
Building and utilizing fault tolerance
support tools for the GASPI applications

Journal Title

XX(X):1–12

c©The Author(s) 2016

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Faisal Shahzad1, Moritz Kreutzer1, Thomas Zeiser1, Rui Machado2, Andreas Pieper1,3, Georg

Hager1 and Gerhard Wellein1

Abstract

Today’s High Performance Computing (HPC) systems are made possible by multiple increase in hardware parallelity.

This results in the decrease of mean time to failures (MTTF) of the systems with every newer generation, which is an

alarming trend. Therefore, it is not surprising that a lot of research is going on in the area of fault tolerance and fault

mitigation. Applications should survive a failure and/or be able to recover with minimal cost.

We have used GASPI, which is a relatively new communication library based on the PGAS model. It fulfills the basic

requirement of a fault tolerant communication library , i.e., failure of a process do not cause the remaining processes

to fail. This work is focused to extend the fault tolerance features of GASPI in form of a supporting health-check (HC)

library that applications can benefit from. These features include failure detection, its information propagation, recovery

management, communication recovery, etc. To reinforce its utility, we have also developed a fault tolerant neighbor

node-level checkpoint/restart (CR) library.

Instead of introducing algorithm-based fault tolerance in its true sense, we demonstrate how (using these

supplementary fault tolerance functions) one can build applications to allow integrate a low cost fault detection/recovery

mechanism and, if necessary, recover the application on the fly. We showcase the usage of these tools by implementing

them in three different applications. Two of the applications fall in the category of linear sparse solvers, whereas the

third application is based on a fluid flow solver. We also analyze the overheads involved in failure-free cases as well

as various failure cases. Our fault detection mechanism causes no overhead in failure-free cases, whereas in case of

failure(s), the failure detection and recovery cost is of reasonably acceptable order and shows good scalability.
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1 Introduction

The advances in computational capacity of HPC clusters

have enabled many fields in research and industry to

progress far beyond imagination. Still the demand of more

computational capacity is never ending. In the recent past,

the consistent exponential growth is achieved with the help of

extreme levels of hardware parallelism. This causes a severe

reduction in mean time to failure (MTTF) of the overall

systems and is visible with every new generation of large

clusters. For example, the ‘Intrepid’ BlueGene/P system

(debuted as # 4 on the top500∗ list of June 2008 installed

at the Argonne National Laboratory) is reported to have

the MTTF of 7.5 days (M. Snir et al. (2014)). In contrast, a

more recent BlueGene/Q cluster ‘Sequoia’ (debuted as # 3

according to Nov. 2013 list, installed at Lawrence Livermore

National Laboratory) has a node failure rate of 1.25 per day

(Dongarra (2013)). On the way to exascale machines, the

MTTF is expected to reduce to the order of hours or minutes

(J. Daly et al. (2012); Schroeder and Gibson (2007)). This

indicates an alarming behavior which, if not taken care of,

will question the usability of clusters at exascale.

In HPC systems, programs can face many kinds of

failures during runtime, e.g., hardware and software

faults, silent errors, Byzantine failures, etc. According to

El-Sayed and Schroeder (2013), 60% of all failures are

attributed to either memory or CPU failures. Such failures,

in addition to others, eventually lead to process or node-

level failures, which are the focus of this work. The majority

of the literature regarding fault tolerance towards fail-stop

failures falls into either one or a combination of the following

four categories: algorithm based fault tolerance (ABFT),

checkpoint/restart (C/R), message logging, and redundancy

(Hursey (2010)).

So far most algorithms (and underlying communication

models) are built under a comprehensible assumption that

the communication partners of every process stay alive

and functional during the entire run of the program.

Consequently, the failure of even a single process leads
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to the failure of the whole application. For large scale

applications, it is beneficial to drop this assumption. This

would mean that the program should continue to run even

after the failure of a certain amount of processes, i.e.,

node failures. This opens a new dimension of research

in the field of fault tolerance. In this context, the first

step is to build/utilize a communication library that can

provide the necessary supporting functionalities for this

purpose, i.e., health information of processes, failure

detection mechanisms, propagation of failure information

to all relevant processes, etc. During the development

of MPI 3.0, efforts were underway to introduce process-

level failure tolerance (W. Bland et al. (2012)), but were

not eventually successful. The fault tolerant working group

in the MPI forum is currently working on the User-

Level Failure Mitigation (ULFM) standard proposal and its

prototype implementation (based on Open MPI) for its

potential inclusion in the MPI 4.0 standard ( W. Bland et al.

(2013)). Despite the apparent attractiveness of this new

approach, it comes with a new set of challenges, i.e.,

correct and consistent failure acknowledgment, rebuilding

communication infrastructure, recovering lost data from

failed process(es), etc. These building blocks require extra

effort and caution during application development stages.

In this work, we use the GPI-2 † implementation of the

GASPI specification ‡ to design fault tolerance supporting

tools that can be easily used in applications to recover from

hard-failures. We then use these tools in applications that are

capable of recovering dynamically from process failures.

The main contributions of our work are as follows:

1. Design and implementation of a health-check (HC)

library that provides fault detection, communication

recovery and other useful functions in order to recover

from fail-stop failures.

2. Implementation of a fault-aware neighbor-level C/R

library that provides supporting functions to asyn-

chronously transfer the node-local checkpoints to the

neighbor nodes and fetch them back in case of a data-

recovery request.

3. The usage of HC-library is showcased by its utiliza-

tion in three different applications. Two application

consist of iterative sparse matrix vector multiplica-

tion (spMVM) based solvers, whereas the third ap-

plication is a fluid flow solver based on the lattice

Boltzmann method (LBM). The underlying spMVM

library and LBM communication routines are also

made fault tolerant by utilizing HC-library.

4. A benchmark study has been performed to analyze the

overheads involved in this fault tolerance approach.

This includes a range of application runtime scenarios,

i.e., overhead in failure-free case and overhead with

1,2,3 failure recoveries, etc. Moreover, the scalability

of the fault detection method is tested with up to 256

nodes.

With this practice, we have developed fault tolerant

applications which can heal themselves dynamically after the

loss of one or more processes. Thus the time for restarting the

job manually and wait-time spent in the queueing system for

a new job request are avoided. The concept can be applied to

other applications with different communication libraries as

well when they support fault tolerance. We think that this is

a good starting point to gain experience and become aware

of the challenges involved and their potential solutions for

utilization of such fault tolerant communication libraries.

The paper follows the following structure. Some

preliminary definitions and concepts are described in Sect.

2. In Sect. 3, the GASPI communication interface is briefly

introduced along with its fault tolerance features. The design

and interface of our fault tolerance supporting libraries (i.e.,

HC-library and CR-library) are described in detail in Sect. 4.

Section 5 provides the benchmark applications detail and the

test-bed environment. A detailed example of the integration

of HC and CR-libraries in the application is covered. The

results and overhead analysis of our FT implementations are

presented in Sect. 6. A brief summary of the related work is

described in Sect. 7. We conclude the paper in Sect. 8 with a

short discussion about the challenges of such a fault tolerance

approach and possible improvements.

The current versions of these GPI support libraries

(i.e. health-check library and checkpoint/restart library)

are available for download at GPI2-HC-lib (2015) and

respectively GPI2-CR-lib (2015).

2 Preliminaries

In this paper, we use the term ‘application-driven’ fault

tolerance for an approach where an application can heal

itself dynamically despite one or more process failures. A

process in this context is a GPI process which is akin to MPI

process with similar properties. Multiple GPI-processes can

run simultaneously on one physical node of a cluster.

There are three central components in application-

driven fault tolerance. The first and foremost component

is to have a consistent, accurate, and reliable failure

detection mechanism. Design and implementation of a fault

detector for asynchronous systems is a complex task. A

distributed system is termed as ‘asynchronous’ if there is no

upper bound on message transmission delays and process

execution time, and all real HPC systems fall into this

category. There are two basic properties of a fault detector

(Chandra and Toueg (1996)): 1) Completeness: The crashed

processes are suspected by some healthy processes, after a

certain amount of time. A strong completeness implies that

every failed process is eventually detected by every healthy

process. 2) Accuracy: Every detected failure corresponds

to an actual crashed process (i.e. no false-positives). The

complete satisfaction of both these properties is theoretically

impossible (Chandra and Toueg (1996)). Thus, most fault

detection implementations are willing to tolerate some level

of inaccuracy but require strong completeness.

Our failure model encompasses fail-stop failures of all

kinds i.e. any failure which results in termination of one

or more processes in a parallel application. Such fail-

stop failure can either be a consequence of any hardware

component failure or any soft-error that result in process

failure(s). This model is similar to the one followed by

K. Kharbas et al. (2012). For failure detection, we follow the

approach of having a dedicated health check (HC) process

†GPI2 website: http://www.gpi-site.com/gpi2/
‡GASPI website: http://www.gaspi.de/
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that measures and keeps a global health view of all processes

at all times. Due to the PGAS nature of the communication

in GASPI, such a global failure detection has certain

advantages in terms of simplicity over developing consensus

between processes after failure(s) and induces no overhead

in the failure-free case (discussed in detail in Sect. 4).

This method is in contrast to the technique implemented in

W. Bland et al. (2012) for MPI applications, where failure(s)

are detected locally between the regular communication peer

processes.

After a failure detection, the second step involves

the selection of a communication recovery and domain

redistribution strategy. Two recovery models can be followed

for this purpose (I. Laguna et al. (2014)). 1) Shrinking

recovery: In this method, the application proceeds with

the rest of available processes after failure(s) and requires

redistribution of domain. 2) Non-shrinking recovery: This

method involves using new process(es) to replace the failed

one(s), where the work distribution of the application is not

changed after failures. Depending on the application and

the communication library, either of these techniques can

be beneficial. In our work, we have used a non-shrinking

recovery method because of its ability to easily leverage

node-level C/R approach. For non-shrinking recovery,

instead of using the same physical node(s) as of failed

process(es), we use pre-allocated extra nodes for recovery

processes. This strategy ensures that failure prone nodes are

no longer used for further work.

The third stage involves the data recovery of the

lost process(es) and continuing further computation. Data

recovery can either be done by reading a checkpoint

or by using an algorithm based fault tolerance (ABFT)

approach. An ABFT approach is by nature highly algorithm-

specific and cannot be generalized; therefore, we have opted

for application specific node-level C/R approach in our

application.

3 Introduction to GASPI and GPI-2

GASPI is a communication library for C/C++ and Fortran.

It is based on a PGAS style communication model where

each process owns a partition of a globally accessible

memory space. GPI-2, the GASPI implementation, takes

full advantage of the hardware capability to perform remote

direct memory access (RDMA). More importantly, there is

a focus on providing truly asynchronous communication to

overlap computation and communication, and on thread-safe

communication which allows multi-threaded applications

with a fine-grained communication and asynchronous

execution capability.

GASPI defines a very compact API consisting of one-

sided communication routines, passive communication,

global atomics and collective operations. It also defines

groups which are similar to MPI communicators and are used

in collective operations. Furthermore, there is the concept of

segments. Segments are contiguous blocks of memory and

can be made accessible (to read and write) to all threads on

all ranks of a GASPI program. Data to be communicated is

thus placed in such segments.

Given the aforementioned increasing need for fault

tolerant applications, GASPI was designed with that in mind.

It supports application-driven fault tolerance on the process

level. This means that the failure of a single process does

not cause the entire program to fail. The program can in fact

react to the failure and try to recover by “healing itself”. This

is achieved with two simple concepts: timeouts and an error

state vector.

GASPI provides a timeout mechanism to all potentially

blocking procedures. The user provides a timeout (in

milliseconds) and the procedure returns after that time if

it could not successfully complete. Furthermore, since a

timeout does not necessarily imply an error or failure from

the remote part, GASPI provides an error state vector that

holds the state of processes. The state vector is set after

every erroneous, non-local operation and can be used to

detect failures on remote processes. Currently, each rank

can either have a state of GASPI STATE HEALTHY or

GASPI STATE CORRUPT. This error state vector can be

queried by the application using gaspi state vec get to

determine the state of a remote partner in case of timeout

or error.

Along with the previous mechanisms, for the context of

our work, we have extended GPI-2 to provide an extra

mechanism (not included in the GASPI specification) for

fault-tolerant applications. The procedure gaspi proc ping

tests the availability of a particular GPI-2 rank. As the name

indicates, a ping message is sent to a particular process. In

case a problem is detected, a GASPI ERROR is returned to

which the application can react.

In the next sections, we describe our technique in more

detail.

4 Design and Implementation

This section describes our implementation of the basic

building building blocks of application-driven fault tolerance

namely fault-detection and propagation, communication

reconstruction, and data recovery.

Our fault tolerance application implementation relies on

the following principles. At the start of the program, some

processes are designated as spare processes. This is due to

the fact that current GASPI Standard does not provide the

possibility of process spawning. Thus, in order to enable

non-shrinking application recovery, spare processes are

utilized. The processes are divided into ‘worker’ and ‘idle’

process categories. The worker-processes form the ‘worker-

group’ and continue with the computations. One of the

pre-determined idle process serves as a health-check (HC)

process. The rest of the idle processes stay idle until notified

by the HC-process to join the worker-group. After a failure

is reported, the required number of idle processes join the

worker communication and carry on computations after data

recovery.

The data recovery is enabled through node-level C/R

method. Despite the criticism it faces, the recent neighbor

node-level C/R optimizations (A. Moody et al. (2010);

K. Sato et al. (2012); L. Bautista-Gomez et al. (2011)) have

enabled it to be a good candidate on future exascale systems

(J. Daly et al. (2012)). We have implemented a node-level

C/R library for GPI-2 applications. Our strict assumption

of hard-failure enforces us that the failed-nodes are not

accessed once a failure is reported from any particular node.

Prepared using sagej.cls
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Thus we have used neighbor-level C/R library, so each

checkpoint is stored locally as well as on the neighbor-level

nodes. After failure, the neighboring nodes are bound to

change, thus the C/R library is also made fault aware.

The functions of both the health check and the

checkpoint/restart libraries are presented along with their

detail are presented in the following.

4.1 Health Check library:

All processes initialize a HC-library object (by calling

HC::init()) at the start of the simulation, that sets up the

GASPI global memory for health check management.

This global memory is used by HC-process to report the

list of failed process(es), rescue process(es), etc. to the

worker-processes by one-sided GASPI-communications.

The most important member functions of HC-library objects

are as follows.

DISTRIBUTE WORKERS OR IDLE(int

numprocs idle): By taking input argument of numprocs idle,

this function sets up the program setting by defining the

status of each process in HC-class, which can be either as

WORKING or IDLE at the start of the program.

GET STATUS(): This function can be used to get the

status of any process. This is helpful to assign different

task in the main program based on their status. The

currently defined statuses are WORKING, IDLE, and

WORKFINISHED.

DEFINE SUB COMM(int KEY, gaspi group t COMM,

gaspi rank t * comm ranks): This call can be used to make

a GASPI group that include the processes of matching KEY

argument. The function returns the gaspi-group COMM and

a list of its processes (comm ranks).

STAY IDLE AND CHECK HEALTH(int

myrank active): The most central member function in HC-

class, this function is called by all idle processes including

the HC-process and performs health check operations and

failure management operations. The implementation of

this function is shown in the Listing 1. The HC-process

periodically checks the health (i.e. aliveness) of all other

processes via ping operation using gaspi proc ping(). If

failed process(es) are detected, the HC-process manages to

inform all other processes about the list of failed process(es)

and rescue process(es). Each rescue process also receives

the ID of the process it replaces (myrank active), which

is useful in building new communication infrastructure.

Figure 1a shows the schematic diagram of such one-sided

ping based fault-detection. A reasonable ping frequency

can be set by the user depending on the number of

processes. After completion of a single cycle around all

healthy processes, the HC-process has an updated global

health view. We rely on the fact that each fail-stop failure

eventually results in breakage of the communication channel

between the HC and the failed process. This consequently

leads to the return of ping operation with GASPI ERROR

(shown in Fig. 1b). After detection of failed process(es),

the HC-process informs all healthy processes about the

failed processes as well as their corresponding rescue

(a) Ping based fault detection by

the HC-process

(b) HC-process detects

failure of 2,3 processes and

designates 6,7 as rescue

processes

(c) The rescue processes

(6,7) join the worker group

during failure recovery

stage

Figure 1. The working of the fault detector process. The return

value of ping is GASPI SUCCESS for all healthy processes (a),

whereas it returns with GASPI ERROR for failed processes (b).

After failure detection, HC-process informs other processes

about failed processes as well as their replacement processes.

A new worker group is then built with the help of rescue

processes (c).

processes. This is done via one-sided write in the global

memory of all healthy processes. Meanwhile, the worker

processes communicating directly with the failed processes

keep on returning with GASPI TIMEOUT unless a failure

acknowledgment is received. The remaining healthy working

processes continue with their work until they also receive a

failure acknowledgment signal from the HC-process. After

failure acknowledgments, no further regular application

communication is performed and processes enter the

recovery stage of the algorithm.

RECOVER COMM(gaspi group t COMM REPAIRED,

gaspi rank t * comm ranks): After the occurrence of

failure(s) , this call is used to create the healthy group again.

Both, the surviving processes in the broken group and the

rescue processes must call this function. At the end of

successful completion, the call returns a health group and

list of its ranks in which failed processes are replaced with

the ranks of replaced ones. For example, in case of failure of

rank-ID 2 and 3, the original comm ranks list of 0,1,2,3,4,5

will become 0,1,6,7,4,5 after this call (as shown in 1c). The

reordering of ranks in the new group can be beneficial in

determining the new communication infrastructure of the

program.

IS FAILURE REPORTED(): This function can be used

by worker-processes to determine if any failures have been

reported by HC-process. Depending on whether a failure is

reported or not, this function returns with ‘true’ or ‘false’

status correspondingly.

SIGNAL ALL PROCESSES(int SIGNAL): This function

can be used to pass a signal to all other processes. For

Prepared using sagej.cls
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i n t HC : : s t a y i d l e a n d c h e c k h e a l t h ( g a s p i r a n k t &

m y r a n k a c t i v e ){
w h i l e ( 1 ){

i f ( g e t s t a t u s ( myrank ) == HC proceses ){
g l o h e a l t h c h k ( ) ;

}
i f ( a m i r e s c u e p r o c e s s ( ) == t r u e ){

u p d a t e m y r a n k a c t i v e ( m y r a n k a c t i v e ) ;

b r e a k ;

}
i f ( i s w o r k f i n i s h i e d == t u r e ){

b r e a k ;

}
}

}

i n t HC : : g l o h e a l t h c h k ( ) {
i n t comm sta te = WORKING;

w h i l e ( comm sta te != BROKEN){
g a s p i r e t u r n t r e t v a l ;

f o r ( i n t r e m i d =0; rem id<numprocs ( ) ; ++ r e m i d ){
i f ( a v o i d l i s t [ r e m i d ] != 1){ / / a v o i d s t e s t i n g

f a i l e d p r o c e s s e s

r e t v a l = g a s p i p r o c p i n g ( rem id , GASPI BLOCK ) ;

}
i f ( r e t v a l == GASPI ERROR ){

a v o i d l i s t [ r e m i d ] = 1 ;

comm sta te = BROKEN;

}
}
i f ( c o m m s t a t e == BROKEN){ b r e a k ; }

}
/ / i n f o r m i n g a l l h e a l t h y p r o c e s s e s a b o u t f a i l e d

p r o c e s s e s and t h e i r r e s c u e p r o c e s s e s .

i f ( comm sta te == BROKEN){
m a k e f a i l e d a n d r e s c u e p r o c l i s t ( f a i l e d p r o c l i s t ,

r e s c u e p r o c l i s t ) ;

r e p o r t h e a l t h y p r o c e s s e s a b o u t f a i l u r e ( f a i l e d p r o c l i s t

, r e s c u e p r o c l i s t ) ;

}
r e t u r n comm sta te ;

}

Listing 1: The global health check routine. The fault

detector process periodically checks the health of all healthy

processes.

example, this can be used to pass the WORK FINISHED

signal to idle-processes so that they join the main program

again.

In addition to these calls, HC-library also provides

fault-tolerant variants of GASPI communication waiting

calls. These calls prevent the deadlock in case a

blocking communication fails because of the failure of the

corresponding communication partner. These calls include

1) FT gaspi wait(), 2) FT gaspi notify waitsome(), and 3)

FT gaspi allreduce().

Fault Detector Properties: The HC-process gets an

updated global view of all processes’ health at the end of

each ping cycle around all healthy processes. Thus, a failed

process is bound to be detected by the HC-process in a finite

amount of time. The information about failed processes is

then given to all remaining healthy processes. Thus the HC-

process satisfies the property of completeness. As a rare case,

there can be instances that (due to a network related problem)

a healthy process is not reachable by the HC-process but is

accessible by some or all other processes. This will result

in a false-positive signal about a processes failure. Thus

the property of accuracy is only loosely satisfied. A false-

positive signal will lead the application to undergo the failure

recovery phase but it does not affect the correctness of the

program results.

Alternative investigated failure detection methods We

also investigated the following failure detection mechanisms:

1. Ping-based all-to-all: In this method each process

performs periodic all-to-all pings to detect the failures.

2. Ping-based neighbor level: Each process ‘i’ periodi-

cally pings only its neighboring process ‘i+1’. In case

a failure is detected at the neighbor level, a ping based

all-to-all operation is triggered on all processes to get

a global health view.

In both of these approaches, a potential deadlock can arise

in the cases where multiple processes detect different sets of

failed processes. Reaching a consensus about the identified

failures adds further complexity in the algorithm. Moreover

an all-to-all ping based approach is not a scalable failure

detection method and in failure free cases a certain amount of

overhead in both cases is introduced. In contrast, a dedicated

HC-process with one-sided ping eliminates the potential

deadlock situation and causes negligible overhead in failure-

free cases.

4.2 Data Recovery: fault-aware node-level

Checkpoint/Restart library (CR-library)

As described earlier in Sect. 2, we rely on the node-level

C/R method for the data recovery of the failed processes.

Each process is responsible itself for creating checkpoints

on the local node file system and restarting from it. The

neighbor-level checkpoint functionality is realized by

implementing a CR-library and facilitates to transfer

the local-node checkpoints to neighboring-nodes in an

asynchronous manner using a dedicated CR-thread per node.

In case of a failure, the CR-library is also responsible for

bringing the checkpoint of the failed process from failed-

process’s neighbor-node. In a fault-tolerant environment, the

neighbor-nodes of the processes are bound to change after

recovery. Thus, the CR-library has to be fault-aware as well.

In order to recover from catastrophic failures, in which more

than one consecutive failures occur at the same time, the less

occasional checkpoints on the parallel file system can also

be made. The user can determine the number of checkpoints

to be kept in the file system. The primary functions of

CR-library class are detailed below:

CRLIB INIT(): This is the first call of CRLIB object and

is called by all processes. The function takes machine file,

processes-status array (either WORKING or IDLE) and

checkpoint destination paths as the input argument. It first

determines the neighboring-nodes of each corresponding

node. A p-thread is then created which is then responsible

for transferring the local node-level checkpoints to the

neighboring nodes, once the checkpoint-transfer signal is

received.

START CP TRANSFER(): After creating a checkpoint in

the local-node file system, this call is used to signal the CR-

library that this checkpoint is ready to be transfered to the

neighbor-level nodes.
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WAIT FOR CP TRANSFER(): This call can be used

at any point in the program to make sure that the last

local-node checkpoint has been completely synced with the

neighbor-level checkpoints.

FETCH CP(): This routine is responsible to make sure

that the last consistent checkpoint is available on the

local-node file system to restart with. In the case of recovery

process, it fetches the checkpoint from the failed-process’s

neighbor-node.

REFRESH NEIGHBOR LIST(): This call takes the list of

failed-processes and rescue processes as input and prepares

the new CR-library threads for their respective refreshed

neighbor-nodes.

The practical usage of these function is shown via

examples in Sect. 5. The current scheme has following

restrictions which we plan to address in future work.

1. The number of failures a program can sustain is equal

to the number of idle processes specified at the start of

the program.

2. The fault tolerance capability of a program ends if the

HC-process becomes a worker.

3. Currently, the failure of HC-process itself ends the

fault tolerance capability of the program but does not

effect its progress.

4. Only those network failures can be detected that can

be uniformly seen by the effected processes as well as

by the HC-process.

4.3 Fault Tolerance Overhead

Each of the fault tolerance techniques carries a certain

amount of overhead in terms of time and/or resources. Our

approach requires the allocation of some extra nodes for fall

back scenarios, which is a resource overhead. The calculation

of the optimal number of extra nodes for a particular case

depends on several factors including job size, job duration,

the MTTF of the system, etc. and is out of scope for this

paper. In the following, we term overhead as the increase in

application run time due to its fault tolerance capabilities.

In principle, the fault detection with global ping messages

is an expensive operation. In our method, a HC-process

performs one-sided pings to get the global health view. On

the other hand, the worker processes check for a failure

acknowledgment signal from the HC-process before each

communication call. Thus, from the working processes’

standpoint, the failure detection mechanism adds very little

cost to the overall run-time of the algorithm. As we shall see

in Sect. 6, this cost is negligible.

The first major overhead is introduced by checkpointing.

There can be two kinds of checkpoints: a global PFS-level

checkpoint, and a neighbor level checkpoint. In case of a

restart, the data is initialized from a consistent checkpoint.

The processes must redo the work, up to the point where

the actual failure happened. This is the source of the second

overhead and depends on the instant where the failure

occurred between two checkpoints.

In case of a failure, all processes go through the failure

detection and recovery stage of the program. This constitutes

the third form of overhead and can be decomposed into three

categories:

• Failure detection overhead/communication with failed

processes (OHF1): This is the time it takes for the

HC-process to successfully detect and acknowledge

the failures to other processes. Meanwhile, the healthy

processes trying to communicate with the failed

processes end up in timeout-based returns unless a

failure acknowledgment is received.

• Rebuilding of work group (OHF2): This step involves

the creation of a new worker group, replacing

failed processes. Due to the blocking nature of

the gaspi group commit() procedure involved during

communication rebuilding, this overhead is non-

negligible.

• Reinitialization of data (OHF3): After the new work

group is formed, the data structure gets initialized from

the last consistent checkpoint. If the checkpoint is not

available on the local node, it is fetched from the

neighbor node of the failed process by the checkpoint

library.

In the next sections, we perform benchmarks and get a

quantitative notion of the above mentioned overheads in a

practical scenario.

5 Experimental Framework

This section explains the algorithms that are used to show-

case the usage of previously described HC and CR libraries

in various applications. In order to avoid the communication

deadlocks in a fault tolerant environment, no blocking com-

munication operations are used, rather we use the helping

communication features implemented in HC-library namely

as 1) FT gaspi wait(), 2) FT gaspi notify waitsome(), and

3) FT gaspi allreduce(). These functions break the waiting-

loop for the respective operation after reaching a specified

timeout, provided a failure is detected in the group by the

HC-processes and transmitted to the worker-processes. After

this acknowledgement of the failed processes, no further

communication is performed by the worker-process and they

can enter the recovery part of the algorithm.

5.1 The lattice Boltzmann method(LBM):

The lattice Boltzmann Method (Succi (2001)) is a fluid flow

solver that has gained significant popularity in science and

research communities in the recent past due to the potential

of its computational efficiency on the modern hardware. The

LBM can be seen as a Jacobi-like stencil algorithm, but with

two major differences: (1) each cell has not only one, but

(as in our case) 19 values and (2) no values read are reused

during the same iteration over the lattice. Our benchmark

implementation uses the D3Q19 model (Qian et al. (1992))

with the BGK collision operator (Bhatnagar et al. (1954)). In

each iteration, the data is read from the 4-D source lattice

(three spatial dimensions plus one for the 19 cell values) and

modified values are written to the 4-D destination grid. The

update of one cell is performed by reading one value of each

of the cell’s 19 surrounding neighbors. Out of these values

new ones are computed, which are used to update the cell’s

own values in the destination lattice. Thereby the values are
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i n t main ( ) {
. . .

CR ∗ myCR = new CR [ 1 ] ;

myCR→ i n i t ( m a c h i n e f i l e , my cp param , s t a t u s p r o c e s s e s ) ;

HC ∗ myHC = new HC [ 1 ] ;

myHCinit ( ) ;

myHC→ d i s t r i b u t e w o r k e r o r i d l e ( n u m p r o c s i d l e ) ;

myHC→def ine sub comm (WORKING, COMM WORKER, comm ranks ) ;

i f (myHC→ g e t s t a t u s ( myrank ) == WORKING){
/ / s i m u l a t i o n geomet ry s e t u p a c c o r d i n g

/ / t o COMM WORKER and comm ranks

}

i f ( g e t s t a t u s ( myrank ) == IDLE ){
myHC→ s t a y i d l e a n d c h e c k h e a l t h ( m y r a n k a c t i v e ) ;

}

f o r ( i n t i t e r =0 ; i t e r != t o t a l i t e r s ; ++ i t e r ){
i f (myHC→ g e t s t a t u s ( myrank ) ==WORKING){

/ / do−compu ta t ion−communica t ion

i f ( i t e r%c p s t e p ==0){
/ / check f o r p r e v i o u s s u c c e s s f u l CP t r a n s f e r

myCR→w a i t f o r C P t r a n s f e r ( ) ;

w r i t e l o c a l C P ( ) ;

myCR→ s t a r t c p t r a n s f e r ( ) ;

}
}
i f (myHC→ i s f a i l u r e r e p o r t e d ( ) ==TRUE){

myHC→ recover comm (COMM WORKER, comm ranks ) ;

/ / s e t u p geomet ry a g a i n a c c o r d i n g

/ / t o COMM WORKER and comm ranks

myCR→ f e t c h c p ( m y r a n k a c t i v e ,

myHC→ r e s c u e p r o c l i s t ) ;

myCR→ r e f r e s h n e i g h b o r l i s t (myHC→ f a i l e d p r o c l i s t ,

myHC→ r e s c u e p r o c l i s t ) ;

r e s t a r t ( . . . ) ; / / re−i n i t d a t a from l o c a l−node−CP

}
}
myHC→ s i g n a l a l l p r o c e s s e s (WORKFINISHED) ;

. . .

d e l e t e [ ] myHC;

d e l e t e [ ] myCR;

. . .

}

Listing 2: The fault tolerace functionality integration of HC-

library and CR-library in the LBM-algorithm.

arranged in a structure-of-array data layout (for details see

Wellein et al. (2006)).

The variations required to make the program fault-tolerant

using the HC-library and CR-library are shown in the Listing

2. All process first define and initialize the HC and CR-

library objects. The processes are then designated as either

worker or idle-processes. A working group is then formed

by the worker processes and the necessary simulation data

and communication initializations are performed. The idle-

processes stay idle and one pre-designated idle process acts

as the HC-process. The worker processes continue with

iterative computation-communication routines and make

occasional node-level checkpoints which are transfered to

the neighbor-level nodes by the CR-library threads in an

asynchronous way. In case a failure is reported by HC-

process to the worker-processes, communication recovery is

made to recover the group, where idle-process(es) replace

the failed ones. Before restarting from checkpoints, the CR-

library is used to fetch the checkpoint of the failed process to

the local-node.

5.2 Sparse linear solvers:

We have implemented our fault tolerance technique on

two different sparse linear iterative solvers. These include

Lanczos algorithm that is used to find the target eigenvalues

of sparse matrices and a Chebyshev recursion scheme

named as kernel polynomial method (KPM) to calculate the

Hamiltonians of sparse matrices.

As both algorithms are based on sparse linear algebra,

we have developed a GASPI based library for basic

parallel sparse matrix-vector(spMV) related operations.

For a parallel sparse matrix-vector-multiplication (spMVM)

operation, the pre-processing stage includes the setup of

communication. In this stage, the spMVM operation is

divided into two parts, a local part for which the process

has right-hand vector values (RHS) locally available, and

a remote part for which the process needs to fetch RHS

values from other processes. In the pre-processing stage,

each process determines the indices of the RHS that it needs

from other processes. These indices are communicated to the

respective processes, who then write (via one-sided GASPI

communication) the RHS values of those indices before

every spMVM iteration.

In the fault tolerant versions of these algorithms,

each process writes a matrix-checkpoint after the matrix-

preprocessing stage. This checkpoint stores information

relevant for communication with other processes. After

failure recovery, the rescue process reads the checkpoint of

the failed process. In this way, the rescue process is informed

about the communicating partners and the respective RHS

indices to communicate to other processes. Every non-failing

process also refreshes its list of communication partners

by replacing the rank of the failed process with the new

rescue process. Using this method, the program can resume

the computations after failure recovery without having to

perform the matrix-preprocessing step again (which would

add the overall cost of recovery).

The matrix for our benchmark cases arises from

the quantum-mechanical description of electron transport

properties in graphene. Graphene is a blueprint for quasi two-

dimensional materials with many interesting properties and

prospective applications in several fields of nanotechnology

and nanoelectronics. A matrix generation library tool is used

to construct the matrix on the fly. Depending upon the

specified geometry size, each process allocates its own chunk

of the matrix. This way, the expensive step of reading the

matrix from PFS is avoided.

Lanczos: The Lanczos algorithm (Lanczos (1950)) is an

iterative scheme to find eigenvalues of a sparse matrix. We

use it to find the low-lying eigenvalues of a test matrix.

Algorithm 1 shows the pseudo-code of the basic Lanczos

algorithm. Each iteration calculates the new Lanczos vectors,

α, and β. After obtaining the α and β values of each iteration,

the approximated minimum eigenvalues are determined

using the QL method and are checked against a convergence

criterion. The checkpointing data consists of two consecutive

Lanczos vectors, α, and β.

Kernel Polynomial Method: The Kernel Polynomial

Method (KPM) is a common method in computational

solid state physics (Weiße et al. (2006)) to compute the

density of state (eigenvalues) and other spectral properties
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Algorithm 1 The Lanczos algorithm for finding eigenvalues

of a matrix A
for j:=1,2, ..., ConvergenceCriterion do

function LANCZOS-STEP

ωj ← Aνj
αj ← ωj .νj
ωj ← ωj − αjνj − βjνj−1

βj+1 ← ‖ωj‖
νj+1 ← ωj/βj+1

end function

CalcMinimumEigenV al()
end for

of materials such as graphene and topological insulators. In

this algorithm, the most computationally expensive routine

is the calculation of the moments (ηi vector) by the scalar

products of matrix polynomials (see Alg. 2) In comparison

with Lanczos algorithm, it has a high optimization potential

to reduce its computational balance (e.g. by avoiding global

synchronizations inside the loop (Kreutzer et al. (2015))),

thus making it an attractive candidate for fault-tolerance case

study. Unlike the other two algorithms, its computationally

intensive part consist of two nested loops. This property

makes it particularly challenging as both the checkpoints and

restart have to be carried out in two different levels of the

application.

Algorithm 2 The Kernel Polynomial Method in its Naı̈ve

form.

for r:=1,2, ..., R do

ν ← rand()
Initialization steps and computation of η0, η1
for m:=1,2, ..., M/2 do

swap(ω, ν)
ω ← 2a(A− b)ν − ω
η2m ← ν.ν
η2m+1 ← ω.ν

end for

...

end for

The fault tolerant version of both of these algorithms

(Lanczos and KPM) have conceptually similar changes in the

algorithm as described with the example of LBM in Listing

2.

Testbed: All tests were done on the LiMa cluster§ at

RRZE, whose nodes are equipped with two Intel Xeon

5650 “Westmere” chips with a base frequency of 2.66 GHz.

Each node has 24 GB of RAM (12 GB per NUMA domain).

The system has Mellanox QDR InfiniBand (IB) and GBit

Ethernet interconnects.

6 Results

In this section, we test our benchmark applications with

various runtime scenarios and compare their relative

overheads. We have verified the recovery mechanism by

killing the application processes in following three ways:

i) Exiting the processes using ‘exit(-1)’ within the program

ii) Using ‘kill -9 <process-id>’ iii) Physically introducing a

network failure. Turning off complete compute nodes was

not done due to limitations of the batch queuing system

which would delete the complete job owing to the dead node.

In order to accurately record the failure injection time and

have a deterministic redo-work time, we have used the first

described method i.e. killing the application from within the

program.

The GASPI communication timeout value is set to

1000ms, after which the processes retry communication

unless a failure acknowledgement is received from the HC-

process. Furthermore, the ping scan frequency of the HC-

process is set to 100ms.

6.1 Lanczos:

In the Lanczos algorithm, the stopping criterion depends on

the convergence of the required eigenvalues up to a certain

accuracy. For benchmarking purposes, we use a fixed number

of iterations (2500) as a stopping criterion. The neighbor-

node level checkpoints are taken at every 500th iteration. For

the purpose of having a deterministic redo-work time, the

failures are injected 100 iterations after making a checkpoint.

As discussed in the previous section, the matrix checkpoint

is stored once after its pre-processing stage at the start of

the algorithm and after every failure-recovery. The used

Graphene matrix consists of 1.4 · 108 rows and columns, and

1.8 · 109 non-zeros. The periodic checkpoints consist only

of Lanczos vectors and the calculated eigenvalues up to the

corresponding iteration, resulting in a combined size of all

node-level checkpoints of ≈ 2.3GBytes.

Figure 2 shows the runtime of the Lanczos benchmark

on 256 nodes (256 processes, 12 threads/process) in

several cases. The application is started with four idle

processes (nodes) reserved for failure recovery. The first

case represents the application runtime where no health

check is performed and no checkpoints are taken (‘w/o HC,

w/o CP’ bar). To have a fair comparison, the case without

health-check is run on 252 nodes. This runtime marks the

baseline case of our overhead study. The next case shows the

application runtime with health check enabled but without

taking any checkpoints (‘with HC, w/o CP’). The health

check feature does not add any overhead to the application.

This is due to the fact that health checks are done by a

dedicated HC-process and are performed via one-sided ping

operation.

The neighbor-node level checkpoints add very little

overhead of around 0.9% (‘with HC, with CP’ bar’) in this

case. The significant overhead only appears in the case of

failure recovery scenarios. Each failure adds approximately

35 seconds to the total runtime of the application. The

average failure detection and acknowledgement by all

processes take approximately 2 seconds, after which group

reconstruction takes additional ≈ 1 second. The major part

of the overhead comes in the form of matrix re-initialization

with reconstructed group and then checkpointing the matrix-

checkpoint which now contain the communication pattern

of reconstructed group. The next step includes reading

§LiMa cluster at the Erlangen Regional Computing Center (RRZE):

http://www.hpc.rrze.fau.de/systeme/lima-cluster.

shtml
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Figure 2. Various runtime scenarios of Lanczos application on

256 nodes. The health-check feature does not add any

overhead and the neighbor-level checkpoints also add very

marginal overhead. Each failure recovery costs ≈ 35 seconds,

in which matrix-rebuilding contributes major part. The case

without health-check is performed on 252 nodes.

the node-level checkpoints to initialize the vectors and

eigenvalues data. The whole recovery time cost around ≈
25 seconds in this case. The redo-work time contributes

also a significant part of the total overhead. In practice,

the average time for redo-work is the time between two

successive checkpoints. Owing to a good checkpoint strategy

with very low overhead, the checkpoint frequency can be

increased which will lead to the reduction of redo-work

time. Recovery from more failures adds approximately

proportional overhead as shown in Fig. 2 with two and three

recovery case runtimes. In real-time applications, a likely

scenario is to have multiple failures simultaneously (e.g.,

failure of a node with multiple processes). Thus, we have

used a threaded HC-process (with 8 threads) to check the

state of more than one process by monitoring one-sided

pings in parallel. This is highlighted in ‘3 sim. fail recovery’

case, where three simultaneous failures are detected with the

overhead of one failure detection.

6.2 KPM:

As the KPM algorithm has the same characteristic nature as

Lanczos algorithm, in which sparse linear algebra operations

are supported by same spMV-library, the overheads in the

benchmarks are also similar in nature. In this case, we are

using the matrix of 1.4 · 108 rows and columns and 1.8 · 109

number of non-zeros. The checkpoint in the outer loop

consist of a relatively smaller vector ‘mu’, whereas the inner

checkpoint stores the iterative vectors’ (‘y’) information.

Besides, some meta-data information is stored with every

checkpoint. The combined size of all node-level checkpoint

is ≈ 2.3GBytes. The benchmark is run for 5 outer loop

iterations and 100 inner loop iterations. The results of

the outer loop are checkpointed after every outer iteration,

whereas inner checkpoints are made after every 50 iterations.

Figure 2 shows the KPM benchmarks results on 256

nodes with various runtime scenarios. The runtime with

and without health-check feature do not vary at all. The

cost of neighbor-level checkpoints add ≈ 5% to the overall

runtime. Each failure adds approximately 33 seconds to the
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Figure 3. Runtime scenarios of the KPM algorithm on 256

nodes. Each failure-recovery costs an overhead of ≈ 18

seconds. The case without health-check is performed on 252

nodes.

Num. of

Nodes
8 16 32 64 128 256

Avg.

ping

scan

time[s]

6.2×
10−5

8.8×
10−5

1.7×
10−4

3.9×
10−4

7.7×
10−4

1.6×
10−3

Table 1. The average ping scan time of the HC-process with

respect to the number of nodes.

overall runtime, in which ≈ 18 seconds are accounted for

communication and data recovery, whereas the rest comes

in form of redo work.

6.3 LBM:

The LBM benchmark is performed on a toy-problem of

3D-lid driven cavity. The size of the grid is chosen to be

200× 200× 50400, thus each of the 252 worker-nodes have

a grid of size 2003. A total of 2000 iterations are performed

with a checkpoint taken at every 500th iteration and the

failures are injected 100 iterations after making a checkpoint.

As LBM is a grid based application, one complete grid is

required for the restart operation. The size of each local-

node checkpoint is 1.2GBytes, making a global-checkpoint

of 302GBytes.

Figure 4 shows the LBM benchmark runtimes with

different scenarios on 256 nodes (with 4 idle nodes). As with

the previous two applications, the health-check feature does

not add any overhead. Despite the large amount of overhead,

each checkpoint adds only ≈ 12 seconds to the overall

runtime. The failure recovery time takes ≈ 20 seconds,

which include the failure detection, group recovery and

restart by fetching node-level checkpoints. The rest of the

overhead is caused by redo-work.

Health-Check time: It is important to observe and analyze

the scaling behavior of a fault detection mechanism. Table

1 shows the ping scan time of the HC-process without any

failure. The HC-process takes approximately 5− 6µs to

perform a ping with each healthy process.
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Figure 4. Various runtime scenarios of LBM application on 256

nodes. Each failure recovery takes ≈ 20 seconds to recover.

The case without health-check is performed on 252 nodes.

7 Related Work

MPICH-V is one of the earliest research effort in terms

fault-tolerant for MPI programs ( G. Bosilca et al. (2002)).

It featured complete checkpointing in combination with

message logging to recover the data of the lost process. A

more recent prototype implementation of ULFM using Open

MPI has produced similar work to ours in terms of failure

recovery strategies and/or performance evaluation.

Bland et al. have implemented a fault tolerant Monte

Carlo Communication Kernel proxy-app using ULFM

in W. Bland et al. (2014). They have demonstrated two

recovery modes of the application, a classic C/R approach

and an alternative solution in which the critical data is stored

on neighboring nodes after each iteration. The recovery is

done by spawning an additional process which reads the data

from the failed process’s neighboring node. In S. Pauli et al.

(2013), a different approach of data recovery is implemented

to develop a fault tolerant Multi-Level Monte Carlo based

application using ULFM. The data from failed processes

are altogether discarded and only survivors’ data is used to

complete the application further. Depending on the number

of failures, the estimation error deteriorates the quality of

results. A similar work is pursued by Ali et al. to develop

a 2D PDE solver in M. M. Ali et al. (2014). They compare

three alternative data recovery approaches based on C/R and

approximation techniques. All mentioned studies have found

ULFM to have acceptable overhead for failure recovery.

In I. Laguna et al. (2014), Laguna et al. have conducted a

broad and critical evaluation of ULFM. They have first

discussed preferable recovery modes based on the nature

of the applications and then performed a case study on a

ULFM-based implementation of a fault-tolerant molecular

dynamics application (ddcMD). They have found the time of

revoking and shrinking the communicator to be increasing

linearly with increasing number of nodes. In the end, they

have suggested improvements to ULFM to make it an

attractive option for application developers.

The ULFM studies are based on the detection of faults

by communication failure between processes. No explicit

failure detection methods are used. In some respects,

the work closest to ours is by K. Kharbas et al. in

K. Kharbas et al. (2012) where they have evaluated two

kinds of fault detector mechanisms for MPI applications

based on periodic and sporadic probing. The probing is based

on ping-pong style messaging. They have only reported the

overhead for failure-free cases which ranges from 1− 21%
for NAS-parallel benchmarks. The fault detector overhead

is negligible when separate background processes are used

to check failures on the same set of nodes and the main

application. In this case the background processes use

Gigabit Ethernet instead of the Infiniband network used by

the application, but this is not a suitable design as a large

category of faults are network related. They conclude that

a separate periodic fault detection mechanism is a superior

method as compared to an sporadic approach.

There have been many efforts to introduce fault tolerance

protocol in PGAS-model languages (Cunningham et al.

(2014), Besta and Hoefler (2014), Ali et al. (2011)) but, to

our knowledge, there is no such contribution for GASPI so

far. GASPI is arguably the first PGAS based communication

library, in which fault tolerance basics are embedded right

from its development phase. The challenge is to use those

basic features to build a fault tolerant application. Our

presented tools provide a way for GASPI developers to

develop FT applications, without modifying the algorithm,

in an easier and novel fashion.

8 Summary

We have implemented fault tolerant supplementary library

on top of GASPI (GPI-2) communication library. It

provides useful functions for failure detection, propagation,

communication recovery etc. We have used the idea of spare

processes, out of which one acts as a health check (HC)

process and monitors the health of all processes via periodic

one-sided ping operations. Once a failure is detected, it

propagates the failure and recovery information to all

relevant processes, which then go through communication

and data recovery routines. We have also implemented a

supporting neighbor node-level checkpoint/restart library

which is also fault tolerance aware.

We have used these tools in three different applications to

make them fault tolerant. Two of these applications fall in

the category of sparse linear algebra (linear solvers) namely

Lanczos method and the Kernel Polynomial Method (KPM),

whereas the third application is a fluid flow solver based on

the lattice Boltzmann method.

The benchmarks performed on 256 nodes show that

having an explicit HC-process causes no overhead to the

working processes. The total overhead of failure recoveries

is highly application dependent. In our tested applications,

the failure detection and communication recovery costs ≈
3 seconds. The data reinitialization of data is application

dependent and ranges from ≈ 18− 25 seconds. Each

additional failure adds similar cost. On the other hand, if

multiple failures happen simultaneously (likely scenario for

node failures), they have the potential to be detected at the

cost of a single failure. Our failure detection mechanism

shows good scaling behavior on the scaling test performed

up to 256 nodes.

Prepared using sagej.cls



Shahzad et al. 11

Discussion and Future work: The fault tolerance

research is in its infancy stages regarding application-

driven fault tolerance. Only having FT communication

is not nearly enough. Many other components are

needed to build an FT application in its true sense,

e.g., failure information propagation to healthy processes,

communication reconstruction after failure, data recovery

method, etc. These add extra burden in terms of application

development. With this work, we have created tools that can

provide significant ease to the developers of fault tolerant

GASPI application.

Our future work is targeted to remove the current

limitations of our approach and making the technique more

general and user friendly. The redundancy approach can be

implemented to make the HC-process fault tolerant itself.

We also plan to compare this fault tolerance approach

with the Open MPI’s ULFM functionality. In terms of the

benchmarked applications, the matrix reinitialization step

can be significantly improved to reduce the cost of failure

recoveries. The release version of the health-check and

checkpoint/restart tools created in this work will soon be

made available.
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