
Ingredients for Ingredients for
good parallel performance good parallel performance
on multicoreon multicore--based systemsbased systems
Georg Georg HagerHager(a(a)) and Gerhard and Gerhard WelleinWellein(a,b(a,b))

((a)a)HPCHPC Services, Erlangen Regional Computing Center (RRZE)Services, Erlangen Regional Computing Center (RRZE)
((b)b)DepartmentDepartment forfor Computer ScienceComputer Science

FriedrichFriedrich--AlexanderAlexander--UniversityUniversity ErlangenErlangen--NurembergNuremberg

SC10 SC10 TutorialTutorial M16M16
Nov 15th, 2010, New Orleans, LANov 15th, 2010, New Orleans, LA

SC10 Tutorial Ingredients for good multicore performance 2

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

SC10 Tutorial Ingredients for good multicore performance 3

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

SC10 Tutorial Ingredients for good multicore performance 4

Frequency [MHz]

0,1

1

10

100

1000

10000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

20
09

Year

Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

In 1965 Gordon Moore claimed:
#transistors on chip doubles every ≈24 months

We are living in the multicore era Is really everyone aware of that?

Intel x86 clock speed

Intel Nehalem EX: 2.3 Billion

SC10 Tutorial Ingredients for good multicore performance 5

OverOver--clockedclocked
(+20%)(+20%)

1.00x1.00x

1.73x1.73x

1.13x1.13x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

DualDual--corecore
((--20%)20%)

1.02x1.02x

1.73x1.73x
DualDual--CoreCore

By courtesy of D. Vrsalovic, Intel

Welcome to the multi-/manycore era
The game is over: But Moore’s law continues

Power envelope:

Max. 95–130 W

Power
consumption:

P = f * (Vcore)2

Vcore ~ 0.9–1.2 V

Same process
technology:

P ~ f3

N transistors

2N transistors

SC10 Tutorial Ingredients for good multicore performance 6

Required relative frequency reduction to run m cores (m times
transistors) on a die at the same power envelope

Year: 2007/08

m: #cores per die

R
ed

uc
tio

n
of

 c
lo

ck
sp

ee
d

8 cores running at half speed of a single
core CPU = same energy

65 nm technology :
Sun T2 („Niagara“) 1.4 GHz 8 cores
Intel Woodcrest 3.0 GHz 2 cores

Welcome to the multi-/many-core era
The game is over: But Moore’s law continues

SC10 Tutorial Ingredients for good multicore performance 7

The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)

P
C

P
C

C

P
C

P
C

C

W
oo

dc
re

st

“C
or

e2
 D

uo
”

H
ar

pe
rt

ow
n

“C
or

e2
 Q

ua
d”

Nehalem EP
“Core i7”

P
C
C

Memory

Chipset

Memory

Chipset

P
C
C

P
C
C

Memory

Chipset

P
C

P
C

C

Memory

Chipset

Westmere EP

2011:
“Sandy Bridge”

SSE AVX

128 Bit 256 Bit

45 nm 32 nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Hyperthreading/SMT is back!

SC10 Tutorial Ingredients for good multicore performance 8

Welcome to the multi-/many-core era
A new feature: shared on-chip resources

AMD Opteron
Istanbul

6 cores @ 2.8 GHz

L1: 64 KB

L2: 512 KB

L3: 6 MB

2 X DDR2-800
12.8 GB/s

HT2000 8 GB/s/dir

Intel Xeon
Westmere

6 cores @ 2.93 GHz

L1: 32 KB

L2: 256 KB

L3: 12MB

3 X DDR3-1333
31.8 GB/s
2 X QPI6.4
12.8 GB/s/dir

Shared outer-level cache

Fast data transfer

Fast thread synchronisation

Data Coherency!
Increased intra-cache traffic?
Scalable bandwidth?
MPI parallelization?

Memory bottleneck!

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P

QPIHT

P P P P P

SC10 Tutorial Ingredients for good multicore performance 9

Dual-socket AMD (Istanbul) / Intel (Westmere) node:

Dual-socket Intel “Core2” node:
P
C

Chipset

Memory

P
C

C

P
C

P
C

C

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA):

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at
the expense of ccNUMA architectures:
Where does my data finally end up?Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Y
es

te
rd

ay
To

da
y

Shared Address Space within the node!

SC10 Tutorial Ingredients for good multicore performance 10

Back to the 2-chip-per-case age:
AMD Magny-Cours – a 2x6-core socket

AMD: “Magny-Cours”
12-core socket comprising two 6-core chips
connected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domains
ccNUMA within a socket!

4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2.66 GHz + GBit ~ 10 GF/s / 0.12 GB/s = 80 B/F)

SC10 Tutorial Ingredients for good multicore performance 11

Parallel programming models
on multicore multisocket nodes

Shared-memory (intra-node)
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads
Intel Threading Building Blocks
Cilk++, OpenCL, StarSs,… you name it

Distributed-memory (inter-node)
MPI (current standard: 2.2)
PVM (gone)

Hybrid
Pure MPI
MPI+OpenMP
MPI + any shared-memory model

Covered in detail in the
hybrid MPI+OpenMP tutorial

All models require
awareness of
topology and affinity
issues for getting
best performance
out of the machine!

SC10 Tutorial Ingredients for good multicore performance 12

Parallel programming models:
Pure MPI

Machine structure is invisible to user:
Very simple programming model
MPI “knows what to do”!?

Performance issues
Intranode vs. internode MPI
Node/system topology

SC10 Tutorial Ingredients for good multicore performance 13

Parallel programming models:
Pure threading on the node

Machine structure is invisible to user
Very simple programming model

Threading SW (OpenMP, pthreads,
TBB,…) should know about the details

Performance issues
Synchronization overhead
Memory access
Node topology

SC10 Tutorial Ingredients for good multicore performance 14

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:
OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned
“round robin” across

cores in node

Two MPI processes / socket
OpenMP threads
on same socket

See
 M

PI+O
pen

MP hyb
rid

pro
gram

ming tu
toria

l fo
r

more
deta

ils
 on th

e c
hoice

s!

SC10 Tutorial Ingredients for good multicore performance 15

Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software

Increasing core counts
4-12 today, 16-32 tomorrow?
x2 or x4 per cores node

Shared vs. separate caches
Complex chip/node topologies

UMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in
heavy flux

We are left with MPI and OpenMP for now
This is complex enough, as we will see…

SC10 Tutorial Ingredients for good multicore performance 16

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

ProbingProbing nodenode topologytopology

Standard Standard toolstools
likwidlikwid--topologytopology
hwlochwloc

SC10 Tutorial Ingredients for good multicore performance 18

How do we figure out the node topology?

Topology =
Where in the machine does core #n reside? And do I have to remember this
awkward numbering anyway?
Which cores share which cache levels?
Which hardware threads (“logical cores”) share a physical core?

Linux
cat /proc/cpuinfo is of limited use
Core numbers may change across kernels
and BIOSes even on identical hardware

numactl --hardware prints
ccNUMA node information

Information on caches is harder
to obtain

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 8189 MB
node 0 free: 3824 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MB
node 1 free: 28 MB
node 2 cpus: 18 19 20 21 22 23
node 2 size: 8192 MB
node 2 free: 8036 MB
node 3 cpus: 12 13 14 15 16 17
node 3 size: 8192 MB
node 3 free: 7840 MB

SC10 Tutorial Ingredients for good multicore performance 19

How do we figure out the node topology?

LIKWID tool suite:

Like
I
Knew
What
I’m
Doing

Open source tool collection
(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite
for x86 multicore environments. Accepted for
PSTI2010, Sep 13-16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431

SC10 Tutorial Ingredients for good multicore performance 20

Likwid Tool Suite

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfCtr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-bench: Low-level bandwidth benchmark generator tool

SC10 Tutorial Ingredients for good multicore performance 21

likwid-topology – Topology information

Based on cpuid information

Functionality:
Measured clock frequency

Thread topology

Cache topology

Cache parameters (-c command line switch)

ASCII art output (-g command line switch)

Currently supported (more under development):
Intel Core 2 (45nm + 65 nm)

Intel Nehalem + Westmere

AMD K10 (Quadcore and Hexacore)

AMD K8

Linux OS

SC10 Tutorial Ingredients for good multicore performance 22

Output of likwid-topology

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2
Cores per socket: 4
Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 2 0
5 1 2 0
6 0 3 0
7 1 3 0
8 0 0 1
9 1 0 1
10 0 1 1
11 1 1 1
12 0 2 1
13 1 2 1
14 0 3 1
15 1 3 1

SC10 Tutorial Ingredients for good multicore performance 23

Output of likwid-topology continued
Socket 0: (0 1 2 3 4 5 6 7)
Socket 1: (8 9 10 11 12 13 14 15)

Cache Topology

Level: 1
Size: 32 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2
Size: 256 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3
Size: 8 MB
Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)

NUMA Topology

NUMA domains: 2

Domain 0:
Processors: 0 1 2 3 4 5 6 7

Memory: 5182.37 MB free of total 6132.83 MB

Domain 1:
Processors: 8 9 10 11 12 13 14 15

Memory: 5568.5 MB free of total 6144 MB

SC10 Tutorial Ingredients for good multicore performance 24

Output of likwid-topology

… and also try the ultra-cool
-g option!

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 1| | 2 3| | 4 5| | 6 7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+
Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

SC10 Tutorial Ingredients for good multicore performance 25

hwloc

Alternative: http://www.open-mpi.org/projects/hwloc/
Successor to (and extension of) PLPA, part of OpenMPI
development
Comprehensive API and
command line tool to
extract topology info
Supports several
OSs and CPU types
Pinning API available

EnforcingEnforcing thread/processthread/process--corecore affinityaffinity
underunder thethe LinuxLinux OSOS

Standard Standard toolstools and OS and OS affinityaffinity facilitiesfacilities
underunder programprogram controlcontrol
likwidlikwid--pinpin

SC10 Tutorial Ingredients for good multicore performance 27

Generic thread/process-core affinity under Linux

taskset [OPTIONS] [MASK | -c LIST] \
[PID | command [args]...]

binds processes/threads to a set of CPUs. Examples:

taskset –c 0,2 mpirun –np 2 ./a.out # doesn’t always work
taskset 0x0006 ./a.out
taskset –c 4 33187

Processes can still move in the set!
Alternative: let process/thread bind itself by executing syscall
#include <sched.h>
int sched_setaffinity(pid_t pid, unsigned int len,

unsigned long *mask);

Disadvantage: which CPUs should you bind to on a non-exclusive
machine?
Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

Caveat: Linux scheduler does not always use the full set

SC10 Tutorial Ingredients for good multicore performance 28

Generic thread/process-core affinity under Linux

Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]
Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]
Bind process to specified ccNUMA node(s)

Many more options (e.g., interleave memory across nodes)
see section on ccNUMA optimization

Diagnostic command (see earlier):
numactl --hardware

Again, this is not suitable for a shared machine

SC10 Tutorial Ingredients for good multicore performance 29

Thread/Process-core affinity (“pinning”) options

Highly OS-dependent system calls
But available on all systems
Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

Support for “semi-automatic” pinning in some
compilers/environments

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU
SGI Altix dplace (works with logical CPU numbers!)
Generic Linux: taskset, numactl, likwid-pin (see below)

Affinity awareness in MPI libraries
SGI MPT
OpenMPI
Intel MPI
…

Example for program-controlled
affinity: Using PLPA under Linux!

SC10 Tutorial Ingredients for good multicore performance 30

Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

Portable Linux Processor Affinity
Wrapper library for sched_*affinity() functions

Robust against changes in kernel API
Example for pure OpenMP: Pinning of threads

Similar for pure MPI and MPI+OpenMP hybrid code

#include <plpa.h>
...
#pragma omp parallel
{

#pragma omp critical
{
if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);
}
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning
available?

Which core
to run on?

Pin “me”

Care about correct
core numbering!
0…N-1 is not always
contiguous! If
required, reorder by
a map:
cpu = map[cpu];

SC10 Tutorial Ingredients for good multicore performance 32

Likwid-pin
Overview

Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset
Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (shepherd threads should not be pinned)
Based on combination of wrapper tool together with overloaded pthread
library
Can also be used as a superior replacement for taskset
Supports logical core numbering within a node and within an existing CPU
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI
start mechanism or a batch system

Configurable colored output

Usage:
likwid-pin –t intel -c 0,2,4-6 ./myApp parameters

mpirun likwid-pin -s 0x3 -c 0,3,5,6 ./myApp parameters

SC10 Tutorial Ingredients for good multicore performance 33

Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP_NUM_THREADS=4
$ likwid-pin -s 0x1 -c 0,1,4,5 ./stream
[likwid-pin] Main PID -> core 0 - OK
--
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
--
[... some STREAM output omitted ...]
The *best* time for each test is used
EXCLUDING the first and last iterations
[pthread wrapper] PIN_MASK: 0->1 1->4 2->5
[pthread wrapper] SKIP MASK: 0x1
[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP
[pthread wrapper 1] Notice: Using libpthread.so.0

threadid 1078008128 -> core 1 - OK
[pthread wrapper 2] Notice: Using libpthread.so.0

threadid 1082206528 -> core 4 - OK
[pthread wrapper 3] Notice: Using libpthread.so.0

threadid 1086404928 -> core 5 - OK
[... rest of STREAM output omitted ...]

Skip shepherd
thread

Main PID always
pinned

Pin all spawned
threads in turn

SC10 Tutorial Ingredients for good multicore performance 34

Likwid-pin
Using logical core numbering

Core numbering may vary from system to system even with
identical hardware

Likwid-topology delivers this information, which can then be fed into likwid-
pin

Alternatively, likwid-pin can abstract this variation and provide a
purely logical numbering (physical cores first)

Across all cores in the node:
likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 1| | 2 3| | 4 5| | 6 7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 8| | 1 9| | 2 10| | 3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 4 12| | 5 13| | 6 14| | 7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

SC10 Tutorial Ingredients for good multicore performance 35

More examples: Hybrid MPI+OpenMP
Using Intel MPI+compiler & home-grown mpirun

One MPI process
per node (w/ explicit
logical numbering)

One MPI process
per socket (no
pinning inside socket
required)

OpenMP threads
pinned “round
robin” across
cores (logical core
numbers due to cpu set
established by mpirun)

Two MPI
processes per
socket (dito)

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c N:0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,4,5_2,3,6,7" \
likwid-pin –t intel -c 0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \
-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c 0,1 ./a.out

SC10 Tutorial Ingredients for good multicore performance 36

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first)

There are several reasons for caring about
affinity:

Eliminating performance variation

Making use of architectural features

Avoiding resource contention

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

SC10 Tutorial Ingredients for good multicore performance 37

Monitoring the Binding
How can we see whether the measures for binding are really effective?

sched_getaffinity(), ...

top:

Press “H” for showing separate threads physical CPU ID

top - 16:05:03 up 24 days, 7:24, 32 users, load average: 5.47, 4.92, 3.52
Tasks: 419 total, 4 running, 415 sleeping, 0 stopped, 0 zombie
Cpu(s): 95.7% us, 1.1% sy, 1.6% ni, 0.0% id, 1.4% wa, 0.0% hi, 0.2% si
Mem: 8157028k total, 8131252k used, 25776k free, 2772k buffers
Swap: 8393848k total, 93168k used, 8300680k free, 7160040k cached

PID USER PR VIRT RES SHR NI P S %CPU %MEM TIME COMMAND
23914 unrz55 25 277m 223m 2660 0 2 R 99.9 2.8 23:42 dmrg_0.26_WOODY
24284 unrz55 16 8580 1556 928 0 2 R 0.2 0.0 0:00 top
4789 unrz55 15 40220 1452 1448 0 0 S 0.0 0.0 0:00 sshd
4790 unrz55 15 7900 552 548 0 3 S 0.0 0.0 0:00 tcsh

UPDATE!

SC10 Tutorial Ingredients for good multicore performance 38

Probing performance behavior

How do we find out about the performance requirements of a
parallel code?

Profiling via advanced tools is often overkill
A coarse overview is often sufficient

likwid-perfCtr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on
Linux/Altix)
Simple end-to-end measurement of hardware performance metrics
“Marker” API for starting/stopping
counters
Multiple measurement region
support
Preconfigured and extensible
metric groups, list with
likwid-perfCtr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio

SC10 Tutorial Ingredients for good multicore performance 39

likwid-perfCtr
Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfCtr -c 0-3 -g FLOPS_DP likwid-pin -c 0-3 ./stream.exe

CPU type: Intel Core Lynnfield processor
CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
INSTR_RETIRED_ANY	1.97463e+08	2.31001e+08	2.30963e+08	2.31885e+08
CPU_CLK_UNHALTED_CORE	9.56999e+08	9.58401e+08	9.58637e+08	9.57338e+08
FP_COMP_OPS_EXE_SSE_FP_PACKED	4.00294e+07	3.08927e+07	3.08866e+07	3.08904e+07
FP_COMP_OPS_EXE_SSE_FP_SCALAR	882	0	0	0
FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION	0	0	0	0
FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION	4.00303e+07	3.08927e+07	3.08866e+07	3.08904e+07
+--------------------------------------+-------------+-------------+-------------+-------------+				
+--------------------------+------------+---------+----------+----------+				
Metric	core 0	core 1	core 2	core 3
+--------------------------+------------+---------+----------+----------+				
Runtime [s]	0.326242	0.32672	0.326801	0.326358
CPI	4.84647	4.14891	4.15061	4.12849
DP MFlops/s (DP assumed)	245.399	189.108	189.024	189.304
Packed MUOPS/s	122.698	94.554	94.5121	94.6519
Scalar MUOPS/s	0.00270351	0	0	0
SP MUOPS/s	0	0	0	0
DP MUOPS/s	122.701	94.554	94.5121	94.6519
+--------------------------+------------+---------+----------+----------+

Always
measured

Derived
metrics

Configured metrics
(this group)

SC10 Tutorial Ingredients for good multicore performance 40

Section summary: What to take home

Figuring out the node topology is usually the hardest part
Virtual/physical cores, cache groups, cache parameters
This information is usually scattered across many sources

LIKWID-topology
One tool for all topology parameters
Supports Intel and AMD processors under Linux (currently)

Generic affinity tools
Taskset, numactl do not pin individual threads
Manual (explicit) pinning from within code

LIKWID-pin
Binds threads/processes to cores
Optional abstraction of strange numbering schemes (logical numbering)

LIKWID-perfCtr
End-to-end hardware performance metric measurement
Finds out about basic architectural requirements of a program

SC10 Tutorial Ingredients for good multicore performance 41

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

General remarks on the performance General remarks on the performance
properties of multicore properties of multicore multisocketmultisocket
systemssystems

SC10 Tutorial Ingredients for good multicore performance 43

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

Report performance for different N
Choose NITER so that accurate time measurement is possible

for(int j=0; j < NITER; j++){
#pragma omp parallel for
for(i=0; i < N; ++i)

a[i]=b[i]+c[i]*d[i];
if(OBSCURE)
dummy(a,b,c,d);

}

SC10 Tutorial Ingredients for good multicore performance 44

The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start);

 for(j=0; j<niter; j++){
 if(size > CACHE_SIZE>>5) {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
#pragma vector nontemporal
 for(i=0; i<size; ++i)
 a[i]=b[i]+c[i]*d[i];
 } else {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
 for(i=0; i<size; ++i)
 a[i]=b[i]+c[i]*d[i];
 }
 if(a[5]<0.0)
 cout << a[3] << b[5] << c[10] << d[6];
 }

timing(&wct_end, &cput_end);

Large-N version (NT)

Small-N version
(noNT)

// size = multiple of 8
int vector_size(int n){

return int(pow(1.3,n))&(-8);
}

#pragma omp parallel private(j)
{

}

SC10 Tutorial Ingredients for good multicore performance 45

The parallel vector triad benchmark
Performance results on Xeon 5160 node

(small) L2
bottleneck

Aggregate
L2

Cross-
socket synch

OMP
overhead

NT stores

Team re-
start

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

SC10 Tutorial Ingredients for good multicore performance 47

Bandwidth limitations: Memory
Some problems get even worse….

System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s]
Typical balance ~ 0.25 Byte / Flop 4 Flop/Byte 32 Flop/double

Balance values:

Scalar product:
1 Flop/double

1/32 Peak

Dense
Matrix·Vector:
2 Flop/double

1/16 Peak

Large
MatrixMatrix
(BLAS3)

Bandwidth saturation effects in cache and Bandwidth saturation effects in cache and
memorymemory

SC10 Tutorial Ingredients for good multicore performance 49

Bandwidth limitations: Memory and cache
Scalability of shared data paths on a socket

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

L3 CACHE

L3 Load

L3 Load – L3 Store

*

SC10 Tutorial Ingredients for good multicore performance 50

Bandwidth limitations: Outer-level cache
L3 bandwidth may scale a bit better in future systems…

Intel Nehalem EX
8-core chip; 24 MB L3
4 DDR3-channels per socket
4 sockets EA system:
128 GB DDR3

Nehalem EX: New L3 design
8 segments connected by ring
Scalable bandwidth
Lesson learned from “Larabee”
Will show up in future generations,
e.g., Sandy Bridge

Ideas for the future?:
Intel Knights Ferry

P
CC

P
CC

P
CC

MI

Memory

P
CC

P
CC

P
CC

P
CC

P
CC

C

SC10 Tutorial Ingredients for good multicore performance 51

Ameliorating bandwidth limitations by on-socket ccNUMA
AMD Magny-Cours – a ccNUMA 12-core socket

AMD “Magny-Cours” available as 8-core or 12-core !
12-core socket implemented as two 6-core chips
connected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domains
ccNUMA within a socket!

4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2.66 GHz + GBit ~ 10 GF/s / 0.12 GB/s = 80 B/F)

SC10 Tutorial Ingredients for good multicore performance 52

Ameliorating bandwidth limitations by on-socket ccNUMA
AMD Magny-Cours – a ccNUMA 12-core socket

AMD EA system – configuration:
2 x AMD Opteron 6172 (2x6 cores; 2x6MB L3; 2.1 GHz)
64 GB DDR3-1333 MHz

Stream (triad w/ NT stores):

1 socket (12 cores): 24.8 GB/s

2 sockets: 49.7 GB/s

Local vs. remote data access
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 c o r e 2 c o r e s 6 c o r e s

C O P Y
T r i a d

Local / remote Single thread (triad)
P0 LD0 7,8 GB/s
P0 LD1 5,1 GB/s
P0 LD2 5,1 GB/s
P0 LD3 3,0 GB/s

UPDATE!

SC10 Tutorial Ingredients for good multicore performance 53

Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization,
solving linear systems)
Strongly memory-bound for large data sets

Streaming, with partially indirect access:

Usually many spMVMs required to solve a problem

Case study: Performance data on one 24-core AMD Magny Cours
node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

!$OMP parallel do

!$OMP end parallel do

SC10 Tutorial Ingredients for good multicore performance 54

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 1: Large matrix

Intrasocket
bandwidth
bottleneck Good scaling

across sockets

SC10 Tutorial Ingredients for good multicore performance 55

Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Intrasocket
bandwidth
bottleneck

Working set fits
in aggregate

cache

SC10 Tutorial Ingredients for good multicore performance 56

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 3: Small size

No bandwidth
bottleneck

Parallelization
overhead
dominates

Efficient parallel programming Efficient parallel programming
on ccNUMA nodeson ccNUMA nodes

Performance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodes
First touch placement policyFirst touch placement policy
C++ issuesC++ issues
ccNUMA locality and dynamic schedulingccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touchccNUMA locality beyond first touch

SC10 Tutorial Ingredients for good multicore performance 58

ccNUMA performance problems
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local"
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB, possibly
more)

C C C C

M M

C C C C

M M

SC10 Tutorial Ingredients for good multicore performance 59

Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server

CPU
64 kB L1 per core
1 MB L2 per core
No shared caches
On-chip memory controller (MI)
10.6 GB/s local memory bandwidth

HyperTransport 1000 network
4 GB/s per link per direction

3 distance categories for
core-to-memory connections:

same LD
1 hop
2 hops

Q1: What are the real penalties for non-local accesses?
Q2: What is the impact of contention?

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory
P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

HT

HT

HTHT

SC10 Tutorial Ingredients for good multicore performance 60

Effect of non-local access on HP DL585 G5:
Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops

SC10 Tutorial Ingredients for good multicore performance 61

Contention vs. parallel access on HP DL585 G5:
OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads
S = # sockets

In-cache performance
unharmed by ccNUMA

Single LD saturated
by 2 cores!

Perfect scaling
across LDs

?

SC10 Tutorial Ingredients for good multicore performance 62

ccNUMA locality tool numactl:
How do we enforce some locality of access?
numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>

and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

all <nodes>

Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?

SC10 Tutorial Ingredients for good multicore performance 63

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE
huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

SC10 Tutorial Ingredients for good multicore performance 64

Coding for Data Locality

The programmer must ensure that memory pages get mapped
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
I.e. we have to take a closer look at initialization code

Some non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s
double a[s]; // c99 feature
// where are the physical pages of a[] now???
…

}

Fine-tuning is possible (see later)

Prerequisite: Keep threads/processes where they are
Affinity enforcement (pinning) is key (see earlier section)

SC10 Tutorial Ingredients for good multicore performance 65

Coding for ccNUMA data locality

integer,parameter :: N=1000000
real*8 A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do

integer,parameter :: N=1000000
real*8 A(N),B(N)

!$OMP parallel do schedule(static)
do i = 1, N

A(i)=0.d0
end do

!$OMP parallel do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do

Simplest case: explicit initialization

SC10 Tutorial Ingredients for good multicore performance 66

Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be easily
parallelized, so "localize" arrays before I/O

integer,parameter :: N=1000000
real*8 A(N), B(N)

READ(1000) A
!$OMP parallel do
do I = 1, N

B(i) = function (A(i))
end do

integer,parameter :: N=1000000
real*8 A(N),B(N)

!$OMP parallel do schedule(static)
do I = 1, N

A(i)=0.d0
end do
READ(1000) A
!$OMP parallel do schedule(static)
do I = 1, N

B(i) = function (A(i))
end do

SC10 Tutorial Ingredients for good multicore performance 67

Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to
be sure…
Imposes some constraints on possible optimizations (e.g. load balancing)
Presupposes that all worksharing loops with the same loop length have the
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable, more advanced methods may
be in order

How about global objects?
Better not use them
If communication vs. computation is favorable, might consider properly
placed copies of global data
In C++, STL allocators provide an elegant solution

SC10 Tutorial Ingredients for good multicore performance 68

Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to touch the
data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {
return D(d*o.d);

}
...
};

→ placement problem with
D* array = new D[1000000];

optio
nal

SC10 Tutorial Ingredients for good multicore performance 69

Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that places
the memory before constructors are called (PAGE_BITS = base-2 log of
pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement
new!

parallel first touch

optio
nal

SC10 Tutorial Ingredients for good multicore performance 70

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)

optio
nal

SC10 Tutorial Ingredients for good multicore performance 71

Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:
Processes lose their association with the
CPU the mapping took place on originally
OS kernel tries to maintain strong affinity,
but sometimes fails

Shared Memory Programming
(OpenMP,…):

Threads losing association with the CPU the
mapping took place on originally
Improper initialization of distributed data

All cases:
Other agents (e.g., OS kernel) may fill
memory with data that prevents optimal
placement of user data

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

SC10 Tutorial Ingredients for good multicore performance 72

Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your code…

Consider using performance counters
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfCtr -g MEM –c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out

SC10 Tutorial Ingredients for good multicore performance 73

Using performance counters for diagnosing bad ccNUMA
access locality

Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08
| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09
| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0
| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0
| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0
| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
RDTSC timing: 0.827196 s
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
Runtime [s]	0.714167	0.714733	0.71481	0.715013	0.714673	0.715286	0.71486	0.71515
CPI	3.65735	3.63188	3.65488	3.64076	3.60768	3.60521	3.59613	3.60184
Memory bandwidth [MBytes/s]	10610.8	0	0	0	10513.4	0	0	0
Remote Read BW [MBytes/s]	5296	0	0	0	5269.43	0	0	0
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only
counted once per socket

Half of read BW comes
from other socket!

SC10 Tutorial Ingredients for good multicore performance 74

If all fails…

Even if all placement rules have been carefully observed, you may
still see nonlocal memory traffic. Reasons?

Program has erratic access patters may still achieve some access
parallelism (see later)
OS has filled memory with buffer cache data:

numactl --hardware # idle node!
available: 2 nodes (0-1)
node 0 size: 2047 MB
node 0 free: 906 MB
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00
Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers
Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

SC10 Tutorial Ingredients for good multicore performance 75

ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache

If FS cache fills part of memory,
apps will probably allocate from
foreign domains

non-local access!
“sync” is not sufficient to
drop buffer cache blocks

Remedies
Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical
memory before starting the real application
Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)
data(1)

SC10 Tutorial Ingredients for good multicore performance 76

ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB
main memory

Run 4 concurrent
triads (512 MB each)
after writing a large
file

Report perfor-
mance vs. file size

Drop FS cache after
each data point

SC10 Tutorial Ingredients for good multicore performance 77

ccNUMA placement and erratic access patterns

Sometimes access patterns are
just not nicely grouped into
contiguous chunks:

In both cases page placement cannot easily be fixed for perfect parallel
access

double precision :: r, a(M)
!$OMP parallel do private(r)
do i=1,N

call RANDOM_NUMBER(r)
ind = int(r * M) + 1
res(i) = res(i) + a(ind)

enddo
!OMP end parallel do

Or you have to use tasking/dynamic
scheduling:
!$OMP parallel
!$OMP single
do i=1,N

call RANDOM_NUMBER(r)
if(r.le.0.5d0) then

!$OMP task
call do_work_with(p(i))

!$OMP end task
endif

enddo
!$OMP end single
!$OMP end parallel

SC10 Tutorial Ingredients for good multicore performance 78

ccNUMA placement and erratic access patterns

Worth a try: Interleave memory across ccNUMA domains to get at least
some parallel access
1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

Fine-grained program-controlled placement via libnuma (Linux)
using, e.g., numa_alloc_interleaved_subset(),
numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)
do i=1,M

a(i) = …
enddo
!$OMP end parallel do

This is for all memory, not
just the problematic

arrays!

Observe page alignment
of array to get proper

placement!

SC10 Tutorial Ingredients for good multicore performance 79

Performance impact of round-robin page
placement with dynamic scheduling/tasking

OpenMP vector triad benchmark A(:)=B(:)+C(:)*D(:) with
large array lengths on a 4-LD ccNUMA machine
Round-robin page placement (see previous slide)
Static vs. dynamic loop scheduling, varying chunk size

Static loop schedule matches
initialization, but no page

alignment of arrays

Asymptotic limit: 75% of all
page accesses are nonlocal

Full cache line transfer,
partial access

HW prefetcher misfiring/
TLB misses

OpenMP performance issues OpenMP performance issues
on multicoreon multicore

Synchronization (barrier) overheadSynchronization (barrier) overhead
Work distribution overheadWork distribution overhead

SC10 Tutorial Ingredients for good multicore performance 81

Welcome to the multi-/many-core era
Synchronization of threads via shared caches
!$OMP PARALLEL …
…
!$OMP BARRIER
!$OMP DO
…
!$OMP ENDDO
!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization.
Tested synchronization constructs

OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution

Test machines (Linux OS):
Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)

Threads are synchronized at
explicit AND implicit barriers.

Determine costs via modified OpenMP
Microbenchmarks testcase (epcc)

SC10 Tutorial Ingredients for good multicore performance 82

Thread synchronization overhead
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)
pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270

4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

SC10 Tutorial Ingredients for good multicore performance 83

Thread synchronization overhead
Barrier overhead: OpenMP icc vs. gcc

2 Threads Q9550 (shared L2) i7 920 (shared L3)
gcc 4.3.3 22603 7333
icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)
gcc 4.3.3 64143 10901
icc 11.0 977 814

gcc obviously uses a pthreads barrier for the OpenMP barrier:

Affinity enforcement is vital for getting small, reproducible sync overhead!

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

SC10 Tutorial Ingredients for good multicore performance 84

Xeon E5420 2 Threads shared L2 same socket different socket
pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem 2 Threads Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

Thread synchronization overhead
Barrier overhead: Topology influence

SMT can be a big performance problem for synchronizing threads
Well known for a long time see below

Roll-your-own sync mechanism may be better sometimes, but good compilers
do a good job, too

C
hi

ps
et

M
em

or
y

P C
P C

C

P C
P C

C

P C
P C

C

P C
P C

C
P C

P C
C

C

P C
P C

C
C

C

P C
P C

C
C

P C
P C

C
C

C

M
em

or
y

M
em

or
y

SC10 Tutorial Ingredients for good multicore performance 86

Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:

Choose N large so
that synchronization
overhead is negligible
compute() implements
purely computational
workload

no bandwidth
effects

Run with 2 threads

!$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)
do i=1,N
s = s + compute(i)

enddo
!$OMP END PARALLEL DO

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Simultaneous multiSimultaneous multi--threadingthreading

Principles and performance impactPrinciples and performance impact

SC10 Tutorial Ingredients for good multicore performance 88

SMT Makes a single physical core appear as two or more
“logical” cores multiple threads/processes run concurrently

SMT principle (2-way example):

SC10 Tutorial Ingredients for good multicore performance 89

SMT impact

SMT adds another layer of topology
(inside the physical core)

Possible benefit: Better pipeline throughput
Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Beware: Executing it all in a single thread
(if possible) may reach the same goal
without SMT:

Thread 0:
do i=1,N
a(i) = a(i-1)*c

enddo

Dependency pipeline
stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Thread 1:
do i=1,N
b(i) = func(i)*d

enddo

Unrelated work in other
thread can fill the pipeline

bubbles

do i=1,N
a(i) = a(i-1)*c
b(i) = func(i)*d

enddo

SC10 Tutorial Ingredients for good multicore performance 90

SMT impact

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, …)
High data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths
Affinity matters!
If SMT is not needed

pin threads to physical cores
or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

SC10 Tutorial Ingredients for good multicore performance 91

SMT: When it may help, and when not

Strongly memory-bound code

Functional parallelization

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Independent pipeline-unfriendly
instruction streams

Understanding MPI communication in Understanding MPI communication in
multicore environmentsmulticore environments

IntraIntra--node vs. internode vs. inter--node MPInode MPI
MPI Cartesian topologies and rankMPI Cartesian topologies and rank--subdomainsubdomain

mappingmapping

SC10 Tutorial Ingredients for good multicore performance 93

Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared
to internode

Reality
Intranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behavior

Other issues
Mapping between ranks, subdomains and cores with Cartesian MPI
topologies
Overlapping intranode with internode communication

SC10 Tutorial Ingredients for good multicore performance 94

MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X

SC10 Tutorial Ingredients for good multicore performance 95

MPI and Multicores
Clusters: Unidirectional intranode Ping-Pong bandwidth

Mapping problem for most efficient communication paths!?

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Memory Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Cross-Socket (CS)

Intra-Socket (IS)

Single point-to-
point BW similar

to internode

Some BW
scalability for

multi-intranode
connections

SC10 Tutorial Ingredients for good multicore performance 96

“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
■ This minimizes a node's communication surface

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this?

SC10 Tutorial Ingredients for good multicore performance 97

MPI rank-subdomain mapping in Cartesian topologies:
A 3D stencil solver and the growing number of cores per node

“Common” MPI
library behavior

N
eh

al
em

 E
P

2-
so

ck
et

Is
ta

nb
ul

 2
-s

oc
ke

t

Sh
an

gh
ai

 4
-s

oc
ke

t

M
ag

ny
C

ou
rs

2-
so

ck
et

Nehalem EX
4-socket

Magny Cours
4-socket

W
oo

dc
re

st
 2

-s
oc

ke
t

Su
n

N
ia

ga
ra

 2

SC10 Tutorial Ingredients for good multicore performance 98

~ 1.5x

4 ppn SDR-IB

MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

8 ppn QDR-IB

32 MPI processes

SC10 Tutorial Ingredients for good multicore performance 99

Section summary: What to take home
Bandwidth saturation is a reality, in
cache and memory

Use knowledge to choose the
“right” number of
threads/processes per node
You must know where those
threads/processes should run
You must know the architectural
requirements of your application

ccNUMA architecture must be
considered for bandwidth-bound
code

Topology awareness, again
First touch page placement
Problems with dynamic
scheduling and tasking: Round-
robin placement is the “cheap
way out”

OpenMP overhead
Barrier (synchronization) often
dominates the loop overhead
Work distribution and sync
overhead is strongly topology-
dependent
Strong influence of compiler
Synchronizing threads on “logical
cores” (SMT threads) may be
expensive

Intranode MPI
May not be as fast as you
think…
Becomes more important as core
counts increase
May not be handled optimally by
your MPI library

Interlude:Interlude:
What can software do for you?What can software do for you?

SC10 Tutorial Ingredients for good multicore performance 101

Common Lore
Performance/Parallelization at the node level: Software does it

Automatic parallelization for moderate processor counts is known
for more than 15 years – simple testbed for modern multicores:

allocate(x(0:N+1,0:N+1,0:N+1))
allocate(y(0:N+1,0:N+1,0:N+1))
x=0.d0
y=0.d0
…
… somewhere in a subroutine …
do k = 1,N
do j = 1,N

do i = 1,N
y(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+x(i,j,k-1)+x(i,j,k+1))
enddo

enddo
enddo

Simple 3D 7-point stencil update(„Jacobi“)

Performance Metric: Million Lattice Site Updates per second (MLUPs)
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 24 Byte/LUP * MLUPs

SC10 Tutorial Ingredients for good multicore performance 102

Common Lore
Performance/Parallelization at the node level: Software does it

Intel Fortran compiler:
ifort –O3 –xW –parallel –par-report2 …

Version 9.1. (admittedly an older one…)
Innermost i-loop is SIMD vectorized, which prevents compiler from auto-
parallelization: serial loop: line 141: not a parallel
candidate due to loop already vectorized

No other loop is parallelized…

Version 11.1. (the latest one…)
Outermost k-loop is parallelized: Jacobi_3D.F(139): (col. 10)
remark: LOOP WAS AUTO-PARALLELIZED.

Innermost i-loop is vectorized.
Most other loop structures are ignored by “parallelizer”, e.g. x=0.d0 and
y=0.d0: Jacobi_3D.F(37): (col. 16) remark: loop was not
parallelized: insufficient computational work

SC10 Tutorial Ingredients for good multicore performance 103

Common Lore
Performance/Parallelization at the node level: Software does it

PGI compiler (V 10.6)
pgf90 –tp nehalem-64 –fastsse –Mconcur –Minfo=par,vect

Performs outer loop parallelization of k-loop
139, Parallel code generated with block distribution if
trip count is greater than or equal to 33

and vectorization of inner i-loop:
141, Generated 4 alternate loops for the loop Generated
vector sse code for the loop

Also the array instructions (x=0.d0; y=0.d0) used for initialization are
parallelized:
37, Parallel code generated with block distribution if
trip count is greater than or equal to 50

Version 7.2. does the same job but some switches must be adapted

gfortran: No automatic parallelization feature so far (?!)

SC10 Tutorial Ingredients for good multicore performance 104

Common Lore
Performance/Parallelization at the node level: Software does it

STREAM bandwidth:

Node: ~36-40 GB/s

Socket: ~17-20 GB/s

Performance
variations
Thread / core
affinity?!

Intel: No
scalability 4 8
threads?!

2-socket Intel Xeon 5550 (Nehalem; 2.66 GHz) node

Cubic domain size: N=320 (blocking of j-loop)

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

SC10 Tutorial Ingredients for good multicore performance 105

Controlling thread affinity / binding
Intel / PGI compilers

Intel compiler controls thread-core affinity via KMP_AFFINITY
environment variable

KMP_AFFINITY=“granularity=fine,compact,1,0” is packs the threads
in a blockwise fashion ignoring the SMT threads.
(equivalent to likwid-pin –c 0-7)
Add ”verbose” to get information at runtime
Cf. extensive Intel documentation
Disable when using other tools, e.g. likwid: KMP_AFFINITY=disabled
Builtin affinity does not work on non-Intel hardware

PGI compiler offers compiler options:
Mconcur=bind (binds threads to cores; link time option)
Mconcur=numa (prevents OS from process / thread migration; link time option)
No manual control about thread-core affinity
Interaction likwid PGI ?!

SC10 Tutorial Ingredients for good multicore performance 106

Thread binding and ccNUMA effects
7-point 3D stencil on 2-socket Intel Nehalem system

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Performance drops if 8 threads instead of 4 access a single memory domain:
Remote access of 4 through QPI!

Cubic domain size: N=320 (blocking of j-loop)

SC10 Tutorial Ingredients for good multicore performance 107

Thread binding and ccNUMA effects
7-point 3D stencil on 2-socket AMD Magny-Cours system

12-core Magny-Cours: A single socket holds two tightly HT-connected 6-core
chips 2-socket system has 4 data locality domains

Cubic domain size: N=320 (blocking of j-loop)

OMP_SCHEDULE=“static”

Performance [MLUPs]

Memory

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

C

MI

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

Memory

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

MI

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory
3 levels of HT connections:

1.5x HT – 1x HT – 0.5x HT
1x

 H
T

0.5x HT

2x HT

2

1

1

1

#sockets

4

2

1

1

#L3
groups

186028624

100534712

5125126

2212211

Parallel
Init.

Serial
Init.#threads

SC10 Tutorial Ingredients for good multicore performance 108

Common Lore
Performance/Parallelization at the node level: Software does it

Based on Jacobi performance results one could claim victory, but
increase complexity a bit, e.g. simple Gauß-Seidel instead of Jacobi

… somewhere in a subroutine …
do k = 1,N
do j = 1,N

do i = 1,N
x(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+x(i,j,k-1)+ x(i,j,k+1))
enddo

enddo
enddo

A bit more complex 3D 7-point stencil
update(„Gauß-Seidel“)

Performance Metric: Million Lattice Site Updates per second (MLUPs)
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 16 Byte/LUP * MLUPs

Performance of Gauß-Seidel should be up to 1.5x faster than Jacobi if main
memory bandwidth is the limitation

SC10 Tutorial Ingredients for good multicore performance 109

Common Lore
Performance/Parallelization at the node level: Software does it

State of the art compilers do not parallelize Gauß-Seidel iteration
scheme: loop was not parallelized: existence of
parallel dependence

That’s true but there are simple ways to remove the dependency
even for the lexicographic Gauß-Seidel
10 yrs+ Hitachi’s compiler supported “pipeline parallel processing”
(cf. later slides for more details on this technique)!

There seem to be major problems to optimize even the serial code
1 Intel Xeon X5550 (2.66 GHz) core
Reference: Jacobi
430 MLUPs

Target Gauß-Seidel:
645 MLUPs 149 MLUPspgf90 V7.2.1

149 MLUPspgf90 V10.6.

345 MLUPsIntel V11.1.072

290 MLUPsIntel V9.1.

SC10 Tutorial Ingredients for good multicore performance 110

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

SC10 Tutorial Ingredients for good multicore performance 111

Multicore awareness
Classical Approaches: Parallelize & Reduce memory pressure

Multicore processors are still mostly programmed
the same way as classic n-way SMP single-core
compute nodes!

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

do k = 1 , Nk
do j = 1 , Nj

do i = 1 , Ni
y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+x(i+1,j,k)+
x(i,j-1,k)+x(i,j+1,k)+
x(i,j,k-1)+x(i,j,k+1))

enddo
enddo

enddo

Simple 3D Jacobi stencil update (sweep):

Performance Metric: Million Lattice Site Updates per second (MLUPs)
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs

SC10 Tutorial Ingredients for good multicore performance 112

Multicore awareness
Standard sequential implementation

k-direction

j-d
ire

ct
io

n

do t=1,tMax

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo

enddo

core0 core1

Cache

Memory

x

SC10 Tutorial Ingredients for good multicore performance 113

Multicore awareness
Classical Approaches: Parallelize!

k-direction

j-d
ire

ct
io

n

core0 core1

Cache

Memory

x

do t=1,tMax
!$OMP PARALLEL DO private(…)

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo
!$OMP END PARALLEL DO
enddo

SC10 Tutorial Ingredients for good multicore performance 114

Multicore awareness
Parallelization – reuse data in cache between threads

k-direction

j-d
ire

ct
io

n

core0: x(:,:,k-1:k+1)t y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1 x(:,:,k-2)t+2

core0 core1

y(:,:,:)

Memory

x(:,:,:)

Do not use domain
decomposition!

Instead shift 2nd thread by
three i-j planes and
proceed to the same
domain

2nd thread loads input
data from shared OL cache!

Sync threads/cores after
each k-iteration!

“Wavefront
Parallelization (WFP)”

SC10 Tutorial Ingredients for good multicore performance 115

Use small ring buffer
tmp(:,:,0:3)
which fits into the cache

Save main memory data
transfers for y(:,:,:) !

16 Byte / 2 LUP !

8 Byte / LUP !

Multicore awareness
WF parallelization – reuse data in cache between threads

Compare with optimal baseline (nontemporal stores on y):
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and
no overhead for OMP BARRIER after each k-iteration)

SC10 Tutorial Ingredients for good multicore performance 116

Multicore awareness
WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t tmp(:,:,mod(k,4))

Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4)) x(:,:,k-2)t+2

Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 (1 + x/2 * BM/BC)

core0 core1

tmp(:,:,0:3)

Memory

x

Minimum value: x =2

Speed-Up vs. baseline: SW = 2*T0/T2LUP
= 2 / (1 + BM/BC)

BC and BM are measured in saturation runs:

Clovertown: BM/BC = 1/12 SW = 1.85

Nehalem : BM/BC = 1/4 SW = 1.6

SC10 Tutorial Ingredients for good multicore performance 117

Jacobi solver
WFP: Propagating four wavefronts on native quadcores (1x4)

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

1 x 4 distribution

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in
cache!

Max. performance gain (vs. optimal
baseline): tb = 4

Extensive use of cache bandwidth!

SC10 Tutorial Ingredients for good multicore performance 118

Jacobi solver
WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3,4):mod(k-1,4)) tmp2(mod(k-2,4))

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

Thread 2: tmp2(mod(k-5,4:mod(k-3,4)) tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4)) x(:,:,k-6)t+4

1 x 4 distribution

core0 core1

tmp0(: , : , 0:3)

x(:,1:N/2,:) x(:,N/2+1:N,:)

core2 core3

2 x 2 distribution

SC10 Tutorial Ingredients for good multicore performance 119

Jacobi solver
Wavefront parallelization: L3 group Nehalem

Performance model indicates some potential gain new compiler tested.

Only marginal benefit when using 4 wavefronts A single copy stream does not
achieve full bandwidth

P
CC

P
CC

P
CC

MI

Memory

P
CC C

P
CC

P
CC

P
CC

MI

Memory

P
CC C

4003

bj=40
MLUPs

1 x 2 786

2 x 2 1230

1 x 4 1254

SC10 Tutorial Ingredients for good multicore performance 120

Multicore-aware parallelization
Wavefront – Jacobi on state-of-the art multicores

P
C

P
C

C

P
C

P
C

C

P
CC

P
CC

P
CC

MI

P
CC

P
CC

P
CC

P
CC

P
CC

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Compare against optimal baseline!

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth

Bolc ~ 10

Bolc ~ 2-3

Bolc ~ 10

SC10 Tutorial Ingredients for good multicore performance 121

Section summary: What to take home

Shared caches are the interesting new feature on current
multicore chips

Shared caches provide opportunities for fast synchronization (see sections
on OpenMP and intra-node MPI performance)
Parallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP
In addition fast synchronization (pref. within a socket) allows to exploit
parallel structures at finer granularity (shorter loops, frequent
synchronisation)

WFP technique can easily be extended to many regular stencil
based iterative methods, e.g.

Gauß-Seidel (done)
Lattice-Boltzmann flow solvers (work in progress)
Multigrid-smoother (work in progress)

WFP can be extended to hybrid MPI+OpenMP parallelizaton
See references

SC10 Tutorial Ingredients for good multicore performance 122

Tutorial outline

Introduction
Architecture of multisocket multicore
systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Impact of processor/node
topology on program
performance

Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

New chances with multicore
hardware

Pipeline parallel processing
Case study: Wavefront
parallelization of stencil codes

Summary
Appendix

SC10 Tutorial Ingredients for good multicore performance 123

Summary & Conclusions

Multicore/multisocket topology needs to be considered:
OpenMP performance
MPI communication parameters
Shared resources

Be aware of the architectural requirements of your code
Bandwidth vs. compute
Synchronization
Communication

Use appropriate tools
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfCtr

Try to leverage the new architectural feature of modern multicore
chips

Shared caches!

SC10 Tutorial Ingredients for good multicore performance 124

Appendix: References
Books:

G. Hager and G. Wellein: Introduction to High Performance Computing for
Scientists and Engineers. CRC Computational Science Series, 2010.
ISBN 978-1439811924
R. Chapman, G. Jost and R. van der Pas: Using OpenMP. MIT Press, 2007.
ISBN 978-0262533027
S. Akhter: Multicore Programming: Increasing Performance Through Software
Multi-threading. Intel Press, 2006. ISBN 978-0976483243

Papers:
J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of
performance prediction and the impact of cache topology. To appear.
http://arxiv.org/abs/0910.4865
G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization.
Proc. COMPSAC 2009. DOI:10.1109/COMPSAC.2009.82
M. Wittmann, G. Hager and G. Wellein: Multicore-aware parallel temporal
blocking of stencil codes for shared and distributed memory. Workshop on
Large-Scale Parallel Processing (LSPP), IPDPS 2010, April 23rd, 2010,
Atlanta, GA.

SC10 Tutorial Ingredients for good multicore performance 125

References
Papers continued:

M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches
for parallel temporal blocking of stencil codes on multicore processors and
clusters. Accepted for publication in Parallel Processing Letters.
http://arxiv.org/abs/1006.3148
J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments. Accepted for PSTI2010, the
First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010.
http://arxiv.org/abs/1004.4431
G. Schubert, G. Hager and H. Fehske: Performance limitations for sparse
matrix-vector multiplications on current multicore environments. To appear.
http://arxiv.org/abs/arXiv:0910.4836
G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and
Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP
Nodes. In: Proceedings of the Cray Users Group Conference 2009 (CUG
2009), Atlanta, GA, USA, May 4-7, 2009.

Advanced OpenMP:Advanced OpenMP:
Pipeline parallel processing Pipeline parallel processing Eliminating Eliminating
recursionrecursion

Parallelizing a 3D GaussParallelizing a 3D Gauss--Seidel solverSeidel solver

BACKUP slides

SC10 Tutorial Ingredients for good multicore performance 127

The Gauss-Seidel algorithm in 3D

Not parallelizable by compiler or simple directives because of
loop-carried dependency
Is it possible to eliminate the dependency?

SC10 Tutorial Ingredients for good multicore performance 128

3D Gauss-Seidel parallelized

Pipeline parallel principle: Wind-up phase
Parallelize middle j-loop and shift thread execution in k-direction to account
for data dependencies
Each diagonal (Wt) is executed
by t threads concurrently
Threads sync
after each
k-update

SC10 Tutorial Ingredients for good multicore performance 129

3D Gauss-Seidel parallelized

Full pipeline: All threads execute

SC10 Tutorial Ingredients for good multicore performance 130

3D Gauss-Seidel parallelized: The code

SC10 Tutorial Ingredients for good multicore performance 131

Parallel 3D Gauß-Seidel

Gauß-Seidel can also be parallelized using a red-black (2D) or ???
(3D) scheme

But data dependency is representative for several linear (sparse)
solvers Ax=b arising from regular discretization,
e.g. Stone’s Strong Implicit (SIP) solver based on incomplete A ~
LU factorization

Still used in many CFD FV codes (RRZE report)
L & U: Each contains 3 non-zero off-diagonals only!
Solving Lx=b or Ux=c has loop carried data dependencies similar to GS
PPP

SC10 Tutorial Ingredients for good multicore performance 132

Presenter Biographies
Georg Hager holds a PhD in computational physics from
the University of Greifswald. He has been working with high performance
systems since 1995, and is now a senior research scientist in the HPC
group at Erlangen Regional Computing Center (RRZE). Recent research
includes architecture-specific optimization for current microprocessors,
performance modeling on processor and system levels, and the efficient use
of hybrid parallel systems. See his blog at http://blogs.fau.de/hager for
current activities, publications, and talks.

Gerhard Wellein holds a PhD in solid state physics from the University of
Bayreuth and is a professor at the Department for Computer Science at the
University of Erlangen. He leads the HPC group at Erlangen Regional
Computing Center (RRZE) and has more than ten years of experience in
teaching HPC techniques to students and scientists from computational
science and engineering programs. His research interests include solving
large sparse eigenvalue problems, novel parallelization approaches,
performance modeling, and architecture-specific optimization.

SC10 Tutorial Ingredients for good multicore performance 133

Abstract
Tutorial M16: Ingredients for Good Parallel Performance on Multicore-
based systems
Presenter(s):Georg Hager, Gerhard Wellein

ABSTRACT:

This tutorial covers program optimization techniques for multi-core processors
and the systems they are used in. It concentrates on the dominating parallel
programming paradigms, MPI and OpenMP. We start by giving an architectural
overview of multicore processors. Peculiarities like shared vs. separate caches,
bandwidth bottlenecks, and ccNUMA characteristics are pointed out. We show
typical performance features like synchronization overhead, intranode MPI
bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache
and memory) in order to pinpoint the influence of system topology and thread
affinity on the performance of typical parallel programming constructs. Multiple
ways of probing system topology and establishing affinity, either by explicit
coding or separate tools, are demonstrated. Finally we elaborate on
programming techniques that help establish optimal parallel memory access
patterns and/or cache reuse, with an emphasis on leveraging shared caches for
improving performance.

