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Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

In 1965 Gordon Moore claimed:
#transistors on chip doubles every ≈24 months 

We are living in the multicore era Is really everyone aware of that?

Intel x86 clock speed

Intel Nehalem EX: 2.3 Billion



SC10 Tutorial Ingredients for good multicore performance 5

OverOver--clockedclocked
(+20%)(+20%)

1.00x1.00x

1.73x1.73x

1.13x1.13x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

DualDual--corecore
((--20%)20%)

1.02x1.02x

1.73x1.73x
DualDual--CoreCore

By courtesy of D. Vrsalovic, Intel

Welcome to the multi-/manycore era
The game is over: But Moore’s law continues

Power envelope:

Max. 95–130 W 

Power 
consumption:

P = f * (Vcore)2

Vcore ~ 0.9–1.2 V

Same process 
technology:

P ~ f3

N transistors

2N transistors
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Required relative frequency reduction to run m cores (m times 
transistors) on a die at the same power envelope  

Year: 2007/08

m: #cores per die

R
ed

uc
tio

n
of

 c
lo

ck
sp

ee
d

8 cores running at half speed of a single
core CPU = same energy

65 nm technology :
Sun T2 („Niagara“) 1.4 GHz 8 cores
Intel Woodcrest 3.0 GHz 2 cores

Welcome to the multi-/many-core era
The game is over: But Moore’s law continues
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The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)
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Hyperthreading/SMT is back!
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Welcome to the multi-/many-core era
A new feature: shared on-chip resources

AMD Opteron
Istanbul

6 cores @ 2.8 GHz

L1: 64 KB

L2: 512 KB

L3: 6 MB

2 X DDR2-800
12.8 GB/s

HT2000 8 GB/s/dir

Intel Xeon
Westmere

6 cores @ 2.93 GHz

L1: 32 KB

L2: 256 KB

L3: 12MB

3 X DDR3-1333
31.8 GB/s 
2 X QPI6.4
12.8 GB/s/dir 

Shared outer-level cache

Fast data transfer

Fast thread synchronisation

Data Coherency!
Increased intra-cache traffic?
Scalable bandwidth?
MPI parallelization?

Memory bottleneck!
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Dual-socket AMD (Istanbul) / Intel (Westmere) node:

Dual-socket Intel “Core2” node:
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From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA):

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at 
the expense of ccNUMA architectures: 
Where does my data finally end up?Memory
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Shared Address Space within the node!
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Back to the 2-chip-per-case age:
AMD Magny-Cours – a 2x6-core socket

AMD: “Magny-Cours”
12-core socket comprising two 6-core chips 
connected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domains
ccNUMA within a socket!

4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2.66 GHz + GBit ~ 10 GF/s / 0.12 GB/s = 80 B/F)
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Parallel programming models
on multicore multisocket nodes

Shared-memory (intra-node)
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads
Intel Threading Building Blocks
Cilk++, OpenCL, StarSs,… you name it

Distributed-memory (inter-node)
MPI (current standard: 2.2)
PVM (gone)

Hybrid
Pure MPI
MPI+OpenMP
MPI + any shared-memory model

Covered in detail in the 
hybrid MPI+OpenMP tutorial

All models require 
awareness of 
topology and affinity 
issues for getting 
best performance 
out of the machine!
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Parallel programming models:
Pure MPI

Machine structure is invisible to user:
Very simple programming model
MPI “knows what to do”!?

Performance issues
Intranode vs. internode MPI
Node/system topology
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Parallel programming models:
Pure threading on the node

Machine structure is invisible to user
Very simple programming model

Threading SW (OpenMP, pthreads,
TBB,…) should know about the details

Performance issues
Synchronization overhead
Memory access
Node topology
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Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket: 
OpenMP threads on same 

socket: “blockwise”

OpenMP threads pinned
“round robin” across 

cores in node

Two MPI processes / socket
OpenMP threads 
on same socket

See
 M
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MP hyb
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Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software

Increasing core counts
4-12 today, 16-32 tomorrow?
x2 or x4 per cores node

Shared vs. separate caches
Complex chip/node topologies

UMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in 
heavy flux

We are left with MPI and OpenMP for now
This is complex enough, as we will see…
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Tutorial outline
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ProbingProbing nodenode topologytopology

Standard Standard toolstools
likwidlikwid--topologytopology
hwlochwloc
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How do we figure out the node topology?

Topology =
Where in the machine does core #n reside? And do I have to remember this 
awkward numbering anyway?
Which cores share which cache levels?
Which hardware threads (“logical cores”) share a physical core?

Linux
cat /proc/cpuinfo is of limited use
Core numbers may change across kernels
and BIOSes even on identical hardware

numactl --hardware prints 
ccNUMA node information                 

Information on caches is harder
to obtain

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 8189 MB
node 0 free: 3824 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MB
node 1 free: 28 MB
node 2 cpus: 18 19 20 21 22 23
node 2 size: 8192 MB
node 2 free: 8036 MB
node 3 cpus: 12 13 14 15 16 17
node 3 size: 8192 MB
node 3 free: 7840 MB
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How do we figure out the node topology?

LIKWID tool suite:

Like
I
Knew
What
I’m
Doing

Open source tool collection 
(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite 
for x86 multicore environments. Accepted for 
PSTI2010, Sep 13-16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431
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Likwid Tool Suite

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfCtr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-bench: Low-level bandwidth benchmark generator tool
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likwid-topology – Topology information

Based on cpuid information

Functionality:
Measured clock frequency

Thread topology

Cache topology

Cache parameters (-c command line switch)

ASCII art output (-g command line switch)

Currently supported (more under development):
Intel Core 2 (45nm + 65 nm)

Intel Nehalem + Westmere

AMD K10 (Quadcore and Hexacore)

AMD K8

Linux OS
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Output of likwid-topology

CPU name:       Intel Core i7 processor
CPU clock:      2666683826 Hz
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:                2
Cores per socket:       4
Threads per core:       2
-------------------------------------------------------------
HWThread Thread Core Socket
0               0               0               0
1               1               0               0
2               0               1               0
3               1               1               0
4               0               2               0
5               1               2               0
6               0               3               0
7               1               3               0
8               0               0               1
9               1               0               1
10              0               1               1
11              1               1               1
12              0               2               1
13              1               2               1
14              0               3               1
15              1               3               1
-------------------------------------------------------------
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Output of likwid-topology continued
Socket 0: ( 0 1 2 3 4 5 6 7 )
Socket 1: ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------

*************************************************************
Cache Topology
*************************************************************
Level:   1
Size:    32 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   2
Size:    256 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   3
Size:    8 MB
Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------
*************************************************************
NUMA Topology
*************************************************************
NUMA domains: 2
-------------------------------------------------------------
Domain 0:
Processors:  0 1 2 3 4 5 6 7

Memory: 5182.37 MB free of total 6132.83 MB
-------------------------------------------------------------
Domain 1:
Processors:  8 9 10 11 12 13 14 15

Memory: 5568.5 MB free of total 6144 MB
-------------------------------------------------------------
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Output of likwid-topology

… and also try the ultra-cool 
-g option!

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+
Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+
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hwloc

Alternative: http://www.open-mpi.org/projects/hwloc/
Successor to (and extension of) PLPA, part of OpenMPI
development
Comprehensive API and
command line tool to 
extract topology info
Supports several
OSs and CPU types
Pinning API available



EnforcingEnforcing thread/processthread/process--corecore affinityaffinity
underunder thethe LinuxLinux OSOS

Standard Standard toolstools and OS and OS affinityaffinity facilitiesfacilities
underunder programprogram controlcontrol
likwidlikwid--pinpin
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Generic thread/process-core affinity under Linux

taskset [OPTIONS] [MASK | -c LIST ] \
[PID | command [args]...]

binds processes/threads to a set of CPUs. Examples:

taskset –c 0,2 mpirun –np 2 ./a.out # doesn’t always work
taskset 0x0006 ./a.out
taskset –c 4 33187

Processes can still move in the set!
Alternative: let process/thread bind itself by executing syscall
#include <sched.h>
int sched_setaffinity(pid_t pid, unsigned int len, 

unsigned long *mask);

Disadvantage: which CPUs should you bind to on a non-exclusive 
machine?
Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

Caveat: Linux scheduler does not always use the full set
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Generic thread/process-core affinity under Linux

Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]
Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]
Bind process to specified ccNUMA node(s)

Many more options (e.g., interleave memory across nodes)
see section on ccNUMA optimization

Diagnostic command (see earlier):
numactl --hardware

Again, this is not suitable for a shared machine
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Thread/Process-core affinity (“pinning”) options

Highly OS-dependent system calls
But available on all systems
Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

Support for “semi-automatic” pinning in some 
compilers/environments

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU
SGI Altix dplace (works with logical CPU numbers!)
Generic Linux: taskset, numactl, likwid-pin (see below)

Affinity awareness in MPI libraries
SGI MPT
OpenMPI
Intel MPI
…

Example for program-controlled 
affinity: Using PLPA under Linux!
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Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

Portable Linux Processor Affinity
Wrapper library for sched_*affinity() functions

Robust against changes in kernel API
Example for pure OpenMP: Pinning of threads

Similar for pure MPI and MPI+OpenMP hybrid code

#include <plpa.h>
...
#pragma omp parallel
{

#pragma omp critical
{
if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);
}
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning 
available?

Which core 
to run on?

Pin “me”

Care about correct 
core numbering! 
0…N-1 is not always 
contiguous! If 
required, reorder by 
a map:
cpu = map[cpu];
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Likwid-pin
Overview

Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset
Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (shepherd threads should not be pinned)
Based on combination of wrapper tool together with overloaded pthread
library
Can also be used as a superior replacement for taskset
Supports logical core numbering within a node and within an existing CPU 
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI 
start mechanism or a batch system

Configurable colored output

Usage:
likwid-pin –t intel -c 0,2,4-6 ./myApp parameters 

mpirun likwid-pin -s 0x3 -c 0,3,5,6 ./myApp parameters 
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Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP_NUM_THREADS=4  
$ likwid-pin -s 0x1 -c 0,1,4,5 ./stream
[likwid-pin] Main PID -> core 0 - OK
----------------------------------------------
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
----------------------------------------------
[... some STREAM output omitted ...]
The *best* time for each test is used
*EXCLUDING* the first and last iterations
[pthread wrapper] PIN_MASK: 0->1  1->4  2->5  
[pthread wrapper] SKIP MASK: 0x1
[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP 
[pthread wrapper 1] Notice: Using libpthread.so.0 

threadid 1078008128 -> core 1 - OK
[pthread wrapper 2] Notice: Using libpthread.so.0 

threadid 1082206528 -> core 4 - OK
[pthread wrapper 3] Notice: Using libpthread.so.0 

threadid 1086404928 -> core 5 - OK
[... rest of STREAM output omitted ...]

Skip shepherd 
thread

Main PID always 
pinned

Pin all spawned 
threads in turn
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Likwid-pin
Using logical core numbering

Core numbering may vary from system to system even with 
identical hardware

Likwid-topology delivers this information, which can then be fed into likwid-
pin

Alternatively, likwid-pin can abstract this variation and provide a 
purely logical numbering (physical cores first)

Across all cores in the node:
likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  8| |  1  9| |  2 10| |  3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  4 12| |  5 13| |  6 14| |  7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+
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More examples: Hybrid MPI+OpenMP
Using Intel MPI+compiler & home-grown mpirun

One MPI process 
per node (w/ explicit 
logical numbering)

One MPI process 
per socket (no 
pinning inside socket 
required)

OpenMP threads 
pinned “round 
robin” across 
cores (logical core 
numbers due to cpu set 
established by mpirun)

Two MPI 
processes per 
socket (dito)

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c N:0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,4,5_2,3,6,7" \
likwid-pin –t intel -c 0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \
-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c 0,1 ./a.out
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Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first)

There are several reasons for caring about 
affinity:

Eliminating performance variation

Making use of architectural features

Avoiding resource contention
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Monitoring the Binding
How can we see whether the measures for binding are really effective?

sched_getaffinity(), ...

top:

Press “H” for showing separate threads physical CPU ID

top - 16:05:03 up 24 days,  7:24, 32 users,  load average: 5.47, 4.92, 3.52
Tasks: 419 total,   4 running, 415 sleeping,   0 stopped,   0 zombie
Cpu(s):  95.7% us,  1.1% sy,  1.6% ni, 0.0% id,  1.4% wa,  0.0% hi,  0.2% si
Mem:   8157028k total,  8131252k used,    25776k free,     2772k buffers
Swap:  8393848k total,    93168k used,  8300680k free,  7160040k cached

PID USER      PR  VIRT  RES  SHR  NI P S %CPU %MEM   TIME COMMAND
23914 unrz55    25  277m 223m 2660   0 2 R 99.9  2.8  23:42 dmrg_0.26_WOODY
24284 unrz55    16  8580 1556  928   0 2 R  0.2  0.0   0:00 top
4789 unrz55    15 40220 1452 1448   0 0 S  0.0  0.0 0:00 sshd
4790 unrz55    15  7900  552  548   0 3 S  0.0  0.0 0:00 tcsh

UPDATE!
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Probing performance behavior

How do we find out about the performance requirements of a 
parallel code?

Profiling via advanced tools is often overkill
A coarse overview is often sufficient

likwid-perfCtr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 
Linux/Altix)
Simple end-to-end measurement of hardware performance metrics
“Marker” API for starting/stopping 
counters
Multiple measurement region 
support
Preconfigured and extensible 
metric groups, list with
likwid-perfCtr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio



SC10 Tutorial Ingredients for good multicore performance 39

likwid-perfCtr
Example usage with preconfigured metric group 

$ env OMP_NUM_THREADS=4 likwid-perfCtr -c 0-3 -g FLOPS_DP likwid-pin -c 0-3 ./stream.exe
-------------------------------------------------------------
CPU type: Intel Core Lynnfield processor 
CPU clock: 2.93 GHz 
-------------------------------------------------------------
Measuring group FLOPS_DP
-------------------------------------------------------------
YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |
| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |
| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |
| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |
| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
+--------------------------------------+-------------+-------------+-------------+-------------+
+--------------------------+------------+---------+----------+----------+
| Metric | core 0 | core 1 | core 2 | core 3 |
+--------------------------+------------+---------+----------+----------+
| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |
| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |
| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |
| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |
| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |
| SP MUOPS/s | 0 | 0 | 0 | 0 |
| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |
+--------------------------+------------+---------+----------+----------+ 

Always 
measured

Derived 
metrics

Configured metrics 
(this group)
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Section summary: What to take home

Figuring out the node topology is usually the hardest part
Virtual/physical cores, cache groups, cache parameters
This information is usually scattered across many sources

LIKWID-topology
One tool for all topology parameters
Supports Intel and AMD processors under Linux (currently)

Generic affinity tools
Taskset, numactl do not pin individual threads
Manual (explicit) pinning from within code

LIKWID-pin
Binds threads/processes to cores
Optional abstraction of strange numbering schemes (logical numbering)

LIKWID-perfCtr
End-to-end hardware performance metric measurement 
Finds out about basic architectural requirements of a program
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Tutorial outline

Introduction
Architecture of multisocket multicore 
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter 
measurements

Impact of processor/node 
topology on program 
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore 
hardware

Pipeline parallel processing
Case study: Wavefront 
parallelization of stencil codes

Summary
Appendix



General remarks on the performance General remarks on the performance 
properties of multicore properties of multicore multisocketmultisocket
systemssystems
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The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

Report performance for different N
Choose NITER so that accurate time measurement is possible

for(int j=0; j < NITER; j++){
#pragma omp parallel for
for(i=0; i < N; ++i)

a[i]=b[i]+c[i]*d[i];
if(OBSCURE)
dummy(a,b,c,d);

}
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The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start);

  for(j=0; j<niter; j++){
    if(size > CACHE_SIZE>>5) {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
#pragma vector nontemporal
      for(i=0; i<size; ++i)
        a[i]=b[i]+c[i]*d[i];
    } else {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
      for(i=0; i<size; ++i)
        a[i]=b[i]+c[i]*d[i];
    }
    if(a[5]<0.0)
      cout << a[3] << b[5] << c[10] << d[6];
  }

timing(&wct_end, &cput_end);

Large-N version (NT)

Small-N version
(noNT)

// size = multiple of 8
int vector_size(int n){  

return int(pow(1.3,n))&(-8); 
}

#pragma omp parallel private(j)
{

}
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

(small) L2 
bottleneck

Aggregate 
L2

Cross-
socket synch

OMP 
overhead

NT stores

Team re-
start

P
C

Chipset

Memory

P
C

C

P
C

P
C

C
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Bandwidth limitations: Memory
Some problems get even worse….

System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s] 
Typical balance ~ 0.25 Byte / Flop 4 Flop/Byte 32 Flop/double

Balance values:

Scalar product:
1 Flop/double

1/32 Peak

Dense
Matrix·Vector:
2 Flop/double

1/16 Peak

Large 
MatrixMatrix
(BLAS3)  



Bandwidth saturation effects in cache and Bandwidth saturation effects in cache and 
memorymemory
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Bandwidth limitations: Memory and cache
Scalability of shared data paths on a socket

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

L3 CACHE

L3 Load

L3 Load – L3 Store

*
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Bandwidth limitations: Outer-level cache
L3 bandwidth may scale a bit better in future systems…

Intel Nehalem EX
8-core chip; 24 MB L3
4 DDR3-channels per socket
4 sockets EA system: 
128 GB DDR3

Nehalem EX: New L3 design
8 segments connected by ring
Scalable bandwidth
Lesson learned from “Larabee”
Will show up in future generations,
e.g., Sandy Bridge

Ideas for the future?:
Intel Knights Ferry

P
CC

P
CC

P
CC

MI

Memory

P
CC

P
CC

P
CC

P
CC

P
CC

C
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Ameliorating bandwidth limitations by on-socket ccNUMA 
AMD Magny-Cours – a ccNUMA 12-core socket

AMD “Magny-Cours” available as 8-core or 12-core !
12-core socket implemented as two 6-core chips 
connected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domains
ccNUMA within a socket!

4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2.66 GHz + GBit ~ 10 GF/s / 0.12 GB/s = 80 B/F)
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Ameliorating bandwidth limitations by on-socket ccNUMA 
AMD Magny-Cours – a ccNUMA 12-core socket

AMD EA system – configuration:
2 x AMD Opteron 6172 (2x6 cores; 2x6MB L3; 2.1 GHz)
64 GB DDR3-1333 MHz

Stream (triad w/ NT stores): 

1 socket (12 cores): 24.8 GB/s

2 sockets: 49.7 GB/s

Local vs. remote data access
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1  c o r e 2  c o r e s 6  c o r e s

C O P Y
T r i a d

Local / remote Single thread (triad)
P0 LD0 7,8 GB/s
P0 LD1 5,1 GB/s
P0 LD2 5,1 GB/s
P0 LD3 3,0 GB/s

UPDATE!
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Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization, 
solving linear systems)
Strongly memory-bound for large data sets

Streaming, with partially indirect access:

Usually many spMVMs required to solve a problem

Case study: Performance data on one 24-core AMD Magny Cours
node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j)) 
enddo
enddo

!$OMP parallel do

!$OMP end parallel do
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 1: Large matrix

Intrasocket
bandwidth 
bottleneck Good scaling 

across sockets
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Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Intrasocket
bandwidth 
bottleneck

Working set fits 
in aggregate 

cache
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 3: Small size

No bandwidth 
bottleneck

Parallelization 
overhead 
dominates



Efficient parallel programming Efficient parallel programming 
on ccNUMA nodeson ccNUMA nodes

Performance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodes
First touch placement policyFirst touch placement policy
C++ issuesC++ issues
ccNUMA locality and dynamic schedulingccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touchccNUMA locality beyond first touch
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ccNUMA performance problems
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local" 
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB, possibly 
more)

C C C C

M M

C C C C

M M
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Example: HP DL585 G5 
4-socket ccNUMA Opteron 8220 Server

CPU
64 kB L1 per core
1 MB L2 per core
No shared caches
On-chip memory controller (MI)
10.6 GB/s local memory bandwidth

HyperTransport 1000 network
4 GB/s per link per direction

3 distance categories for 
core-to-memory connections:

same LD
1 hop
2 hops

Q1: What are the real penalties for non-local accesses?
Q2: What is the impact of contention?

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory
P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

HT

HT

HTHT
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Effect of non-local access on HP DL585 G5: 
Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops
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Contention vs. parallel access on HP DL585 G5:
OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads
S = # sockets

In-cache performance 
unharmed by ccNUMA

Single LD saturated 
by 2 cores!

Perfect scaling 
across LDs

?
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ccNUMA locality tool numactl:
How do we enforce some locality of access?
numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?
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ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the 
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example: 

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE
huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

Memory not 
mapped here yet

Mapping takes 
place here
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Coding for Data Locality 

The programmer must ensure that memory pages get mapped 
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
I.e. we have to take a closer look at initialization code

Some non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s
double a[s]; // c99 feature
// where are the physical pages of a[] now???
…

}

Fine-tuning is possible (see later)

Prerequisite: Keep threads/processes where they are
Affinity enforcement (pinning) is key (see earlier section)
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Coding for ccNUMA data locality

integer,parameter :: N=1000000
real*8 A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function ( A(i) )
end do

integer,parameter :: N=1000000
real*8 A(N),B(N)

!$OMP parallel do schedule(static)
do i = 1, N

A(i)=0.d0
end do

!$OMP parallel do schedule(static)
do i = 1, N

B(i) = function ( A(i) )
end do

Simplest case: explicit initialization 
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Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be easily
parallelized, so "localize" arrays before I/O

integer,parameter :: N=1000000
real*8 A(N), B(N)

READ(1000) A
!$OMP parallel do
do I = 1, N

B(i) = function ( A(i) )
end do

integer,parameter :: N=1000000
real*8 A(N),B(N)

!$OMP parallel do schedule(static)
do I = 1, N

A(i)=0.d0
end do
READ(1000) A
!$OMP parallel do schedule(static)
do I = 1, N

B(i) = function ( A(i) )
end do
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Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must 
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to 
be sure…
Imposes some constraints on possible optimizations (e.g. load balancing)
Presupposes that all worksharing loops with the same loop length have the 
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable, more advanced methods may 
be in order

How about global objects?
Better not use them
If communication vs. computation is favorable, might consider properly 
placed copies of global data
In C++, STL allocators provide an elegant solution
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Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to touch the 
data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {
return D(d*o.d);

}
...
};

→ placement problem with 
D* array = new D[1000000];

optio
nal
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Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that places 
the memory before constructors are called (PAGE_BITS = base-2 log of 
pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement 
new!

parallel first touch

optio
nal
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Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void  

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)

optio
nal
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Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:
Processes lose their association with the 
CPU the mapping took place on originally
OS kernel tries to maintain strong affinity, 
but sometimes fails

Shared Memory Programming
(OpenMP,…):

Threads losing association with the CPU the 
mapping took place on originally
Improper initialization of distributed data

All cases: 
Other agents (e.g., OS kernel) may fill 
memory with data that prevents optimal 
placement of user data

Memory
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Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality 
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your code…

Consider using performance counters
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfCtr -g MEM –c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out
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Using performance counters for diagnosing bad ccNUMA 
access locality

Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 
|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 
|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      
|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      
| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07 |      0      
| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
RDTSC timing: 0.827196 s
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|           Metric            |  core 0  |  core 1  | core 2  | core 3  |  core 4  |  core 5  | core 6  | core 7  |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |
|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 |
| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0  |    0    |    0    |
|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0 |    0    |    0    |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only 
counted once per socket

Half of read BW comes 
from other socket!
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If all fails…

Even if all placement rules have been carefully observed, you may 
still see nonlocal memory traffic. Reasons?

Program has erratic access patters may still achieve some access 
parallelism (see later)
OS has filled memory with buffer cache data:

# numactl --hardware    # idle node!
available: 2 nodes (0-1)
node 0 size: 2047 MB
node 0 free: 906 MB
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00
Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers
Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached
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ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache

If FS cache fills part of memory, 
apps will probably allocate from 
foreign domains

non-local access!
“sync” is not sufficient to
drop buffer cache blocks

Remedies
Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical 
memory before starting the real application
Linux: There is no way to limit the buffer cache size in standard kernels
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ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB 
main memory

Run 4 concurrent
triads (512 MB each)
after writing a large 
file

Report perfor-
mance vs. file size

Drop FS cache after
each data point
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ccNUMA placement and erratic access patterns

Sometimes access patterns are 
just not nicely grouped into 
contiguous chunks:

In both cases page placement cannot easily be fixed for perfect parallel 
access

double precision :: r, a(M)
!$OMP parallel do private(r)
do i=1,N

call RANDOM_NUMBER(r)
ind = int(r * M) + 1
res(i) = res(i) + a(ind)

enddo
!OMP end parallel do

Or you have to use tasking/dynamic 
scheduling:
!$OMP parallel
!$OMP single
do i=1,N

call RANDOM_NUMBER(r)
if(r.le.0.5d0) then

!$OMP task
call do_work_with(p(i))

!$OMP end task
endif

enddo
!$OMP end single
!$OMP end parallel
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ccNUMA placement and erratic access patterns

Worth a try: Interleave memory across ccNUMA domains to get at least 
some parallel access
1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

Fine-grained program-controlled placement via libnuma (Linux) 
using, e.g., numa_alloc_interleaved_subset(), 
numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)
do i=1,M

a(i) = …
enddo
!$OMP end parallel do

This is for all memory, not 
just the problematic 

arrays!

Observe page alignment 
of array to get proper 

placement!



SC10 Tutorial Ingredients for good multicore performance 79

Performance impact of round-robin page 
placement with dynamic scheduling/tasking

OpenMP vector triad benchmark A(:)=B(:)+C(:)*D(:) with 
large array lengths on a 4-LD ccNUMA machine
Round-robin page placement (see previous slide)
Static vs. dynamic loop scheduling, varying chunk size

Static loop schedule matches 
initialization, but no page 

alignment of arrays

Asymptotic limit: 75% of all 
page accesses are nonlocal

Full cache line transfer, 
partial access

HW prefetcher misfiring/ 
TLB misses



OpenMP performance issues OpenMP performance issues 
on multicoreon multicore

Synchronization (barrier) overheadSynchronization (barrier) overhead
Work distribution overheadWork distribution overhead
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Welcome to the multi-/many-core era
Synchronization of threads via shared caches
!$OMP PARALLEL …
…
!$OMP BARRIER
!$OMP DO
…
!$OMP ENDDO
!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization.
Tested synchronization constructs

OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution 

Test machines (Linux OS):
Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)

Threads are synchronized at 
explicit AND implicit barriers.

Determine costs via modified OpenMP 
Microbenchmarks testcase (epcc)
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Thread synchronization overhead 
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)
pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270

4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C



SC10 Tutorial Ingredients for good multicore performance 83

Thread synchronization overhead 
Barrier overhead: OpenMP icc vs. gcc

2 Threads Q9550 (shared L2) i7 920 (shared L3)
gcc 4.3.3 22603 7333
icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)
gcc 4.3.3 64143 10901
icc 11.0 977 814

gcc obviously uses a pthreads barrier for the OpenMP barrier:

Affinity enforcement is vital for getting small, reproducible sync overhead!
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Xeon E5420 2 Threads shared L2 same socket different socket
pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem 2 Threads Shared SMT 
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

Thread synchronization overhead 
Barrier overhead: Topology influence

SMT can be a big performance problem for synchronizing threads
Well known for a long time see below

Roll-your-own sync mechanism may be better sometimes, but good compilers 
do a good job, too
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Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:

Choose N large so
that synchronization
overhead is negligible
compute() implements
purely computational
workload 

no bandwidth
effects

Run with 2 threads

!$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)
do i=1,N
s = s + compute(i)

enddo
!$OMP END PARALLEL DO
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Simultaneous multiSimultaneous multi--threadingthreading

Principles and performance impactPrinciples and performance impact
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SMT Makes a single physical core appear as two or more 
“logical” cores multiple threads/processes run concurrently

SMT principle (2-way example):
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SMT impact

SMT adds another layer of topology
(inside the physical core)

Possible benefit: Better pipeline throughput
Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Beware: Executing it all in a single thread 
(if possible) may reach the same goal 
without SMT:

Thread 0:
do i=1,N
a(i) = a(i-1)*c

enddo

Dependency pipeline 
stalls until previous MULT 

is over

Westmere EP 
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Thread 1:
do i=1,N
b(i) = func(i)*d

enddo

Unrelated work in other 
thread can fill the pipeline 

bubbles

do i=1,N
a(i) = a(i-1)*c
b(i) = func(i)*d

enddo
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SMT impact

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, …) 
High data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths
Affinity matters!
If SMT is not needed

pin threads to physical cores
or switch it off via BIOS etc.
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SMT: When it may help, and when not

Strongly memory-bound code

Functional parallelization 

FP-only parallel loop code 

Frequent thread synchronization

Code sensitive to cache size

Independent pipeline-unfriendly 
instruction streams 



Understanding MPI communication in Understanding MPI communication in 
multicore environmentsmulticore environments

IntraIntra--node vs. internode vs. inter--node MPInode MPI
MPI Cartesian topologies and rankMPI Cartesian topologies and rank--subdomainsubdomain

mappingmapping
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Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared 
to internode

Reality
Intranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behavior

Other issues
Mapping between ranks, subdomains and cores with Cartesian MPI 
topologies
Overlapping intranode with internode communication
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MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X
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MPI and Multicores
Clusters: Unidirectional intranode Ping-Pong bandwidth

Mapping problem for most efficient communication paths!? 
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“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
■ This minimizes a node's communication surface

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this?
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MPI rank-subdomain mapping in Cartesian topologies:
A 3D stencil solver and the growing number of cores per node

“Common” MPI 
library behavior
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~ 1.5x

4 ppn SDR-IB

MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

8 ppn QDR-IB

32 MPI processes
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Section summary: What to take home
Bandwidth saturation is a reality, in 
cache and memory

Use knowledge to choose the 
“right” number of 
threads/processes per node
You must know where those 
threads/processes should run
You must know the architectural 
requirements of your application

ccNUMA architecture must be 
considered for bandwidth-bound 
code

Topology awareness, again
First touch page placement
Problems with dynamic 
scheduling and tasking: Round-
robin placement is the “cheap 
way out”

OpenMP overhead
Barrier (synchronization) often 
dominates the loop overhead
Work distribution and sync 
overhead is strongly topology-
dependent
Strong influence of compiler
Synchronizing threads on “logical 
cores” (SMT threads) may be 
expensive

Intranode MPI
May not be as fast as you 
think…
Becomes more important as core 
counts increase
May not be handled optimally by 
your MPI library



Interlude:Interlude:
What can software do for you?What can software do for you?
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Common Lore 
Performance/Parallelization at the node level: Software does it 

Automatic parallelization for moderate processor counts is known
for more than 15 years – simple testbed for modern multicores:

allocate( x(0:N+1,0:N+1,0:N+1) )
allocate( y(0:N+1,0:N+1,0:N+1) )
x=0.d0
y=0.d0
…
… somewhere in a subroutine …
do k = 1,N
do j = 1,N

do i = 1,N
y(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+x(i,j,k-1)+x(i,j,k+1) )
enddo

enddo
enddo

Simple 3D 7-point stencil update(„Jacobi“)

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 24 Byte/LUP * MLUPs
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Common Lore 
Performance/Parallelization at the node level: Software does it

Intel Fortran compiler: 
ifort –O3 –xW –parallel –par-report2 …

Version 9.1. (admittedly an older one…)
Innermost i-loop is SIMD vectorized, which prevents compiler from auto-
parallelization: serial loop: line 141: not a parallel 
candidate due to loop already vectorized

No other loop is parallelized…

Version 11.1. (the latest one…)
Outermost k-loop is parallelized: Jacobi_3D.F(139): (col. 10) 
remark: LOOP WAS AUTO-PARALLELIZED.

Innermost i-loop is vectorized.
Most other loop structures are ignored by “parallelizer”, e.g. x=0.d0 and 
y=0.d0: Jacobi_3D.F(37): (col. 16) remark: loop was not 
parallelized: insufficient computational work
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Common Lore 
Performance/Parallelization at the node level: Software does it

PGI compiler (V 10.6)
pgf90 –tp nehalem-64 –fastsse –Mconcur –Minfo=par,vect

Performs outer loop parallelization of k-loop
139, Parallel code generated with block distribution if 
trip count is greater than or equal to 33

and vectorization of inner i-loop: 
141, Generated 4 alternate loops for the loop Generated 
vector sse code for the loop 

Also the array instructions (x=0.d0; y=0.d0) used for initialization are 
parallelized:
37, Parallel code generated with block distribution if 
trip count is greater than or equal to 50 

Version 7.2. does the same job but some switches must be adapted

gfortran: No automatic parallelization feature so far (?!)
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Common Lore 
Performance/Parallelization at the node level: Software does it

STREAM bandwidth:

Node:    ~36-40 GB/s

Socket: ~17-20 GB/s

Performance 
variations 
Thread / core 
affinity?!

Intel: No 
scalability 4 8 
threads?!

2-socket Intel Xeon 5550 (Nehalem; 2.66 GHz) node

Cubic domain size: N=320 (blocking of j-loop)
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Controlling thread affinity / binding 
Intel / PGI compilers

Intel compiler controls thread-core affinity via KMP_AFFINITY
environment variable

KMP_AFFINITY=“granularity=fine,compact,1,0” is packs the threads 
in a blockwise fashion ignoring the SMT threads. 
(equivalent to likwid-pin –c 0-7 )
Add ”verbose” to get information at runtime
Cf. extensive Intel documentation
Disable when using other tools, e.g. likwid: KMP_AFFINITY=disabled
Builtin affinity does not work on non-Intel hardware

PGI compiler offers compiler options:
Mconcur=bind (binds threads to cores; link time option)
Mconcur=numa (prevents OS from process / thread migration; link time option)
No manual control about thread-core affinity
Interaction likwid PGI ?!
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Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket Intel Nehalem system

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Performance drops if 8 threads instead of 4 access a single memory domain: 
Remote access of 4 through QPI!

Cubic domain size: N=320 (blocking of j-loop)
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Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket AMD Magny-Cours system

12-core Magny-Cours: A single socket holds two tightly HT-connected 6-core 
chips 2-socket system has 4 data locality domains

Cubic domain size: N=320 (blocking of j-loop)

OMP_SCHEDULE=“static”
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Init.
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Common Lore 
Performance/Parallelization at the node level: Software does it 

Based on Jacobi performance results one could claim victory, but
increase complexity a bit, e.g. simple Gauß-Seidel instead of Jacobi

… somewhere in a subroutine …
do k = 1,N
do j = 1,N

do i = 1,N
x(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+x(i,j,k-1)+ x(i,j,k+1) )
enddo

enddo
enddo

A bit more complex 3D 7-point stencil
update(„Gauß-Seidel“)

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 16 Byte/LUP * MLUPs

Performance of Gauß-Seidel should be up to 1.5x faster than Jacobi if main 
memory bandwidth is the limitation
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Common Lore 
Performance/Parallelization at the node level: Software does it 

State of the art compilers do not parallelize Gauß-Seidel iteration 
scheme: loop was not parallelized: existence of 
parallel dependence

That’s true but there are simple ways to remove the dependency 
even for the lexicographic Gauß-Seidel
10 yrs+ Hitachi’s compiler supported “pipeline parallel processing”
(cf. later slides for more details on this technique)!

There seem to be major problems to optimize even the serial code
1 Intel Xeon X5550 (2.66 GHz) core
Reference: Jacobi
430 MLUPs

Target Gauß-Seidel:
645 MLUPs 149 MLUPspgf90 V7.2.1

149 MLUPspgf90 V10.6.

345 MLUPsIntel V11.1.072

290 MLUPsIntel V9.1.
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Tutorial outline

Introduction
Architecture of multisocket multicore 
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter 
measurements

Impact of processor/node 
topology on program 
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore 
hardware

Pipeline parallel processing
Case study: Wavefront 
parallelization of stencil codes

Summary
Appendix
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Multicore awareness 
Classical Approaches: Parallelize & Reduce memory pressure 

Multicore processors are still mostly programmed
the same way as classic n-way SMP single-core
compute nodes!
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do k = 1 , Nk
do j = 1 , Nj

do i = 1 , Ni
y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+x(i+1,j,k)+ 
x(i,j-1,k)+x(i,j+1,k)+ 
x(i,j,k-1)+x(i,j,k+1))

enddo
enddo

enddo

Simple 3D Jacobi stencil update (sweep):

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs
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Multicore awareness 
Standard sequential implementation

k-direction

j-d
ire

ct
io

n

do t=1,tMax

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo

enddo

core0 core1

Cache

Memory

x
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Multicore awareness 
Classical Approaches: Parallelize!

k-direction

j-d
ire

ct
io

n

core0 core1

Cache

Memory

x

do t=1,tMax
!$OMP PARALLEL DO private(…)

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo
!$OMP END PARALLEL DO
enddo
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Multicore awareness 
Parallelization – reuse data in cache between threads

k-direction

j-d
ire

ct
io

n

core0: x(:,:,k-1:k+1)t y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1 x(:,:,k-2)t+2 

core0 core1

y(:,:,:)

Memory

x(:,:,:)

Do not use domain 
decomposition!

Instead shift 2nd thread by 
three i-j planes and 
proceed to the same 
domain

2nd thread loads input 
data from shared OL cache!

Sync threads/cores after 
each k-iteration!

“Wavefront 
Parallelization (WFP)”
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Use small ring buffer 
tmp(:,:,0:3)
which fits into the cache

Save main memory data 
transfers for y(:,:,:) !

16 Byte / 2 LUP !

8 Byte / LUP !

Multicore awareness 
WF parallelization – reuse data in cache between threads

Compare with optimal baseline (nontemporal stores on y): 
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and 
no overhead for OMP BARRIER after each k-iteration)
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Multicore awareness 
WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t tmp(:,:,mod(k,4))

Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4)) x(:,:,k-2)t+2 

Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 ( 1 + x/2 * BM/BC)

core0 core1

tmp(:,:,0:3)

Memory

x

Minimum value: x =2

Speed-Up vs. baseline: SW = 2*T0/T2LUP
= 2 / (1 +  BM/BC)

BC and BM are measured in saturation runs:

Clovertown: BM/BC = 1/12 SW = 1.85

Nehalem  : BM/BC = 1/4 SW = 1.6 
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Jacobi solver
WFP: Propagating four wavefronts on native quadcores (1x4)

core0 core1

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

x( : , : , : )

core2 core3

1 x 4 distribution

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in 
cache!

Max. performance gain (vs. optimal 
baseline): tb = 4

Extensive use of cache bandwidth!
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Jacobi solver
WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3,4):mod(k-1,4)) tmp2(mod(k-2,4))

core0 core1

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

x( : , : , : )

core2 core3

Thread 2: tmp2(mod(k-5,4:mod(k-3,4)) tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4)) x(:,:,k-6)t+4 

1 x 4 distribution

core0 core1

tmp0(  : ,  : ,  0:3)

x( :,1:N/2,:)     x(:,N/2+1:N,:) 

core2 core3

2 x 2 distribution
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Jacobi solver
Wavefront parallelization: L3 group Nehalem

Performance model indicates some potential gain new compiler tested.

Only marginal benefit when using 4 wavefronts A single copy stream does not 
achieve full bandwidth
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Multicore-aware parallelization
Wavefront – Jacobi on state-of-the art multicores
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Compare against optimal baseline!

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth

Bolc ~ 10

Bolc ~ 2-3

Bolc ~ 10
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Section summary: What to take home

Shared caches are the interesting new feature on current 
multicore chips

Shared caches provide opportunities for fast synchronization (see sections 
on OpenMP and intra-node MPI performance)
Parallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP
In addition fast synchronization (pref. within a socket) allows to exploit 
parallel structures at finer granularity (shorter loops, frequent 
synchronisation)

WFP technique can easily be extended to many regular stencil
based iterative methods, e.g. 

Gauß-Seidel ( done)
Lattice-Boltzmann flow solvers ( work in progress)
Multigrid-smoother ( work in progress)

WFP can be extended to hybrid MPI+OpenMP parallelizaton
See references
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Tutorial outline

Introduction
Architecture of multisocket multicore 
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter 
measurements

Impact of processor/node 
topology on program 
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore 
hardware

Pipeline parallel processing
Case study: Wavefront 
parallelization of stencil codes

Summary
Appendix
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Summary & Conclusions

Multicore/multisocket topology needs to be considered:
OpenMP performance
MPI communication parameters
Shared resources

Be aware of the architectural requirements of your code
Bandwidth vs. compute
Synchronization
Communication

Use appropriate tools
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfCtr

Try to leverage the new architectural feature of modern multicore 
chips

Shared caches!
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The Gauss-Seidel algorithm in 3D

Not parallelizable by compiler or simple directives because of 
loop-carried dependency
Is it possible to eliminate the dependency?
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3D Gauss-Seidel parallelized

Pipeline parallel principle: Wind-up phase
Parallelize middle j-loop and shift thread execution in k-direction to account 
for data dependencies
Each diagonal (Wt) is executed 
by t threads concurrently
Threads sync 
after each 
k-update
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3D Gauss-Seidel parallelized

Full pipeline: All threads execute 
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3D Gauss-Seidel parallelized: The code
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Parallel 3D Gauß-Seidel

Gauß-Seidel can also be parallelized using a red-black (2D) or ??? 
(3D) scheme

But data dependency is representative for several linear (sparse) 
solvers Ax=b arising from regular discretization, 
e.g. Stone’s Strong Implicit (SIP) solver based on incomplete A ~ 
LU factorization

Still used in many CFD FV codes ( RRZE report)
L & U: Each contains 3 non-zero off-diagonals only! 
Solving Lx=b or Ux=c has loop carried data dependencies similar to GS 
PPP
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Abstract
Tutorial M16: Ingredients for Good Parallel Performance on Multicore-
based systems
Presenter(s):Georg Hager, Gerhard Wellein

ABSTRACT:

This tutorial covers program optimization techniques for multi-core processors 
and the systems they are used in. It concentrates on the dominating parallel 
programming paradigms, MPI and OpenMP. We start by giving an architectural 
overview of multicore processors. Peculiarities like shared vs. separate caches, 
bandwidth bottlenecks, and ccNUMA characteristics are pointed out. We show 
typical performance features like synchronization overhead, intranode MPI 
bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache 
and memory) in order to pinpoint the influence of system topology and thread 
affinity on the performance of typical parallel programming constructs. Multiple 
ways of probing system topology and establishing affinity, either by explicit 
coding or separate tools, are demonstrated. Finally we elaborate on 
programming techniques that help establish optimal parallel memory access 
patterns and/or cache reuse, with an emphasis on leveraging shared caches for 
improving performance.


