

Energy efficiency: A down-to-earth perspective

Georg Hager

Erlangen Regional Computing Center (RRZE) University of Erlangen-Nuremberg Erlangen, Germany

Cool Supercomputing BoF @ SC12, Nov 14, 2012

- 1. The lifetime of a typical machine is constant (4-6 years)
- 2. Energy costs account for a significant fraction of TCO (especially in Europe)
- 3. Machines are almost 100% utilized
- 4. Domain scientists have no idea about
 - Performance optimization
 - Connection between performance and power bill for their jobs

Straightforward conclusions:

- Install automatic mechanisms to automagically clock down CPUs in apps not sensitive to clock speed
- Use "application slack" to clock down/power down individual cores

Application optimization is the first and easiest way to save energy

Example:

A medical image reconstruction code on Sandy Bridge

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

Test case	Runtime [s]	Power [W]		Energy [J]
8 cores, plain C	90.43	90	↓ Fa	8110
8 cores, SSE	29.63	93	aster o less e	2750
8 cores (SMT), SSE	22.61	102	code energy	2300
8 cores (SMT), AVX	18.42	111		2040

Load imbalance is better removed from the start

	P0
P1	slack (no dynamic power)

Energy to solution: $E_{slack} \approx T \cdot (W_{static} + W_{dyn}) = T \cdot W_{static} + T \cdot W_{dyn}$

Low-hanging fruits for power efficiency

- Think about a "Science per Joule" metric
- Remove load imbalance for better resource utilization
- Single-core (and then parallel) optimization for
 - Shorter time to solution
 - Earlier in-socket saturation
- Train application programmers to get the fallen fruits themselves (zeroth order)!

And then, if there's time, think about the third order:

- Power capping
- Efficient power distribution
- Automatic, profile-guided DVFS