

Performance Engineering for Multi- and Manycores: Unveiling of Mysteries of Application Performance

Georg Hager

Erlangen Regional Computing Center (RRZE) University of Erlangen-Nuremberg, Germany

ISC12 Invited Session "Application Performance: Lessons Learned from Petascale Computing" Hamburg, Germany, June 18, 2012

Performance data and code optimizations are useless except when put into the context of a suitable performance model!

Efficiency is made on the single core and chip level. Adding more hardware can only make it worse!

The Performance Engineering Cycle

Example: Red-black Gauss-Seidel smoother

- Simple iterative solver for boundary value problems
- Memory-bound for large data sets
- Benchmark platform:

One socket Intel Sandy Bridge EP 2.7 GHz base frequency Up to 3.5 GHz Turbo Mode

Memory bandwidth \approx 36 Gbyte/s

Performance metric: Lattice site Updates per second (LUP/s)

■ 1 LUP ↔ 48 bytes of memory traffic

A very simple example: Red-black Gauss-Seidel smoother

Code for one lattice site update (version 1)

Example: Red-black Gauss-Seidel smoother

Code for one lattice site update (version 2)

Scalability for two different code versions

Can we "heal" bad single-core performance by using more cores on the chip?

Healing bad single-core performance: Lattice-Boltzmann solver on Intel Sandy Bridge

Benchmark: Double precision, lid-driven cavity with 230³ fluid cells

Healing bad single-core performance: Lattice-Boltzmann solver on Intel Sandy Bridge

Benchmark: Single precision, lid-driven cavity with 230³ fluid cells

Does it stop at the roofline model?

A more complex example:

A medical image reconstruction code on Sandy Bridge

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

Test case	Runtime [s]	Power [W]		Energy [J]
8 cores, plain C	90.43	90	Fast → Ie	8110
8 cores, SSE	29.63	93	ter (ss e	2750
8 cores (SMT), SSE	22.61	102	code	2300
8 cores (SMT), AVX	18.42	111	× /	2040

Performance Engineering @ Work: A medical image reconstruction code on Sandy Bridge

- Runtime analysis: Backprojection loop dominates
- First shot: Roofline model predicts memorybound situation
- HPM measurement: Memory Bandwidth not saturated
- Refined performance model
 - Core execution
 - Cache line transfer within the cache hierarchy
 - Cache line transfer to/from memory

Results

- Parallel execution far from memory-bound
- Core execution dominates
- Model prediction within 12-20% of actual performance

How about healing bad node-level performance by using more nodes?

Scaling up a lattice-Boltzmann solver

ISC 2012

Thank You.

Bundesministerium für Bildung und Forschung

www.skalb.de SKALB (01 IH08003A)

Jan Treibig, Markus Wittmann, Johannes Habich, Gerhard Wellein