
More Science per Joule:

Bottleneck Computing

Georg Hager

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Germany

PPAM 2013

September 9, 2013

Warsaw, Poland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Motivation (1): Scalability rulez!

… or does it not?

–O3 -xAVX

More “science
per day”

PPAM 2013 Bottleneck Computing 2

Motivation (2): What about power/energy?

… at least it’s good for some cool [sic!] propaganda:

smartphone

stick of butter

© Qualcomm

PPAM 2013 Bottleneck Computing 3

Scientist (“nerd”)

Metric: Papers/CPUh

P
ro

ject ru
n

tim
e

Points of view: Nerds and naggers

Computing Center

(“naggers”)

Metric: ?

CPU time allocation
Hardware &
maintenance cost

Energy cost
Power cap

Science
Science Next

machine

PPAM 2013 Bottleneck Computing 4

Line of thought

1. High Performance Computing == Computing at a bottleneck

2. There is code optimization potential in almost every application on
every computer in this world

3. Making an application run faster by code optimization will reduce
the energy spent on solving a problem (“code race to idle”)

4. Making an application run faster by playing with the clock speed
may or may not save energy

5. Leaving part of the machine idle may reduce energy consumption
without compromising performance

6. Maximum performance and optimized energy consumption are
sometimes contradictory

PPAM 2013 Bottleneck Computing 5

Setting the Stage (I):

Performance Bottlenecks

Roofline Model

ECM Model

Typical bottlenecks in scientific computing

 Chip level

 Execution units, pipelines

 Cache transfer bandwidths

 Memory bandwidth

 Node level

 Intra-node communication (NUMA, PCI)

 Network connection(s)

 System level

 Network topology

 Power constraints

PPAM 2013 7 Bottleneck Computing

GPU
#1

GPU
#2

How do you know that you have hit a bottleneck?  Performance modeling!

Performance modeling

Simplest chip-level approach: The Roofline Model

PPAM 2013 8 Bottleneck Computing

86.4 GF/s

21.6 GF/s

7.2 GF/s

𝑃 = min⁡(𝑃max, 𝐼 ∙ 𝑏𝑆)

Roofline: Hitting bottlenecks

1: memory-bound, but inefficient

access?

12: Optimization fixes access

problems to hit bottleneck

23: Optimization increases

comp. intensity while staying

at bottleneck

4: compute-bound, but inefficient

execution – no SIMD?

45: Optimization fixes

execution to hit bottleneck

PPAM 2013 9 Bottleneck Computing

Computational intensity

P
e
rf

o
rm

a
n
c
e

1

2

3
4

5

bottlenecked

non-bottlenecked

core bound data bound

Roofline  ECM (Execution-Cache-Memory)

Problem: Roofline does not explain intra-chip saturation

PPAM 2013 10 Bottleneck Computing

A(:)=B(:)+C(:)*D(:)

Roofline predicts full
socket BW

ECM Model accounts for lost cycles by

considering data transfers through cache

hierarchy …

ECM bandwidth saturation

… then assumes perfect scaling until the bottleneck is hit

PPAM 2013 11 Bottleneck Computing

. . .
A(:)=B(:)+C(:)*D(:)

J. Treibig and G. Hager: Introducing a Performance Model for
Bandwidth-Limited Loop Kernels. PPAM 2009,
DOI: 10.1007/978-3-642-14390-8_64. arXiv:0905.0792
G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring
performance and power properties of modern multicore chips
via simple machine models. Submitted.
Preprint: arXiv:1208.2908

http://www.ppam.pl/
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://arxiv.org/abs/0905.0792
http://arxiv.org/abs/1208.2908

Healing slow serial code

PPAM 2013 12 Bottleneck Computing

Parallelism “heals” bad
single-core performance

… if you are lucky!

A(:)=B(:)+C(:)/D(:)

So why the fuss if we have enough

cores to saturate anyway?

Setting the Stage (II):

Energy Consumption

A simple power model for multicore chips

Assumptions:

1. Power is a quadratic polynomial in the clock frequency 𝒇

2. Dynamic power is linear in the number of active cores 𝒕

3. Performance is linear in the number of cores until it hits a

bottleneck ( ECM model)

4. Performance is linear in the clock frequency unless it hits a

bottleneck

5. Energy to solution is power dissipation divided by performance

Model:

PPAM 2013 14 Bottleneck Computing

𝐸 =
Power

Performance
=

𝑊0 +𝑊2𝑓
2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)

Model predictions

1. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck

PPAM 2013 15 Bottleneck Computing

Better code
 earlier saturation

 smaller E @ saturation

𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)

Model predictions

2. If there is saturation, E is minimal near the saturation point

PPAM 2013 16 Bottleneck Computing

Minimum E here

𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)

𝑡𝑠 =
𝑃𝑚𝑎𝑥

𝑃0𝑓/𝑓0

Model predictions

3. There is an optimal frequency fopt at which E is minimal in the

non-saturated case, with

𝑓opt =⁡
𝑊0

𝑊2𝑡
 (depends on the baseline power)

 “Clock race to idle” if baseline power is large (accommodates

whole system)!

PPAM 2013 17 Bottleneck Computing

𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)

Putting it all together:

Chip-Level Energy vs. Performance

Memory-bound codes

Scalable codes

Case 1: Memory bound (saturating)

A simple example: Jacobi smoother Z-plot

PPAM 2013 20 Bottleneck Computing

Peformance & energy to solution (chip-level base power 𝑾𝟎 = 𝟐𝟑W)

@ 2.7 GHz on Sandy Bridge EP

PPC=1

PPC=8

A lattice-Boltzmann flow solver on the Sandy Bridge chip

ECM + Power model vs. measurements (chip level)

PPAM 2013 21 Bottleneck Computing

Lowest energy for

 best code (AVX)

 low-ish clock

speed

 optimal number of

cores (at

bottleneck)

optimization
space

Going highly parallel at different frequencies on SuperMUC

PPAM 2013 22 Bottleneck Computing

MPI Sendrecv test (mimics halo exchange) on SuperMUC

PPAM 2013 23 Bottleneck Computing

!

!

relevant
message sizes

What now about the optimal operating point? (chip 𝑾𝟎)

PPAM 2013 24 Bottleneck Computing

naive code (scalar)
@ PPC=8 MPI BW

breakdown

… and taking a realistic 𝑾𝟎 = 𝟕𝟑W?

PPAM 2013 25 Bottleneck Computing

penalty for
too many cores

Large
𝑊0enforces

sharply
defined
optimal

operating
point

Power capping (realistic 𝑾𝟎)

PPAM 2013 26 Bottleneck Computing

significant
optimization

space

Case 2: Cache bound (scalable)

A DGEMM test

PPAM 2013 28 Bottleneck Computing

 Optimal frequency for energy to

solution on scalable code:

𝒇𝒐𝒑𝒕 =
𝑾𝟎

𝑾𝟐𝒕

 Power ratio of optimized vs. base

clock speed:

𝑾(𝒇𝒐𝒑𝒕)

𝑾(𝒇𝟎)
=

𝟐𝑾𝟎

𝑾𝟎 +𝑾𝟐𝒇 𝒕𝟎
𝟐

 But clocking down gives me less

science per CPU hour!?

𝑊0 = 23W
𝑊2 = 1.5⁡W/GHz2

Adjusting the size of the machine for scalable load

 Invest the saved energy into a larger machine to get the same

science over its lifetime:

𝑹 =
𝑾(𝒇𝒐𝒑𝒕)

𝑾(𝒇𝟎)
∙
𝒇𝟎
𝒇𝒐𝒑𝒕

=
𝟐𝒇𝟎 𝑾𝟎𝑾𝟐𝒕

𝑾𝟎 +𝑾𝟐𝒇 ⁡𝒕𝟎
𝟐

 R quantifies the potential for saving energy over the lifetime of the

machine (which is constant)

PPAM 2013 29 Bottleneck Computing

Energy saving potential for different 𝑾𝟎

It’s chickens vs. oxen time again!

(8 cores, 𝑾𝟐 = 𝟏. 𝟓⁡W/GHz𝟐, 𝒇𝟎 = 𝟐. 𝟕⁡GHz)

PPAM 2013 30 Bottleneck Computing

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

3x size cluster,
20W 900MHz

chip

0.4x size cluster,
1000W 6500MHz

chip

SuperMUC

𝑊0

𝑅

Conclusions

 Performance and power models help us understand optimal

operating points for saturating codes on the chip level

 Including code quality and clock speed dependence

 This knowledge is even more important in the highly parallel case!

 Operating point for saturated codes more sharply defined if communication

plays a significant role

 Exploration of design space for energy-efficient large-scale systems

 Blindly setting a slow clock speed for bandwidth-bound code may

be dangerous

 … and the benefit is limited

 Take-home messages

 Write fast single-core code

 Know about saturation and dump dispensable cores

 This is also crucial for power capping

 Adjust clock speed – but do it intelligently!

PPAM 2013 31 Bottleneck Computing

THANK YOU.

Moritz Kreutzer
Markus Wittmann

Thomas Zeiser
Michael Meier

Jan Treibig

OMI4papps

hpcADD
FEPA

SKALB

PPAM 2013 Bottleneck Computing 32

