GHOST, Performance Engineering, SpMVM.
And 42.

Georg Hager
Erlangen Regional Computing Center (RRZE)
University of Erlangen-Nuremberg
Germany

Workshop “Sparse Solvers for Exascale: From Building Blocks to Applications”
March 23-25, 2015
Greifswald, Germany
Outline

Some words on the GHOST design

The SELL-C-σ matrix format

The Performance Engineering (PE) process

Analytically modeling spMVM performance
Software for sparse linear algebra

Requirements and possible solutions
Challenges for programming current & future systems

- **Heterogeneity**
 - CPU/GPU/Phi
 - Addressed by multi-target building blocks & functional parallelism & load balancing & optimized data formats & MPI+X

- **System topology**
 - Memory hierarchy, bottlenecks, affinity, ccNUMA, distributed memory
 - Addressed by bottleneck awareness & full control of affinity mechanisms & MPI+X

- **Communication**
 - Latency/bandwidth, network topology
 - Addressed by bottleneck awareness & functional parallelism
GHOST design principles

Not reinventing the wheel
GHOST design guidelines

- Enable fully heterogeneous operation
 - CPU + GPU + Phi
- Limit automation
 - The user needs to know what is going on
- Do not force dynamic tasking
 - Allow access locality optimizations
- Do not force C++ or an entirely new language
 - Think “pragmatic”
 - We need to get a job done
- Stick to the well-known “MPI+X” paradigm
 - X = OpenMP, CUDA for now
- Allow functional parallelism
 - Spawn asynchronous tasks for almost anything
- Allow for strict thread/process-core affinity
 - Affinity matters!
Example: Hardware Affinity

Heterogeneous node

“Minimum” process distribution to address this architecture
1. Heterogeneity has to be considered for work distribution
 ➔ more power = more work

2. Work distribution for data-parallel approach: Divide the matrix row-wise between workers

3. Example for memory-bound algorithm and a CPU-GPU node:
 1. GPU's memory bandwidth maybe 4x as large as CPU's
 2. Sparse matrix has, e.g., 10 million rows

 ➔ GPU gets assigned 8 million rows
 ➔ CPU gets assigned 2 million rows
Example: Async task model

// define task: checkpointing with 1 thread
ghost_task_create(&chkpTask, 1, curTask->LD, &chkp_func, \n (void *)&chkp_func_args, GHOST_TASK_DEFAULT, NULL, 0);

// define task: compute with N-1 threads
ghost_task_create(&compTask, curTask->nThreads-1, \n curTask->LD, &comp_func, (void *)&comp_func_args, \n GHOST_TASK_DEFAULT, NULL, 0);

// initiate tasks
ghost_task_enqueue(chkpTask); ghost_task_enqueue(compTask);

// wait for completion
ghost_task_wait(chkpTask); ghost_task_wait(compTask);
GHOST internals: Thread startup & task enqueue

Application

- ghost_init()
- main() thread
- ghost_task_enqueue()

GHOST

- pthread_create()
- pthread_cond_wait()
- pthread_cond_signal()
- #pragma omp parallel
 - sched_setaffinity()
 - pumap_set_busy()

```
task->ret = task->func(task->arg)
```
GHOST internals: Task execute & finalize

- Task parallelism
- OpenMP parallel region in work function
- Same pinned worker threads as before

```c
#pragma omp parallel
    sched_setaffinity()
    pmap_set_idle()

ghost_finalize()
```
SELL-C-σ
Constructing SELL-C-σ

1. Pick chunk size C (guided by SIMD/T widths)
2. Pick sorting scope σ
3. Sort rows by length within each sorting scope
4. Pad chunks with zeros to make them rectangular
5. Store matrix data in “chunk column major order”
6. “Chunk occupancy”: fraction of “useful” matrix entries

\[\beta = \frac{N_{nz}}{\sum_{i=0}^{N_c} C \cdot l_i} \]

\[\beta_{\text{worst}} = \frac{N + C - 1}{CN} \approx \frac{1}{C} \]

SELL-6-12
\[\beta = 0.66 \]
Matrix characterization

“Corner case” matrices from “Williams Group”:

<table>
<thead>
<tr>
<th>Test case</th>
<th>N</th>
<th>N_{nz}</th>
<th>N_{nzr}</th>
<th>density</th>
<th>$\beta_{\sigma=16}$</th>
<th>$\beta_{\sigma=256}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM07R</td>
<td>381,689</td>
<td>37,464,962</td>
<td>98.16</td>
<td>2.57e-04</td>
<td>0.63</td>
<td>0.93</td>
</tr>
<tr>
<td>kkt_power</td>
<td>2,063,494</td>
<td>14,612,663</td>
<td>7.08</td>
<td>3.43e-06</td>
<td>0.54</td>
<td>0.92</td>
</tr>
<tr>
<td>Hamrle3</td>
<td>1,447,360</td>
<td>5,514,242</td>
<td>3.81</td>
<td>2.63e-06</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ML_Geer</td>
<td>1,504,002</td>
<td>110,879,972</td>
<td>73.72</td>
<td>4.90e-05</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Remaining matrices:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pwtk</td>
<td>217,918</td>
<td>11,634,424</td>
<td>53.39</td>
<td>2.45e-04</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>shipsec1</td>
<td>140,874</td>
<td>7,813,404</td>
<td>55.46</td>
<td>3.94e-04</td>
<td>0.89</td>
<td>0.98</td>
</tr>
<tr>
<td>consph</td>
<td>83,334</td>
<td>6,010,480</td>
<td>72.13</td>
<td>8.65e-04</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td>pdb1HYS</td>
<td>36,417</td>
<td>4,344,765</td>
<td>119.31</td>
<td>3.28e-03</td>
<td>0.84</td>
<td>0.97</td>
</tr>
<tr>
<td>cant</td>
<td>62,451</td>
<td>4,007,383</td>
<td>64.17</td>
<td>1.03e-03</td>
<td>0.90</td>
<td>0.98</td>
</tr>
</tbody>
</table>

...
Variants of SELL-C-σ

SELL-6-1
$\beta = 0.51$

SELL-6-12
$\beta = 0.66$

SELL-6-24
$\beta = 0.84$
The Performance Engineering (PE) process

Systematic performance analysis and pattern-guided optimization
Performance Engineering Process: Analysis

Step 1 **Analysis**: Understanding observed performance

- **Algorithm/Code Analysis**
- **Hardware/Instruction set architecture**
- **Microbenchmarking**
- **Application Benchmarking**

The set of input data indicating a pattern is its **signature**

Performance patterns are typical performance limiting motifs
Performance Engineering Process: Modelling

Step 2 **Formulate Model:** Validate pattern and get quantitative insight.
Models in physics

Newtonian mechanics

\[F = ma \]

Fails @ small scales!

Nonrelativistic quantum mechanics

\[i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = H\psi(\vec{r}, t) \]

Fails @ even smaller scales!

Relativistic quantum field theory

\[U(1)_Y \otimes SU(2)_L \otimes SU(3)_c \]

Consequences

- If models fail, we learn more
- A simple model can get us very far before we need to refine
Performance Engineering Process: Optimization

Step 3 *Optimization*: Improve utilization of offered resources.

- **Optimize for better resource utilization**
- **Eliminate non-expedient activity**

Pattern

Performance Model

Performance improves until next bottleneck is hit

Improves Performance
The whole PE process at a glance

Microbenchmarking → Machine characteristics → Algorithm / code analysis → Pattern → Performance model → Model validation

Model validation:
- Validation OK?
 - Yes: Model adjustment
 - Identify correct pattern
 - Adjust model input
 - No: Change pattern or code (2a / 2b)

Model building:
- Change pattern (1a)
- Same pattern (1b)

Optimization:
- Optimize for better resource utilization
- Eliminate non-expedient activity
SpMVM Pattern: BW saturation
Roofline performance model for SELL-C-σ

Code balance (double precision FP, 4-byte index):

\[B_{\text{SELL}}(\alpha, \beta, N_{nzr}) = \left(\frac{1}{\beta} \left(\frac{8 + 4}{2} \right) + \frac{8\alpha + 16/N_{nzr}}{2} \right) \text{bytes/flop} \]

\[= \left(\frac{6}{\beta} + 4\alpha + \frac{8}{N_{nzr}} \right) \text{bytes/flop} \]

\[P(\alpha, \beta, N_{nzr}, b) = \frac{b}{B_{\text{SELL}}(\alpha, \beta, N_{nzr})} \]
The α parameter

Corner case scenarios:

1. $\alpha = 0 \rightarrow$ RHS in cache
2. $\alpha = \frac{1}{N_{nzc}} \rightarrow$ Load RHS vector exactly once

If $N_{nzc} \gg 1$, RHS traffic is insignificant: \[\bar{P} = \frac{b\beta}{6 \text{ bytes/flop}} \]

3. $\alpha \approx 1 \rightarrow$ Each RHS load goes to memory
4. $\alpha > 1 \rightarrow$ Houston, we’ve got a problem 😊

Determine α by measuring actual spMVM memory traffic (HPM)
\(V_{meas} \) is the measured overall memory data traffic (using, e.g., likwid-perfctr)

Determine \(\alpha \):

\[
\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{8}{N_{nzzr}} \right)
\]

Example: kkt_power matrix on one Intel SNB socket

1. \(N_{nz} = 14.6 \cdot 10^6, N_{nzzr} = 7.1 \)
2. \(V_{meas} \approx 258 \text{ MB} \)
3. \(\rightarrow \alpha = 0.43, \alpha N_{nzzr} = 3.1 \)
4. \(\rightarrow \) RHS is loaded 3.1 times from memory
5. and:

\[
\frac{B_{CRS}^{DP}(\alpha)}{B_{CRS}^{DP}(1/N_{nzc})} = 1.15
\]

15% extra traffic \(\rightarrow \) optimization potential!
Download our building block library and KPM application: http://tiny.cc/ghost

General, Hybrid, and Optimized Sparse Toolkit

- MPI + OpenMP + SIMD + CUDA
- Transparent data-parallel heterogeneous execution
- Task-parallelism (checkpointing, comm. hiding, etc.)
- Support for block vectors
 - Automatic code generation for common block vector sizes
 - Hand-implemented tall skinny dense matrix kernels
- Fused kernels ("augmented SpMV")
- SELL-C-σ heterogeneous sparse matrix format
Further information

1. **About patterns in Performance Engineering**

J. Treibig, G. Hager, and G. Wellein: Performance patterns and hardware metrics on modern multicore processors: Best practices for performance engineering. PROPER 2012, DOI: 10.1007/978-3-642-36949-0_50

2. **About Performance Modeling in general**

ISC15 Workshop “Performance Modeling: Methods and Applications”, July 16, 2015, Frankfurt

3. **About our holistic performance engineering approach**

PRACE tutorials (July 6-7 @HLRS Stuttgart & December 10-11 @LRZ Garching)
SWSC workshop (April 9/10 @U Leuven, Belgium)
SC15 tutorial?
Thank you.