ERLANGEN REGIONAL COMPUTING CENTER

Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format

Moritz Kreutzer, <u>Georg Hager</u>, Gerhard Wellein SIAM PP14 MS53 Feb 20, 2014

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Agenda

- Related work
- Motivation for a SIMD-compatible sparse matrix format
- Deficiencies of CRS
- Constructing SELL-C-σ
- Roofline model for SELL-C-σ
- Performance results for
 - Intel Sandy Bridge
 - Intel Xeon Phi
 - Nvidia K20
- Conclusions & outlook

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: *A unified sparse matrix data format for modern processors with wide SIMD units.* Submitted. Preprint: <u>arXiv:1307.6209</u>

Related (recent) work

- X. Liu, M. Smelyanskiy, E. Chow and P. Dubey. Efficient sparse matrixvector multiplication on x86-based many-core processors.
 In: Proc. ICS '13 (ACM, New York, NY, USA) 273-282.
 DOI: 10.1145/2464996.2465013
- E. Saule, K. Kaya and U. V. Çatalyürek. Performance evaluation of sparse matrix multiplication kernels on Intel Xeon Phi. Proc. PPAM 2013, arXiv:1302.1078
- A. Monakov, A. Lokhmotov and A. Avetisyan. Automatically tuning sparse matrix-vector multiplication for GPU architectures. In: Y. Patt et al. (eds.), LNCS vol. 5952 111-125. DOI: 10.1007/978-3-642-11515-8_10
- A. L. A. Dziekonski and M. Mrozowski. A memory ecient and fast sparse matrix vector product on a GPU. Progress In Electromagnetics Research 116, (2011) 49-63. <u>DOI: 10.2528/PIER11031607</u>

Variety of Sparse Matrix Storage Formats

2014/02/20 | SpMVM with wide SIMD units

Standard sparse matrix storage formats

CRS on wide SIMD units

- When number of nonzeros per row is small
 - Significant remainder loop overhead (partial/no vectorization)
 - Large impact of row reduction
 - Alignment constraints require additional peeling
 - Small loop count
- GPGPUs
 - One warp per row: similar problems
 - Outer loop parallelization: Loss of coalescing

```
for(i = 0; i < N; ++i)
{
    tmp0 = tmp1 = tmp2 = tmp3 = 0.;
    for(j = rpt[i]; j < rpt[i+1]; j+=4)
    {
        tmp0 += val[j+0] * x[col[j+0]];
        tmp1 += val[j+1] * x[col[j+1]];
        tmp2 += val[j+2] * x[col[j+2]];
        tmp3 += val[j+3] * x[col[j+3]];
    }
    y[i] += tmp0+tmp1+tmp2+tmp3;
    // remainder loop
    for(j = j-4; j < rpt[i+1]; j++)
        y[i] += val[j] * x[col[j]];
}</pre>
```


Constructing SELL-C-σ

- Pick chunk size *C* (guided by SIMD/T widths)
- 2. Pick sorting scope σ
- 3. Sort rows by length within each sorting scope
- 4. Pad chunks with zeros to make them rectangular
- 5. Store matrix data in "chunk column major order"

"Chunk occupancy": fraction of "useful" matrix entries

$$\beta = \frac{N_{nz}}{\sum_{i=0}^{N_c} C \cdot l_i}$$

Matrix characterization

"Corner case" matrices from "Williams Group":

Test case	N	N_{nz}	$N_{\rm nzr}$	density	$\beta_{\sigma=1}^{C=16}$	$\beta_{\sigma=256}^{C=16}$
m RM07R	$381,\!689$	$37,\!464,\!962$	98.16	2.57 e- 04	0.63	0.93
kkt_power	$2,\!063,\!494$	$14,\!612,\!663$	7.08	3.43e-06	0.54	0.92
$\operatorname{Hamrle3}$	$1,\!447,\!360$	$5,\!514,\!242$	3.81	2.63e-06	1.00	1.00
ML_Geer	$1,\!504,\!002$	$110,\!879,\!972$	73.72	4.90e-05	1.00	1.00

Remaining matrices:

pwtk	$217,\!918$	$11,\!634,\!424$	53.39	2.45 e- 04	0.99	1.00
shipsec1	$140,\!874$	$7,\!813,\!404$	55.46	3.94 e- 04	0.89	0.98
consph	83,334	$6,\!010,\!480$	72.13	8.65 e-04	0.94	0.97
pdb1HYS	$36,\!417$	$4,\!344,\!765$	119.31	3.28e-03	0.84	0.97
cant	$62,\!451$	$4,\!007,\!383$	64.17	1.03e-03	0.90	0.98

SELL-C-σ kernel

```
for(i = 0; i < N/4; ++i)
ſ
  for(j = 0; j < cl[i]; ++j)</pre>
  ſ
    y[i*4+0] += val[cs[i]+j*4+0]
              x[col[cs[i]+j*4+0]];
    y[i*4+1] += val[cs[i]+j*4+1] *
              x[col[cs[i]+j*4+1]];
                                         C = 4
    y[i*4+2] += val[cs[i]+j*4+2] *
              x[col[cs[i]+j*4+2]];
    y[i*4+3] += val[cs[i]+j*4+3] *
              x[col[cs[i]+j*4+3]];
  }
```

}

Variants of SELL-C-σ

FF2E

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

FA

Roofline performance model for SELL-C-σ

Code balance (double precision FP, 4-byte index):

The α parameter

Corner case scenarios:

1. $\alpha = 0$ \rightarrow RHS in cache 2. $\alpha = \frac{1}{N_{nzc}}$ \rightarrow Load RHS vector exactly once If $N_{nzc} \gg 1$, RHS traffic is insignificant: $\overline{P} = \frac{b\beta}{6 \text{ bytes/flop}}$

3. $\alpha \approx 1$ \rightarrow Each RHS load goes to memory

4. $\alpha > 1$ \rightarrow Houston, we've got a problem \odot

Determine α by measuring actual spMVM memory traffic (HPM)

Determine RHS traffic

 V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)

Determine α :

and:

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{8}{N_{nzr}} \right)$$

Example: kkt_power matrix on one Intel SNB socket

- $N_{nz} = 14.6 \cdot 10^6$, $N_{nzr} = 7.1$
- $V_{meas} \approx 258 \text{ MB}$
- $\rightarrow \alpha = 0.43, \, \alpha N_{nzr} = 3.1$
- → RHS is loaded 3.1 times from memory

$$\frac{B_{CRS}^{DP}(\alpha)}{B_{CRS}^{DP}(1/N_{nzc})} = 1.15$$

15% extra traffic → optimization potential!

Impact of σ on α for kkt_power on SNB

Results for memory-bound matrices

SELL-C-σ: Relative Performance Benefit

(16 square matrices)

Generic SELL-32- σ format performance vs. baselines:

- CRS (from MKL) for SNB and Xeon Phi
- HYB (CUSPARSE) for K20

Conclusion

- Wide SIMD/SIMT architectures pose challenges for spMVM
 - Short loops (CRS)
 - Fill-in (ELLPACK)
 - Reduction overhead (CRS)
 - Low vectorization ratio (CRS)
- SELL-C-σ alleviates or eliminates most of these problems
- SELL-C-σ provides good spMVM performance for a large range of sparse matrices compared to native formats
 - Intel SNB: Competitive with CRS
 - Intel Xeon Phi: Outperforms CRS by far on average
 - K20: Competitive with ELLPACK/HYB
- Architecture-specific parameter settings have small impact vs. generic values

Outlook

- TODOs
 - More elaborate load balancing (better heuristics)
 - Explicit prefetching
- GATech variant to be in future MKL editions
- Upcoming (initial release for 2014):

General Hybrid Optimized Sparse Toolkit

- Sparse building blocks
- Various matrix formats incl. SELL-C-σ
- Hybrid/heterogeneous MPI+X parallelism
- Communication hiding
- Built-in threading & tasking model

SpMVM Performance in a Heterogeneous System

(SELL-32-1, ML_Geer matrix, 64-bit values, 32-bit indices, ECC=1)

SELL-C- σ with IMCI intrinsics

```
int c, j, offs;
__m512d tmp1, tmp2, val, rhs;
__m512i idx;
#pragma omp parallel for schedule(runtime) private(j,offs,tmp1,tmp2,val,rhs,idx)
for (c=0; c<nRowsPadded>>4; c++)
{ // loop over chunks
  tmp1 = _mm512_load_pd(&_lhs[c<<4] ); // load 8 LHS values
tmp2 = _mm512_load_pd(&_lhs[c<<4+8]); // load next 8 LHS values</pre>
  offs = cs[c]; // the initial offset is the start of this chunk
  for (j=0; j<cl[c]; j++)</pre>
  [ // loop inside chunk from 0 to the length of the chunk
    val = _mm512_load_pd(&_val[offs]); // load 8 matrix values
    idx = _mm512_load_epi32(&_col[offs]); // load 16 indices
    rhs = _mm512_i32logather_pd(idx,_rhs,8); // gather RHS using lower 8 indices
    tmp1= _mm512_add_pd(tmp1,_mm512_mul_pd(val,rhs)); // multiply & accumulate
    offs+= 8;
    val = _mm512_load_pd(&_val[offs]); // load next 8 matrix values
    idx = _mm512_permute4f128_epi32(idx,_MM_PERM_BADC); // lo <-> hi idx
    rhs = _mm512_i32logather_pd(idx,_rhs,8);// gather rhs lower 8 indices
    tmp2= _mm512_add_pd(tmp2,_mm512_mul_pd(val,rhs)); // multiply & accumulate
    offs += 8;
  }
  _mm512_store_pd(&_lhs[c<<4] , tmp1); // store 8 LHS values
_mm512_store_pd(&_lhs[c<<4+8], tmp2); // store next 8 LHS values</pre>
}
```


SELL-C- σ with AVX intrinsics

```
int c, j, offs;
__m256d tmp, val, rhs;
__m128d rhstmp;
#pragma omp parallel for schedule(runtime) private(j,offs,tmp,val,rhstmp)
for (c=0; c<nRowsPadded>>2; c++)
{ // loop over chunks
  tmp = _mm256_load_pd(\&_lhs[c<<2]); // load 4 LHS values
  offs = cs[c]; // the initial offset is the start of this chunk
  for (j=0; j<cl[c]; j++)</pre>
  { // loop inside chunk from 0 to the length of the chunk
         = _mm256_load_pd(&_val[offs]);
                                                        // load 4 matrix values
    val
    rhstmp = _mm_loadl_pd(rhstmp,&_rhs[_col[offs++]]); // load 1st RHS value
    rhstmp = _mm_loadh_pd(rhstmp,&_rhs[_col[offs++]]); // load 2nd RHS value
          = _mm256_insertf128_pd(rhs,rhstmp,0);
                                                        // insert lo part of RHS
    rhs
    rhstmp = _mm_loadl_pd(rhstmp,&_rhs[_col[offs++]]); // load 3rd RHS value
   rhstmp = _mm_loadh_pd(rhstmp,&_rhs[_col[offs++]]); // load 4th RHS value
           = _mm256_insertf128_pd(rhs,rhstmp,1);
                                                  // insert hi part of RHS
    rhs
           = _mm256_add_pd(tmp,_mm256_mul_pd(val,rhs)); // accumulate
    tmp
  }
  _mm256_store_pd(&_lhs[c<<2], tmp); // store 4 LHS values
3
```

CRS spMVM performance

Best case **B**_{CRS} = 6 Byte/FLOP

F7

IEDRICH-ALEXANDER

