Parallel sparse matrix-vector multiplication as a
test case for hybrid MPI+OpenMP programming

Gerald Schubert!, Georg Hager?, Holger Fehske’,

Gerhard Wellein?3

"Institute of Physics, University of Greifswald, Germany

2Erlangen Regional Computing Center (RRZE), Germany

3Department for Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Germany

Workshop on Large-Scale Parallel Processing 2011 (LSPP2011),
May 20, 2011, Anchorage, AK

FRIEDRICH-ALEXANDER
= UNIVERSITAT _
ERLANGEN-NURNBERG

K ON W S~ R

b High Performance
Agenda I'IFIL Computing

MPI nonblocking != asynchronous

Well known for along time, but need to check once in a while...
Options for really asynchronous communication

MPI sometimes does it ok

Separate explicit communication thread

Use something else that supports async by definition

Example: Sparse matrix-vector multiply (spMVM)
Motivation
Properties of the CRS format
Node performance model on different multicore hardware
Distributed-memory parallelization
Hiding communication: “vector mode” vs. “task mode”

Results
Westmere EP InfiniBand cluster (plus some Cray XEG6 results)

20.05.2011 hpc@rrze.uni-erlangen.de

MPI nonblocking point-to-point communication |.|F'|_ gf;;‘:{:gmance

Is nonblocking automatically asynchronous? - Simple benchmark:
if (rank==0) {

stime = MPI_Wtime();

MPI_Irecv(rbuf,mcount ,MPI_DOUBLE, 1,0,

MPI_COMM_WORLD, &req) ;

do_work(calctime) ;

MPI_Wait(req, &status);

etime = MPI_Wtime();

cout << calctime << " " << etime-stime << endl;

} else {
MPI_Send(sbuf,mcount,MPI_DOUBLE,O,O,

MPI_COMM_WORLD) ;
}

For iow caictime, execution time is constant if async works}
Benchmark: 80 MByte message size, in-register workload (do_work)
Generally no intranode async supported!

20.05.2011 hpc@rrze.uni-erlangen.de

MPI nonblocking point-to-point communication |.|F'|_ gf;;‘:{:gmance

Internode results for Westmere cluster (QDR-IB)

0.12 . I I | , | | | |
| o—oIntel MP14.0.1 A
0.1 oo OpenMPI 1.5 ISend
m—a OpenMPI 1.5 [Recv
I mvapich 2.1.6
— 0.08}F
P
E
= 0.06}F
=
S I
=
T 0.04F .
\ Only OpenMPI
0.021 supports async, and 7
- only when sending |
data
O | | | | | | | | | |

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
calc time [s]

20.05.2011 hpc@rrze.uni-erlangen.de

MPI nonblocking point-to-point communication |.|F'|_ gf;;‘:{:gmance

Internode results for Cray XT4 and XEG6

0.12 T T T T T

0.1

0.08

overall time [s]
-
o
(@)
|

o

-

=
|

0.02 =

l | l | l l | l |
OO 0.01 0.02 0.03 004 005 006 0.07 0.08

calc time [s]

20.05.2011 hpc@rrze.uni-erlangen.de

MPI nonblocking — results and consequences I'IFIL gg:;ﬂgmance

Asynchronous nonblocking MPI does not work in general for large
messages

Consequences
If we need async, check if it works
If it doesn’t, perform comm/calc overlap manually

Comm/calc overlap: Options with MPI and MP1/OpenMP
Nonblocking MPI

Sacrifice one thread for communication
Compute performance impact?

Where/how to run? Threads vs. processes?
Can SMT be of any use?

Case study: Sparse matrix-vector multiply (spMVM)

20.05.2011 hpc@rrze.uni-erlangen.de

b High Performance
Sparse MVM I'IFIL Computing
Why spMVM?
- Dominant operation in many algorithms/applications

Physics applications:
Ground state phase diagram Holstein-Hubbard model
Physics at the Dirac point in Graphene
Anderson localization in disordered systems
Quantum dynamics on percolative lattices
Algorithms:
Lanczos — extremal eigenvalues
JADA — degenerate & inner eigenvalues
KPM — spectral properties
Chebyshev time evolution

Fraction of total time spent in SpMVM (all of those): 85 — 99.99%

20.05.2011 hpc@rrze.uni-erlangen.de

Sparse MVM properties I_IF'E High Performance

Computing
“Sparse” matrix = N,, grows slower than [f\f:.\ N
quadratically with N N
\ \\ N,,honzeros
N, = avg. # nonzeros per row ‘\\ Y
A different sparsity pattern (“fingerprint”) N %“;\"‘:\
for each problem Nozr NN
Even changes with different numbering of DoFs ‘::"\{\\
Performance of spMVM ¢ = A-b ' X\, \:
h
Always memory-bound for large N (see later) N

Usage of memory BW divided between nonzeros
and RHS/LHS vectors

Sparsity pattern has strong impact
Storage format, too
Storage formats

Compressed Row Storaage (CRS): Best for modern ca
rll NI I I IA 1T N JVYV LI uuv \ /l =S\ JL IV TTINNUAWITT WA

1 \\J

che-based yP

Jagged Diagonals Storage (JDS): Best for vector(-like) architectures
Special formats exploit specific matrix properties

20.05.2011 hpc@rrze.uni-erlangen.de

A quick glance on CRS and JDS variants...

b High Performance
I'IFIL Computing

Aij Ap(i),p(j)
[] O B EIEEIC I ICICIC
CEC] O O CECICICCECE
L] O E H CICIE
8 o - 00 oo
0 OoA0 permutation annla
B OO (19238)(4)(5)(6)(7) O] LI
BOCICICICIEEE HE L]
B ICEE e [] O E
/ﬂft shift shift block

to left to left & block & resort

doi=1,N;
do j = row_ptr(i), row_ptr(i+i) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo

T D
It |

CRS

| J
g
1]

S
Bl

Fiifl gt
NUJDS /NBJDS |E== =a
JDS RBJDS SOJDS

G. Schubert, G. Hager and H. Fehske: Performance limitations for sparse matrix-vector multiplications on current multicore
environments. In: S. Wagner et al., High Performance Computing in Science and Engineering, Garching/Munich 2009.
Springer, ISBN 978-3642138713 (2010), 13—26. DOI: 10.1007/978-3-642-13872-0 2, Preprint: arXiv:0910.4836.

20.05.2011

hpc@rrze.uni-erlangen.de

9

SpMVM node performance model I_IF'E High Performance

Computing
Concentrate on doi=1,N.
double precision CRS: do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo ‘
enddo
12 +24 /Ny, + K\ bytes
DP CRS code balance Bcrs = (/2 -) g
x quantifies extra traffic P
for loading RHS more than 12 '\ bytes
once = |6+ T i '
Negg 24 10OP

Predicted Performance = streamBW/B g
Determine x by measuring performance and actual memory BW

20.05.2011 hpc@rrze.uni-erlangen.de

I_I — ngh Performance

SpMVM node performance model L ¢
omputing

Matrices in our test cases: N , = 7...15 & RHS and LHS do matter!

HM: Hostein-Hubbard Model, 6-site lattice, 6 electrons, 15 phonons,
anrz15

sAMG: Adaptive Multigrid method, irregular discretization of Poisson stencil
on car geometry, N, .= 7

Considered Reverse Cuthill-McKee (RCM) transformation, but no gain

=25 HMeP "y sAMG subblock
. N,,=92527872 ", N,,=160222796 | occupancy

HMEQ25
27872

Ne 62016 N= 6201600 " N=22786800 0.5
AN .
\ _ - b 1072
AN B | L 41073
Different L 4107
element. N e
numbering N~ .
(b) (©) 10
20.05.2011 hpc@rrze.uni-erlangen.de 11

Test matrices: Sparsity patterns I_IF'E gic?r:ﬁif:gmance

Analysis for HMeP matrix on Nehalem EP socket

BW used by spMVM kernel = 18.1 GB/s - should get = 2.66 Gflop/s
spMVM performance

Measured spMVM performance = 2.25 Gflop/s
Solve 2.25 Gflop/s = BW/Borg for x=2.5

- 37.5 extra bytes per row
- RHS is loaded 6 times from memory
- about 33% of BW goes into RHS

Special formats that exploit features of the sparsity pattern are not
considered here

Symmetry
Dense blocks
Subdiagonals (possibly w/ constant entries)

20.05.2011 hpc@rrze.uni-erlangen.de

Test systems I.IF' L g'f;;ﬂgmance

| Memory | Intel Westmere EP (Xeon 5650)

STREAM triad BW (NT stores suppressed,
counting write-allocate transfers):
20.6 GB/s per domain

QDR InfiniBand fully nonblocking fat-tree
interconnect

‘ ey ‘ (Memory] (Momory]

———

———

AMD Magny Cours
(Opteron 6172)

STREAM triad BW:
12.8 GB/s per domain

Cray Gemini

interconnect B s i ss——r S 2 me— i
[Memory J [

(xg+x9l) nodsuei] JodAH walayon

Coherent HyperTransport (16x+8x)

20.05.2011 hpc@rrze.uni-erlangen.de

Node-level performance for HMeP: I'I e H|gh Performance

Nehalem EP (Xeon 5550) Computlng
40 = 6
. o-0bandwidth STREAM:Triad I
. =-m bandwidth spMVM (HMeP) -5
30 B performance spMVM (HMeP) 1 —
‘@ [|>85% of STREAM triad —H4 &
M - BW achieved by L
O, [|spMVvM 1 &
= | 159
g 201 o--"" =
= _-- |
O] _ - ” —12 E
- '.-"' C")%
10 \ 1 <
B Cross-socket scaling
- deficiency due to RHS
- daccess
3 1 node

cores

20.05.2011 hpc@rrze.uni-erlangen.de 14

Node-level performance for HMeP: Westmere EP I'IrIE High Performance

(Xeon 5650) vs. Cray XE6 Magny Cours (Opteron 6172) Computing
S0 P>
B /
<=1 bandwidth STREAM:Triad (Westmere) K
> > bandwidth STREAM:Triad (MagnyCours))/ Jds
40}~
! performance spMVM (HMeP -- Westmere) ;f;f.fﬂ 1<
- L . performance spMVM (HMeP -- MagnyCours) r,] 7 “g_
m - ,“? s Ll
9] 30 ’ ff] g
o [18.1 GB/s o
© SRs!
= C
= ©
2 20 G i e bl 4 €
_fOU - _ -7 Cores useless for [~ O
- 4,-" computation! 30
i e Q
10 - 2
! % % %
it |
cores

20.05.2011 hpc@rrze.uni-erlangen.de 15

Distributed-memory parallelization of spMVM LIF‘E (":”C?r:;‘:ir:gmance

Local operation —
no communication
required

Nonlocal
RHS
elements
for PO

20.05.2011 hpc@rrze.uni-erlangen.de 16

Distributed-memory parallelization of spMVM LIF‘E gl?r:;‘mgmance

Variant 1: “Vector mode” without overlap

Standard concept N-1 < I 5 _
for “hybrid MPI+OpenMP” 5 % 3
L] L > (D
Multithreaded computation S T | % _
) O =
(all threads) o N —
qv ©
O O
et--EE------ B -
. . e v E
Communication only 5 © =
. . &)
& Q -
outside of computation N Pl ke S MPL MPL r

Irecv Isend Waitall

time
Benefit of threaded MPI process only due to message aggregation
and (probably) better load balancing

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,
May 4-7, 2009. PDF

20.05.2011 hpc@rrze.uni-erlangen.de 17

Distributed-memory parallelization of spMVM LIF‘E gl?r:;‘mgmance

Variant 2: “Vector mode” with naive overlap (“good faith hybrid”)

Relies on MPI to support N1 *
async nonblocking PtP - D £ S
i . o 5) £

Multithreaded computation = 5 = o
(all threads) - — IR © —
12 = o= © O
o] — O &) o
o 2 < o I
Still simple programming < [= g Z ‘g O N
Drawback: Result vector ks é = =
is written twice to memory | [V IREE-EN VI TN V]
modified performance Irecv © Isend Waitall »
model time

20.05.2011 hpc@rrze.uni-erlangen.de

Distributed-memory parallelization of spMVM LIF‘E gl?r:;‘mgmance

Variant 3: “Task mode” with dedicated communication thread
Explicit overlap, more complex to implement
One thread missing in

team of compute threads § MPl_ MPI_ §
But that doesn’t hurt here... %Isend Waitall §
Using tasking seems simpler o % §
but may require some ,0; % § = Q
work on NUMA locality - % 5 §

Drawbacks = & § e \
Result vector is written % % § < §
twice to memory o & Q ~ &
No simple OpenMP § % § & §
worksharing (manual, — N N
tasking) omp_barrier omp_barrier time

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid
Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003.
DOI:10.1177/1094342003017001005

M. Wittmann and G. Hager: Optimizing ccNUMA locality for task-parallel execution under OpenMP and TBB on multicore-
based systems. Technical report. Preprint:arXiv:1101.0093

20.05.2011 hpc@rrze.uni-erlangen.de

Results HMeP

w + n (8]
o o o o

performance [GFlop/s]
N
o

10

(a) vector mode
without overlap

(b) vector mode wit
naive overlap

(c) task mode

best Cray

one MPI process

Task mode uses

per physical core |

virtual core for

@ 1 process/core |

one MPlprocess
per NUMA LD

communication —_

b High Performance
I'IFIL Computing
v 1

50% efficiency /
1| w/ respect to . .;/
best 1-node / g
|| performance e ‘

one MPI| process .
per node

16 24
#nodes

32 0 8 16 24

#nodes

16 24 32
#nodes

Dominated by communication (and some load imbalance for large #procs)
Single-node Cray performance cannot be maintained beyond a few nodes
Task mode pays off esp. with one process (12 threads) per node

Task mode overlap (over-)compensates additional LHS traffic

20.05.2011

hpc@rrze.uni-erlangen.de

20

Results sAMG

HI='L

High Performance

Computing
| | ’ | | | v | 1 | | 1 |
120 | (a) vector mode -1 F -1 F -
without overlap
— (b) vector mode with
g = naive overlap
O 90F == (c)task mode A 1 F -
L 7
O] best Cray
@
2 60 41 F 41 F -
©
= /
O
g 30} 1 F 7 1 F -
one MPI process one MPI process one MPI process
per physical core 1 per NUMA LD per node
0 * M | | |] | | |] | | |
0 8 16 24 32 0 16 24 32 0 8 16 24 32
#nodes #nodes #nodes
Much less communication-bound
XEG6 outperforms Westmere cluster, can maintain good node performance
Hardly any discernible difference as to # of threads per process
If pure MPI is good enough, don’t bother going hybrid!
20.05.2011 hpc@rrze.uni-erlangen.de 21

Conclusions & outlook I'IFIL glc?r:;?ir:gmance

Do not rely on asynchronous MPI progress

Sparse MVM leaves resources (cores) free for use by
communication threads

Simple “vector mode” hybrid MPI+OpenMP parallelization is not
good enough if communication is a real problem

“Task mode” hybrid can truly hide communication and
overcompensate penalty from additional memory traffic in spMVM

Comm thread can share a core with comp thread via SMT and still
be asynchronous

If pure MPI scales ok and maintains its node performance
according to the node-level performance model, don’t bother
going hybrid

Work in progress: muiti-GPU impiementation
Overlap even more essential
Matrices with small N, are a problem (PCle)

22

20.05.2011 hpc@rrze.uni-erlangen.de

New HPC textbook

Georg Hager and Gerhard Wellein:
Introduction to High Performance
Computing for Scientists and
Engineers

CRC Press, ISBN 978-1439811924
356 pages
July 2010

"Georg Hager and Gerhard Wellein have developed a
very approachable introduction to high performance
computing for scientists and engineers. Their style and
descriptions are easy to read and follow. ... This book
presents a balanced treatment of the theory, technology,

Chapman & Hall/CRC
Com puuTmhul Scwence Beries

. Introduction to
High Performance

Computing for
Scientists and Engineers

[
r"r m—

Georg Hager
Géerhard Wellein
: (@) SR Press

architecture, and software for modern high performance computers and the use of high
performance computing systems. The focus on scientific and engineering problems makes it

both educational and unique. | highly recommend this timely book for scientists and engineers. |

believe it will benefit many readers and provide a fine reference.“

— From the Foreword by Jack Dongarra, University of Tennessee, Knoxville, USA

