
Georg Hager
Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Erlangen, Germany

Bergische Universität Wuppertal

10.7.2015

Model-guided performance engineering

of numerical kernels

First of all: How to see more of it

 Regular PRACE tutorials (two-day)

 December @ LRZ Garching

 July @ HLRS Stuttgart

 SC Conference tutorial (one-day)

 Next: November 15, 2015, Austin, TX, USA

 SPPEXA collaboration activities

 Next: September 29+30, 2015, TU Darmstadt

 ISC15 full-day workshop Performance Modeling: Methods and

Applications, July 16, 2015, Frankfurt

 … and probably some others

July 10, 2015 2Performance Engineering

An example from physics

Newtonian mechanics

Fails @ small scales!

July 10, 2015 3Performance Engineering

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

 𝐹 = 𝑚 𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

“Black box” vs. “white box” models

July 10, 2015 4Performance Engineering

input data

output data

modeling framework:
statistics, fitting,

machine learning,…

predictions

simplified description
of system

modeling

predictions

≈

validation

model
OK?

N

Y

input data

model
OK?

N

Y

insight

adjust model
 insight

black box

white box

Others have said it better…

July 10, 2015 5Performance Engineering

White box performance engineering

July 10, 2015 6Performance Engineering

Set up an (analytical) model for a given

algorithm/kernel/solver/application

on a given architecture

Compare with measurements

to validate the model

(Hopefully) identify optimization

opportunities and start over

Examples for analytical (“white box”) models

July 10, 2015 7Performance Engineering

𝑆 𝑁 =
1

𝑠 +
1 − 𝑠
𝑁 + 𝑐(𝑁)

Amdahl’s Law with

communication

𝑇𝑃𝑡𝑃 = 𝑇𝑙 +
𝐿

𝐵

Hockney model for

message transmission

time

serial fraction

program speedup latency

msg. length

bandwidth

𝑇exec = max 𝑇calc, 𝑇data

Roofline model for loop

code execution time

time for computation

time for data transfer

𝑇exec = max(𝑇𝑛𝑂𝐿 + 𝑇data, 𝑇𝑂𝐿)

ECM model for loop

code execution time

non-overlapping execution

time for data transfer

overlapping execution

Case study:

Sparse Matrix Vector Multiplication

on a multicore CPU

Part 1: Basics and observations

Sparse Matrix Vector Multiplication (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

July 10, 2015 Performance Engineering

= + • Nr

General case:
some indirect
addressing
required!

9

…

Popular storage format: CRS scheme

July 10, 2015 Performance Engineering

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

10

“Compressed Row Storage”

11July 10, 2015 Performance Engineering

Case study: Sparse matrix-vector multiply

OpenMP-parallel loop kernel

Usually many spMVMs required to solve a problem

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

c(i) = c(i) + val(j) * b(col_idx(j))

enddo

enddo

!$OMP parallel do

!$OMP end parallel do

12

Performance characteristics on Intel Sandy Bridge CPU

July 10, 2015 Performance Engineering

 Performance does not scale across the cores on a CPU chip

 Performance seems to depend on the matrix

 Can we explain

this?

 Is there a

“light speed”

for spMVM?

 Optimization?

???

“White box” performance

modeling on the chip level:

Roofline

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures.
Journal for Parallel and Distributed Computing 5(4), 334 (1988).
DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed
Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers.
UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Prelude: Modeling customer dispatch in a bank

July 10, 2015

Revolving door
throughput:

bS [customers/sec]

Intensity:
I [tasks/customer]

Processing
capability:

Pmax [tasks/sec]

Performance Engineering 14

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆:
Best use of resources

Roofline is an “optimistic” model
(“light speed”)

July 10, 2015

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity
Pe

rf
o

rm
an

ce

Pmax

Performance Engineering 15

The Roofline Model: Performance modeling of loops

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte  BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

July 10, 2015

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

Performance Engineering 16

Example: Dense matrix-vector multiplication in double precision

on an Intel Haswell processor

 Assume N ≈ 5000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

do i=1,N

do j=1,N

c(i)=c(i)+A(j,i)*b(j)

enddo

enddo

do i=1,N

tmp = c(i)

do j=1,N

tmp = tmp + A(j,i)* b(j)

enddo

c(i) = tmp

enddo

July 10, 2015

 does not fit in cache

 half peak (2 LD, 1 ADD, 1 MULT)

 main memory

 2 flops / 8 bytes = 0.25 F/B

(b() comes from cache)

Performance Engineering 17

Example: Dense matrix-vector multiplication in double precision

on an Intel Haswell processor

 Haswell CPU hardware characteristics

 14 cores

 2.5 MByte of cache per core

 8 ADDs + 8 MULTs per core per clock cycle

 Clock speed = 2.3 GHz

 Pmax = ½ Ppeak = ½ x 14 x 16 x 2.3 GFlop/s = 258 GFlop/s

 Max. memory bandwidth (measured) bS = 56 GByte/s

 Roofline model: 𝑃 = min 258
GFlop
s

, 0.25
Flop
Byte

∙ 56
GByte
s

= 14 GFlop/s

 Code is memory bound

 2.7% of peak performance!

 What can you do to improve it?

July 10, 2015 18Performance Engineering

If the code runs at 14

Gflop/s, nothing.

Roofline Model assumptions (“machine model”)

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 No latency effects  perfect streaming mode

 One data transfer bottleneck is modeled only; all others are assumed to

be infinitely fast

 Data transfer and core execution overlap perfectly!

 This is the main problem in situations where Roofline does not work!

 Remedy: Execution-Cache-Memory (ECM) model

July 10, 2015 Performance Engineering 19

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern
multicore chips via simple machine models. Concurrency and Computation: Practice and Experience
(2013), DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model.
Proc. ICS’15, DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010

Case study:

Sparse Matrix Vector Multiplication

on a multicore CPU

Part 2: Modeling

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 Computational intensity

 α quantifies traffic

for loading RHS

 α = 1/Nnzr  RHS loaded once

 α = 1  no cache

 α > 1  Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring performance and actual memory traffic

 Maximum memory BW may not be achieved with spMVM

July 10, 2015 Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte

21

for large 𝑁𝑛𝑧𝑟:

 𝐼max ≈ 2 Flops
12 Byte

 𝐵min ≈ 6 Byte
Flop

Determine RHS traffic

 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-

perfctr)

 Solve for 𝛼:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

  RHS is loaded 3.1 times from memory

 and:

July 10, 2015 Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=
𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic
optimization potential!

22

Now back to the start…

July 10, 2015

Hardware & software:

𝑏𝑆 = 39 GB s
𝐵𝑐
𝑚𝑖𝑛 = 6 B F

Maximum spMVM performance:

𝑃 = 6.5 GF s

 DLR1 causes minimum code

balance!

sAMG matrix code balance:

𝐵𝑐 ≤
𝑏𝑆

4.5 GF s
= 8.7 B F

Performance Engineering 23

Now what next?

 Matrix reordering may improve balance  faster code

 Check other performance-limiting factors (load imbalance, non-streaming)

 Saturation effect cannot be explained by Roofline (in a satisfying way)

Sparse matrix testcases

“DLR1” (A. Basermann, DLR)

Adjoint problem computation

(turbulent transonic flow

over a wing) with the TAU

CFD system of the German

Aerospace Center (DLR)

Avg. non-zeros/row ~150

“sAMG” (K. Stüben, FhG-SCAI)

Matrix from FhG’s adaptive

multigrid code sAMG

for the irregular

discretization of a Poisson

problem on a car geometry.

Avg. non-zeros/row ~ 7

24July 10, 2015 Performance Engineering

Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model can only deliver an optimistic absolute upper limit

for spMVM due to the RHS traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: Modeling is not always 100% predictive. It‘s all

about learning more about performance properties!

July 10, 2015 Performance Engineering 25

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation
(e.g., scalar  SIMD)

July 10, 2015

Perl

Performance Engineering 26

Best practices for benchmarking

and optimization

Basics of benchmarking & optimization

Motivation:

 Understand observed performance

 Learn about code characteristics and machine capabilities

 Deliberately decide on optimizations

Process:

1. Define relevant test cases (similar to production runs)

2. Establish a sensible performance metric (work/time)

3. Acquire a runtime profile (where does the time go?)

4. Identify “hot” loop kernels (hopefully there are any!)

5. Try to build a simple performance model

6. Optimize the kernel if possible

July 10, 2015 Performance Engineering

iterate

28

Best practices for benchmarking

Preparation

 Care for reliable timing (minimum time which can be measured?)

 Document code generation (flags, compiler version)

 Get access to an exclusive system

 System state (clock speed, turbo mode, memory, caches)

 Consider automating runs with a script (shell, python, perl)

Doing

 Affinity control

 Check: Is the result reasonable? (300 PFlop/s are not)

 Is result deterministic and reproducible? (if not, search for reasons)

 Statistics: Mean, Best?

 Basic variants to check

 Thread count, affinity, working set size

July 10, 2015 Performance Engineering 29

Thank you.

http://blogs.fau.de/hager

July 10, 2015 30Performance Engineering

OMI4papps
hpcADD

http://blogs.fau.de/hager

