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First of all: How to see more of it

 Regular PRACE tutorials (two-day)

 December @ LRZ Garching

 July @ HLRS Stuttgart

 SC Conference tutorial (one-day)

 Next: November 15, 2015, Austin, TX, USA

 SPPEXA collaboration activities

 Next: September 29+30, 2015, TU Darmstadt

 ISC15 full-day workshop Performance Modeling: Methods and

Applications, July 16, 2015, Frankfurt 

 … and probably some others
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An example from physics

Newtonian mechanics

Fails @ small scales!
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𝑖ℏ
𝜕

𝜕𝑡
𝜓  𝑟, 𝑡 = 𝐻𝜓  𝑟, 𝑡

 𝐹 = 𝑚  𝑎

Nonrelativistic 

quantum 

mechanics

Fails @ even smaller scales!

Relativistic 

quantum 

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐



“Black box” vs. “white box” models
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Others have said it better…
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White box performance engineering
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Set up an (analytical) model for a given 

algorithm/kernel/solver/application 

on a given architecture

Compare with measurements 

to validate the model

(Hopefully) identify optimization 

opportunities and start over



Examples for analytical (“white box”) models
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𝑆 𝑁 =
1

𝑠 +
1 − 𝑠
𝑁 + 𝑐(𝑁)

Amdahl’s Law with 

communication

𝑇𝑃𝑡𝑃 = 𝑇𝑙 +
𝐿

𝐵

Hockney model for 

message transmission 

time

serial fraction

program speedup latency

msg. length

bandwidth

𝑇exec = max 𝑇calc, 𝑇data

Roofline model for loop 

code execution time

time for computation

time for data transfer

𝑇exec = max(𝑇𝑛𝑂𝐿 + 𝑇data, 𝑇𝑂𝐿)

ECM model for loop 

code execution time

non-overlapping execution

time for data transfer

overlapping execution



Case study:

Sparse Matrix Vector Multiplication

on a multicore CPU

Part 1: Basics and observations



Sparse Matrix Vector Multiplication (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr
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= + • Nr

General case: 
some indirect 
addressing 
required!
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…

Popular storage format: CRS scheme
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column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length 
Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting index 
of each new row in val[] (length: Nr)
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“Compressed Row Storage”
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Case study: Sparse matrix-vector multiply

OpenMP-parallel loop kernel

Usually many spMVMs required to solve a problem

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

c(i) = c(i) + val(j) * b(col_idx(j)) 

enddo

enddo

!$OMP parallel do

!$OMP end parallel do
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Performance characteristics on Intel Sandy Bridge CPU
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 Performance does not scale across the cores on a CPU chip

 Performance seems to depend on the matrix

 Can we explain

this?

 Is there a

“light speed”

for spMVM?

 Optimization?

???



“White box” performance 

modeling on the chip level: 

Roofline

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. 
Journal for Parallel and Distributed Computing 5(4), 334 (1988). 
DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed 
Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. 
UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf


Prelude: Modeling customer dispatch in a bank

July 10, 2015

Revolving door 
throughput:

bS [customers/sec]

Intensity:
I [tasks/customer]

Processing 
capability:

Pmax [tasks/sec]
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Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: 
Best use of resources

Roofline is an “optimistic” model
(“light speed”)
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𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity
Pe
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o

rm
an

ce

Pmax
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The Roofline Model: Performance modeling of loops

1. Pmax = Applicable peak performance of a loop, assuming that data 

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g.,  Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte   BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

July 10, 2015

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]
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Example: Dense matrix-vector multiplication in double precision

on an Intel Haswell processor 

 Assume N ≈ 5000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

do i=1,N

do j=1,N

c(i)=c(i)+A(j,i)*b(j)

enddo

enddo

do i=1,N

tmp = c(i)

do j=1,N

tmp = tmp + A(j,i)* b(j)

enddo

c(i) = tmp

enddo

July 10, 2015

 does not fit in cache

 half peak (2 LD, 1 ADD, 1 MULT)

 main memory

 2 flops / 8 bytes = 0.25 F/B

(b() comes from cache)
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Example: Dense matrix-vector multiplication in double precision

on an Intel Haswell processor 

 Haswell CPU hardware characteristics

 14 cores

 2.5 MByte of cache per core

 8 ADDs + 8 MULTs per core per clock cycle

 Clock speed = 2.3 GHz 

 Pmax = ½ Ppeak = ½ x 14 x 16 x 2.3 GFlop/s = 258 GFlop/s

 Max. memory bandwidth (measured)  bS = 56 GByte/s

 Roofline model: 𝑃 = min 258
GFlop
s

, 0.25
Flop
Byte

∙ 56
GByte
s

= 14 GFlop/s

 Code is memory bound

 2.7% of peak performance!

 What can you do to improve it?           
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If the code runs at 14 

Gflop/s, nothing.



Roofline Model assumptions (“machine model”) 

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 No latency effects  perfect streaming mode

 One data transfer bottleneck is modeled only; all others are assumed to 

be infinitely fast

 Data transfer and core execution overlap perfectly!

 This is the main problem in situations where Roofline does not work!

 Remedy: Execution-Cache-Memory (ECM) model 
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G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern 
multicore chips via simple machine models. Concurrency and Computation: Practice and Experience 
(2013), DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil 
computations using the Execution-Cache-Memory model. 
Proc. ICS’15, DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010
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Case study:

Sparse Matrix Vector Multiplication

on a multicore CPU

Part 2: Modeling



Example: SpMVM node performance model

 Sparse MVM in

double precision 

w/ CRS data storage:

 Computational intensity

 α quantifies traffic

for loading RHS

 α = 1/Nnzr  RHS loaded once

 α = 1  no cache

 α > 1  Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring performance and actual memory traffic

 Maximum memory BW may not be achieved with spMVM
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𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
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for large 𝑁𝑛𝑧𝑟:

 𝐼max ≈  2 Flops
12 Byte

 𝐵min ≈ 6  Byte
Flop



Determine RHS traffic

 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-

perfctr)

 Solve for 𝛼:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

  RHS is loaded 3.1 times from memory

 and: 
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𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=
𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic
optimization potential!
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Now back to the start…
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Hardware & software:

𝑏𝑆 = 39  GB s
𝐵𝑐
𝑚𝑖𝑛 = 6  B F

Maximum spMVM performance:

𝑃 = 6.5  GF s

 DLR1 causes minimum code 

balance!

sAMG matrix code balance:

𝐵𝑐 ≤
𝑏𝑆

4.5  GF s
= 8.7  B F
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Now what next?

 Matrix reordering may improve balance  faster code

 Check other performance-limiting factors (load imbalance, non-streaming)

 Saturation effect cannot be explained by Roofline (in a satisfying way)



Sparse matrix testcases

“DLR1” (A. Basermann, DLR)

Adjoint problem computation 

(turbulent transonic flow 

over a wing) with the TAU 

CFD system of the German 

Aerospace Center (DLR)

Avg. non-zeros/row ~150

“sAMG” (K. Stüben, FhG-SCAI) 

Matrix from FhG’s adaptive 

multigrid code sAMG

for the irregular 

discretization of a Poisson 

problem on a car geometry.

Avg. non-zeros/row ~ 7
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Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model can only deliver an optimistic absolute upper limit 

for spMVM due to the RHS traffic uncertainties

We have “turned the model around” and measured the actual 

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: Modeling is not always 100% predictive. It‘s all 

about learning more about performance properties!
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Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different 

algorithm/implementation
(e.g., scalar  SIMD)
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Perl
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Best practices for benchmarking

and optimization



Basics of benchmarking & optimization

Motivation:

 Understand observed performance

 Learn about code characteristics and machine capabilities

 Deliberately decide on optimizations

Process: 

1. Define relevant test cases (similar to production runs)

2. Establish a sensible performance metric (work/time)

3. Acquire a runtime profile (where does the time go?)

4. Identify “hot” loop kernels (hopefully there are any!)

5. Try to build a simple performance model

6. Optimize the kernel if possible
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iterate
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Best practices for benchmarking

Preparation

 Care for reliable timing (minimum time which can be measured?)

 Document code generation (flags, compiler version)

 Get access to an exclusive system

 System state (clock speed, turbo mode, memory, caches)

 Consider automating runs with a script (shell, python, perl)

Doing

 Affinity control

 Check: Is the result reasonable? (300 PFlop/s are not)

 Is result deterministic and reproducible? (if not, search for reasons)

 Statistics: Mean, Best?

 Basic variants to check

 Thread count, affinity, working set size
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Thank you.

http://blogs.fau.de/hager
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OMI4papps 
hpcADD

http://blogs.fau.de/hager

