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Motivation (1): Scalability rulez! 

… or does it not? 

–O3 -xAVX 

More “science 
per day” 
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Motivation (2): What about power/energy?  

… at least it’s good for some cool [sic!] propaganda: 

smartphone 

stick of butter 

© Qualcomm 

PPAM 2013 Bottleneck Computing 3 



Scientist (“nerd”) 

 

 

 

 

 

 

 

 

 

 

 

 

Metric: Papers/CPUh 

P
ro

ject ru
n

tim
e

 

Points of view: Nerds and naggers 

Computing Center 

(“naggers”) 

 

 

 

 

 

 

 

 

 

 

 

Metric: ?  

CPU time allocation 
Hardware & 
maintenance cost 

Energy cost 
Power cap 

Science 
Science Next 

machine 

PPAM 2013 Bottleneck Computing 4 



Line of thought 

1. High Performance Computing == Computing at a bottleneck 

2. There is code optimization potential in almost every application on 
every computer in this world 

3. Making an application run faster by code optimization will reduce 
the energy spent on solving a problem (“code race to idle”) 

4. Making an application run faster by playing with the clock speed 
may or may not save energy 

5. Leaving part of the machine idle may reduce energy consumption 
without compromising performance 

6. Maximum performance and optimized energy consumption are 
sometimes contradictory 
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Setting the Stage (I): 

Performance Bottlenecks 

Roofline Model 

ECM Model 



Typical bottlenecks in scientific computing 

 Chip level 

 Execution units, pipelines 

 Cache transfer bandwidths 

 Memory bandwidth 

 

 Node level 

 Intra-node communication (NUMA, PCI) 

 Network connection(s) 

 

 System level 

 Network topology 

 Power constraints 
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GPU 
#1 

GPU 
#2 

How do you know that you have hit a bottleneck?  Performance modeling! 



Performance modeling 

Simplest chip-level approach: The Roofline Model 
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86.4 GF/s 

21.6 GF/s 

7.2 GF/s 

𝑃 = min⁡(𝑃max, 𝐼 ∙ 𝑏𝑆) 



Roofline: Hitting bottlenecks 

1: memory-bound,  but inefficient 

access? 

12: Optimization fixes access 

problems to hit bottleneck 

23: Optimization increases 

comp. intensity while staying 

at bottleneck 

 

4: compute-bound, but inefficient 

execution – no SIMD? 

45: Optimization fixes 

execution to hit bottleneck 
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Roofline  ECM (Execution-Cache-Memory) 

Problem: Roofline does not explain intra-chip saturation  
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A(:)=B(:)+C(:)*D(:) 

Roofline predicts full 
socket BW 

ECM Model accounts for lost cycles by 

considering data transfers through cache 

hierarchy … 



ECM bandwidth saturation 

… then assumes perfect scaling until the bottleneck is hit 
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. . . 
A(:)=B(:)+C(:)*D(:) 
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Healing slow serial code  
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Parallelism  “heals” bad 
single-core performance 

… if you are lucky! 

A(:)=B(:)+C(:)/D(:) 

So why the fuss if we have enough 

cores to saturate anyway? 



Setting the Stage (II): 

Energy Consumption 



A simple power model for multicore chips 

Assumptions: 

 

1. Power is a quadratic polynomial in the clock frequency 𝒇 

2. Dynamic power is linear in the number of active cores 𝒕 

3. Performance is linear in the number of cores until it hits a 

bottleneck ( ECM model) 

4. Performance is linear in the clock frequency unless it hits a 

bottleneck 

5. Energy to solution is power dissipation divided by performance 

 

Model: 
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𝐸 =
Power

Performance
=

𝑊0 +𝑊2𝑓
2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)
 



Model predictions 

1. Making code execute faster on the core saves energy since 

 The time to solution is smaller if the code scales (“Code race to idle”) 

 We can use fewer cores to reach saturation if there is a bottleneck 
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Better code 
 earlier saturation  

 smaller E @ saturation 

𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)
 



Model predictions 

2. If there is saturation, E is minimal near the saturation point 

 

 

 

PPAM 2013 16 Bottleneck Computing 

Minimum E here 

𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)
 

𝑡𝑠 =
𝑃𝑚𝑎𝑥

𝑃0𝑓/𝑓0
 



Model predictions 

3. There is an optimal frequency fopt at which E is minimal in the 

non-saturated case, with 

 

𝑓opt =⁡
𝑊0

𝑊2𝑡
     (depends on the baseline power) 

 

 

 “Clock race to idle” if baseline power is large (accommodates 

whole system)! 
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𝐸 =
𝑊0 +𝑊2𝑓

2𝑡

min⁡(𝑡𝑃0⁡𝑓/𝑓0⁡, 𝑃𝑚𝑎𝑥)
 



Putting it all together: 

Chip-Level Energy vs. Performance 

Memory-bound codes 

Scalable codes 



Case 1: Memory bound (saturating) 



A simple example: Jacobi smoother Z-plot 
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Peformance & energy to solution (chip-level base power 𝑾𝟎 = 𝟐𝟑W) 

@ 2.7 GHz on Sandy Bridge EP 

PPC=1 

PPC=8 



A lattice-Boltzmann flow solver on the Sandy Bridge chip 

ECM + Power model vs. measurements (chip level) 
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Lowest energy for 

 best code (AVX) 

 

 low-ish clock 

speed 

 

 optimal number of 

cores (at 

bottleneck)  

optimization 
space 



Going highly parallel at different frequencies on SuperMUC 
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MPI Sendrecv test (mimics halo exchange) on SuperMUC 
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! 

! 

relevant 
message sizes 



What now about the optimal operating point? (chip 𝑾𝟎) 
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naive code (scalar)  
@ PPC=8 MPI BW 

breakdown 



… and taking a realistic 𝑾𝟎 = 𝟕𝟑W? 
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penalty for  
too many cores 

Large 
𝑊0enforces 

sharply 
defined 
optimal 

operating 
point 



 

Power capping (realistic 𝑾𝟎) 
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significant 
optimization 

space 



Case 2: Cache bound (scalable) 



A DGEMM test 
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 Optimal frequency for energy to 

solution on scalable code: 

 

𝒇𝒐𝒑𝒕 =
𝑾𝟎

𝑾𝟐𝒕
 

 

 

 Power ratio of optimized vs. base 

clock speed: 

 
𝑾(𝒇𝒐𝒑𝒕)

𝑾(𝒇𝟎)
=

𝟐𝑾𝟎

𝑾𝟎 +𝑾𝟐𝒇 𝒕𝟎
𝟐  

 

 But clocking down gives me less 

science per CPU hour!? 

 

𝑊0 = 23W 
𝑊2 = 1.5⁡W/GHz2 



Adjusting the size of the machine for scalable load 

 Invest the saved energy into a larger machine to get the same 

science over its lifetime: 

 

𝑹 =
𝑾(𝒇𝒐𝒑𝒕)

𝑾(𝒇𝟎)
∙
𝒇𝟎
𝒇𝒐𝒑𝒕

=
𝟐𝒇𝟎 𝑾𝟎𝑾𝟐𝒕

𝑾𝟎 +𝑾𝟐𝒇 ⁡𝒕𝟎
𝟐  

 

 

 R quantifies the potential for saving energy over the lifetime of the 

machine (which is constant) 
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Energy saving potential for different 𝑾𝟎 

It’s chickens vs. oxen time again!  

(8 cores, 𝑾𝟐 = 𝟏. 𝟓⁡W/GHz𝟐, 𝒇𝟎 = 𝟐. 𝟕⁡GHz) 
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Conclusions 

 Performance and power models help us understand optimal 

operating points for saturating codes on the chip level 

 Including code quality and clock speed dependence 

 

 This knowledge is even more important in the highly parallel case! 

 Operating point for saturated codes more sharply defined if communication 

plays a significant role 

 Exploration of design space for energy-efficient large-scale systems 

 Blindly setting a slow clock speed for bandwidth-bound code may 

be dangerous 

 … and the benefit is limited 

 Take-home messages 

 Write fast single-core code 

 Know about saturation and dump dispensable cores 

 This is also crucial for power capping  

 Adjust clock speed – but do it intelligently! 
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