE:

Sandy Bridge EP (8-core) processor: CPl and power correlated, but
not proportional

ROt — ST T T T T T
i i - A—A DGEMM .
B a 3 B8 Jacobi AVX
100 (a) 4 @@ Jacobi scalar —
i o RAY
; 5 RAY SMT i
20l ignored 0
5 601 =} ® ]
z | 2
= s E 2+ _
40 A—ADGEMM “ ol |
| W B8 Jacobi AVX |
o~ @®—® Jacobi scalar 1 _
20 ¢ RAY — > —o0—o0—o
i RAY SMT | | — |
0 I I (N NN N N obL—1 1 1 111 |
O 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
# cores # cores
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A simple power model for multicore chips rr?:

Assumptions:

1. Power is a quadratic polynomial in the clock frequency
Dynamic power is linear in the number of active cores t

3. Performance is linear in the number of cores until it hits a bottleneck
(< ECM model)

4. Performance is linear in the clock frequency unless it hits a bottleneck

N

5. Energy to solution is power dissipation divided by performance
Model: 7
p_ Wt Wf+Waf7)
min ((1 4+ AV)tPy, Pnax)

where f = (1 + Av)f,

3/11/2013 Performance and Power Engineering 32



Model predictions rr?:

I Wo + (W1f+W2f2)t

1. Ifthere is no saturation, use all available cores to minimize E

| | | | | | |
2 e=eRAY —
RAY SMT
1T ‘\
% Minimum E here
g OFE Wo <0
051 . e
@ Jt (1+AV)2R
0 ] ] ] | ]

L1 1
1 2 3 4 5 6 7 8
# cores
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Model predictions [T ='—

I Wo + (W1f+W2f2)t

2. There is an optimal frequency f, at which E is minimal in the non-
saturated case, with

fopt = /% , hence it depends on the baseline power
2

- “Clock race to idle” if baseline power accommodates whole system!
2 If fope < fo, may have to look at other metrics, e.g., C = E/P

dC - 2Wo + Wy ft

v e
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Model predictions

Wo+ (Wi f +Waf?)t

E_

3. If there is saturation, E is minimal at the saturation point

1

Performance [MLUP/s]

3/11/2013

500

1000

N
)
o

B8 Jacobi AVX
@—® Jacobi scalar

Minimum E here

] P max

(1 -+ AV)P()

o

3 4 5 6 7
# cores
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Model predictions

E_

Wo+ (Wi f +Waf?)t

4. If there is saturation, absolute minimum E is reached if the saturation
point is at the number of available cores

—

Performance [MLUP/s

3/11/2013

70

e
=)
]

0

80

60

n
=
T

o
-
T

I~
<
T

10

—o AVX 2.7 GHz

O- -0 AVX 1.6 GHz 7]
ECM 2.7 GHz 1
ECM 1.6 GHz

\

3 4 5 6 7 8

# cores

Slower clock
—> more cores to saturation
- smaller E

Performance and Power Engineering
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Model predictions

5. Making code execute faster on the core saves energy since

E_

Wo+ (Wi f +Waf?)t

= The time to solution is smaller if the code scales (“Code race to idle”)

= \We can use fewer cores to reach saturation if there is a bottleneck

80

40

30

Performance [M

2
o
T T T

10}

0

&—® AVX 2.7 GHz |

— plain 2.7 GHz
O- -0 AVX 1.6 GHz 1

— — plain 1.6 GHz —

.

3/11/2013

R o

4 5 6 7 8
# cores

Better code
- earlier saturation
- smaller E @ saturation

Performance and Power Engineering
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Model validation with the benchmark apps

2400

2000

1600

1200

800

Energy to solution [J]

|
Energy to solution [J]

400 +—¢ RAY 8C —
RAY SMT 8C |
0 | |
[.5 2 2.5
Frequency [GHz]
3/11/2013

A—A DGEMM 8C
A=A DGEMM 4C

1000

W _ 800

600

400

200

0

Bl Jacobi AVX 2.7 GHz
Bl Jacobi AVX 2.0 GHz
O=-0 Jacobi AVX 1.4 GHz

(b)

l

| | |
2 3 4 5 6 7
# cores

Performance and Power Engineering
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Example: spMVM on Sandy Bridge socket

Cost [Js/GF]

Need for a cost
model!?

C=E/P

100

Lh
=
I

88 HIDS-128 @ 2.0 GHz
P— HIDS-128 @ 3.1 GHz

BW degradation
—

—

>ﬂ"

- - — A

@8 BJDS-128 @ 2.0 GHz
P—P BIDS-128 @ 3.1 GHe ]

3/11/2013

- 4

# cores

speed (in this case)

Performance and Power Engineering

- Lower cost for slower clock

Energy to solution [J]
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Conclusions rr?:

= Performance Engineering == Performance Modeling with “bells and
whistles”

= PE Is a structured process which gives insight into the interaction of
hardware and software

= Saturation effects are ubiquitous; understanding them gives us
opportunity to

= Find out about optimization opportunities
= Put cores to good use
= Save energy

= Possible extensions to the power model
= Allow for per-core frequency setting (coming with Intel Haswell)
= Accommodate load imbalance & sync overhead
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Thank you.
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