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Abstract

We investigate the ability of MPI implementations to perform truly asynchronous communication with nonblocking

point-to-point calls on current highly parallel systems, including the Cray XT and XE series. For cases where

no automatic overlap of communication with computation is available, we demonstrate several different ways

of establishing explicitly asynchronous communication by variants of functional decomposition using OpenMP

threads or tasks, implement these methods in a parallel sparse matrix-vector multiplication code, and show the

resulting performance benefits. The impact of node topology and the possible use of simultaneous multithreading

(SMT) is studied in detail.

1 Introduction

1.1 Asynchronous communication and scope of
work

Modern supercomputing systems are almost exclusively

built from multicore, multisocket compute “nodes” con-

nected via a high-performance network. Fast networks are

mandatory, since highly demanding numerical simulation

codes tend to have strong communication requirements.

This is partially due to the popular “bulk-synchronous” ex-

ecution model where (pure) computation phases are inter-

leaved with (pure) communication periods. Often, even the

fastest network is unable to deliver the required bandwidth

and latency constraints, especially in strong scaling scenar-

ios [1].

In order to alleviate the performance and scalability lim-

itations caused by interprocess communication, application

programmers typically try to reduce the amount of data

transmitted or, if that is not possible, to hide communication

costs by overlapping useful computation with communica-

tion. The MPI standard provides some features that might

be useful in this respect, first and foremost the nonblock-

ing point-to-point calls MPI_Irecv() and MPI_Isend().

However, it is known that many current MPI implementa-

tions do not support truly asynchronous transfers but per-

form MPI progress within the MPI_Wait() or MPI_Test()

functions, respectively. This behavior is entirely backed by

the MPI standard [2], which does not require nonblocking

point-to-point communication to be asynchronous at all. If

collective communication is the problem, the current MPI

standard does not even provide nonblocking calls (although

this is planned for upcoming releases).

Hence, explicit solutions for overlapping computation

and communication are required. In [3] the principles

of applying OpenMP threads for asynchronous commu-

nication were described in detail; in [4] it was demon-

strated that OpenMP tasking could provide a convenient
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way to perform MPI collectives asynchronously in a hy-

brid MPI/OpenMP-parallel code. We have discussed MPI-

only and hybrid MPI/OpenMP-parallel versions of a sparse

matrix-vector multiplication (spMVM) code in [5], with a

focus on Intel-based commodity cluster hardware. Hybrid

“task mode,” i.e., dedicating a separate application thread

for communication, has already been used before the ad-

vent of multicore processors for optimizing parallel sparse

matrix-vector multiplications on vector-parallel and clus-

tered SMP architectures [6, 7].

In this paper we will first present a short survey of

the capability of current MPI implementations on Crays

and standard cluster systems to perform asynchronous non-

blocking point-to-point communication for large messages.

After that we turn to the specific application scenario of

parallel sparse CRS matrix-vector multiplication (spMVM)

with MPI and hybrid MPI/OpenMP. spMVM is the domi-

nant component in many eigenvalue or sparse linear system

solvers, so a highly efficient scalable spMVM implemen-

tation is fundamental, and complements advancements and

new developments in the high-level algorithms. We deliber-

ately ignore formulations where special features of the ma-

trix like symmetries, bands, blocks etc. are exploited. An

overview of node-level optimization strategies for spMVM

was given in [8], and other recent work [9, 10] deals with

distributed-memory parallel implementations, mostly based

on MPI-only strategies.

Our hybrid implementations are tested against pure MPI

approaches for two application scenarios (i.e., matrices) on

a Cray XE6 system as well as an InfiniBand cluster.

1.2 Test machines for the application benchmarks

Intel Westmere EP Cluster The Intel Westmere EP pro-

cessor (Xeon X5650, 2.66 GHz base frequency, “turbo

mode” and simultaneous multithreading [SMT] enabled)

accommodates six cores per socket. A socket forms its

own ccNUMA locality domain (LD) via three DDR3-

1333 memory channels, allowing for a peak bandwidth of

32 GB/s. The dual-socket nodes in RRZE’s “LiMa” cluster

are connected via a fully nonblocking fat-tree QDR Infini-

Band (IB) network. The Intel compiler in version 11.1 and

the Intel MPI library in version 4.0.1 were used. Thread-

core affinity was controlled with the LIKWID [11] toolkit.

Cray XE6 / AMD Magny Cours The Cray XE6 sys-

tem (“Palu” at CSCS) is based on dual-socket nodes with

AMD Magny Cours 12-core processors (2.1 GHz Opteron

6172) and the latest Cray “Gemini” interconnect. The in-

ternode bandwidth of the 2D torus network is beyond the

capability of QDR InfiniBand. A 12-core processor pack-

age comprises two 6-core chips with separate L3 caches and

memory controllers, tightly bound by “1.5” HyperTransport

Listing 1: A simple benchmark to determine the capability

of the MPI library to perform asynchronous nonblocking

point-to-point communication for large messages (receive

variant).

if(rank==0) {

stime = MPI_Wtime();

MPI_Irecv(rbuf,mcount,MPI_DOUBLE,1,0,

MPI_COMM_WORLD,&req);

do_work(calctime);

MPI_Wait(req, &status);

etime = MPI_Wtime();

cout << calctime << " " << etime-stime << endl;

} else {

MPI_Send(sbuf,mcount,MPI_DOUBLE,0,0,

MPI_COMM_WORLD);

}

(HT) 16x links. Each 6-core unit forms its own ccNUMA

LD via two DDR3-1333 channels, i.e., a two-socket node

comprises four ccNUMA locality domains. In total the

AMD design uses eight memory channels, allowing for a

theoretical main memory bandwidth advantage of 8/6 over

a Westmere node. The Cray compiler in version 7.2.8 was

used for the Cray/AMD measurements.

Cray XT4 / AMD Barcelona For low-level bench-

mark comparisons we used the older Cray XT4 system

“Franklin” at NERSC, which comprises single-socket quad-

core Opteron nodes (2.3 GHz).

1.3 Nonblocking point­to­point communication in
MPI

Very simple benchmark tests can be used to find out

whether the nonblocking point-to-point communication

calls in an MPI library do actually support truly asyn-

chronous transfers. Listing 1 shows an example where

an MPI_Irecv() operation is set off before a function

(do_work()) performs register-only operations for a con-

figurable amount of time. If the nonblocking message trans-

fer overlaps with computations, the overall runtime of the

code will be constant as long as the time for computation

is smaller than the time for message transfer. We have

used a constant message length of 80 MB in our measure-

ments. Note that, especially for small messages, the results

of such tests may depend crucially on tunable parameters

like, e.g., the message size for the cross-over from an “ea-

ger” to a “rendezvous” protocol. For the application sce-

narios described later, the assumption of large messages is

justified. Figures 1 and 2 show overall runtime versus time

for computation on the Intel Westmere cluster and the Cray
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Figure 1: Results for the asynchronous nonblocking

MPI benchmark for several MPI implementations on a

Westmere-based cluster with QDR InfiniBand interconnect

(internode communication). Overlap does generally not

work for intranode communication. Unless indicated oth-

erwise, results for nonblocking send and receive are almost

identical.
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Figure 2: Results for the asynchronous nonblocking MPI

benchmark for Cray XT4 and XE6 systems (internode com-

munication). Overlap does generally not work for intranode

communication

XT4/XE6 systems, respectively. We only report internode

results, since no current MPI implementation on any system

supports asynchronous nonblocking intranode communica-

tion.

On the Intel cluster we compared three different MPI im-

plementations: Intel MPI, OpenMPI, and MVAPICH2. The

latter was compiled with the --enable-async-progress

flag. OpenMPI 1.5 supports a similar setting, but it is docu-

mented to be still under development in the current version

(1.5.3), and we were not able to produce a stable configura-

tion with progress threads activated. The results show that

only OpenMPI (even without progress threads explicitly en-

abled) was capable of asynchronous nonblocking commu-

nication, albeit only when sending data.

Comparing the Cray XT4 and XE6 systems, it is strik-

ing that only the older XT4 has an MPI implementation that

supports asynchronous nonblocking transfers for large mes-

sages.

In summary, one must conclude that the naive assump-

tion that “nonblocking” and “asynchronous” are the same

thing cannot be upheld for most current MPI implemen-

tations; as a consequence, overlapping computation with

communication is often a matter of explicit programming.

We will explore these opportunities using the example of

sparse matrix-vector multiplication (spMVM).

1.4 Sparse matrix­vector multiplication and
node­level performance model

A possible definition of a “sparse” matrix is that the num-

ber of its nonzero entries grows only linearly with the ma-

trix dimension; however, not all problems are easily scaled,

so in general a sparse matrix may be defined as containing

“mainly” zero entries. Since keeping such a matrix in com-

puter memory with all zeros included is usually out of the

question, an efficient format to store the nonzeros only is re-

quired. The most widely used variant is “Compressed Row

Storage” (CRS) [12]. It does not exploit specific features

that may emerge from the underlying physical problem like,

e.g., block structures, symmetries, etc., but is broadly rec-

ognized as the most efficient format for general sparse ma-

trices on cache-based microprocessors. All nonzeros are

stored in one contiguous array val, row by row, and the

starting offsets of all rows are contained in a separate ar-

ray row_ptr. Array col_idx contains the original column

index of each matrix entry. A matrix-vector multiplication

with a right-hand-side (RHS) vector B(:) and a result vec-

tor C(:) can then be written as follows:

do i = 1,Nr

do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

Here Nr is the number of matrix rows. While arrays C(:)

and val(:) are traversed contiguously, access to B(:) is

indexed and may potentially cause very low spatial and tem-

poral locality in this data stream.

The performance of spMVM operations on a single com-

pute node is often limited by main memory bandwidth.

Code balance [1] is thus a good metric to establish a sim-

ple performance model. We assume the average length of

the inner ( j) loop to be Nnzr =Nnz/Nr, where Nnz is the total
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Figure 3: Sparsity patterns of the Hamiltonian matrix described in the text with different numbering of the basis elements

((a) and (b)), and the sAMG matrix (c). Square subblocks have been aggregated and color-coded according to occupancy to

improve visibility.

number of nonzero matrix entries. Then the contiguous data

accesses in the CRS code generate (8 + 4 + 16/Nnzr) bytes

of memory traffic for a single inner loop iteration, where

the first two contributions come from the matrix val(:)

(8 bytes) and the index array col_idx(:) (4 bytes), while

the last term reflects the update of C(i) (write allocate +

evict). The indirect access pattern to B(:) is determined

by the sparsity structure of the matrix and can not be mod-

eled in general. However, B(:) needs to be loaded at least

once from main memory, which adds another 8/Nnzr bytes

per inner iteration. Limited cache size and nondiagonal ac-

cess typically require loading at least parts of B(:) multiple

times in a single MVM. This is quantified by a machine- and

problem-specific parameter κ: For each additional time that

B(:) is loaded from main memory, κ = 8/Nnzr additional

bytes are needed. Together with the computational intensity

of 2 flops per j iteration the code balance is

BCRS =

(

12+24/Nnzr +κ

2

)

bytes

flop
(1)

=

(

6+
12

Nnzr
+

κ

2

)

bytes

flop
.

On the node level BCRS can be used to determine an upper

performance limit by measuring the node memory band-

width (e.g., using the STREAM benchmark) and assum-

ing κ = 0. Moreover, κ can be determined experimentally

from the sparse MVM floating point performance and the

memory bandwidth drawn by the CRS code (see Sect. 2).

Since the matrices used here have Nnzr ≈ 7 . . .15, each ad-

ditional access to B(:) incurs a nonnegligible contribution

to the data transfer. Maximum floating-point performance

for large problems is achieved for large Nnzr, and/or sparsity

patterns that cause good spatial locality when accessing the

RHS vector.

Note that this simple model neglects performance-

limiting aspects beyond bandwidth bottlenecks, like load

imbalance, communication and/or synchronization over-

head, and the adverse effects of nonlocal memory access

across ccNUMA locality domains (LDs).

1.5 Test matrices

Since the sparsity pattern may have substantial impact

on the single node performance and parallel scalability, we

have chosen two application areas known to generate ex-

tremely sparse matrices.

As a first test case we use a matrix from exact diago-

nalization of strongly correlated electron-phonon systems

in solid state physics. Here generic microscopic models are

used to treat both charge (electrons) and lattice (phonons)

degrees of freedom in second quantization. Choosing a

finite-dimensional basis set, which is the direct product of

basis sets for both subsystems (electrons ⊗ phonons), the

generic model can be represented by a sparse Hamiltonian

matrix. Iterative algorithms such as Lanczos or Jacobi-

Davidson are used to compute low-lying eigenstates of the

Hamilton matrices, and more recent methods based on poly-

nomial expansion allow for computation of spectral proper-

ties [13] or time evolution of quantum states [14]. In all

those algorithms, sparse MVM is the most time-consuming

step.

Here we consider the Holstein-Hubbard model (cf. [15]

and references therein) with six electrons (subspace dimen-

sion 400) on a six-site lattice coupled to 15 phonons (sub-

space dimension 1.55× 104). The resulting matrix of di-

mension 6.2× 106 is very sparse (Nnzr ≈ 15) and can have

two different sparsity patterns, depending on whether the

phononic or the electronic basis elements are numbered

contiguously (see Figs. 3 (a) and (b), respectively). We also

applied the well-known “Reverse Cuthill-McKee (RCM)”

algorithm [16] to the Hamilton matrix in order to improve

spatial locality in the access to the right hand side vector,
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Figure 4: Node-level performance for the Westmere

and Cray XE6 test systems. Effective STREAM triads

bandwidth1, and performance for sparse MVM using the

HMeP matrix (bars) is shown.

and to optimize interprocess communication patterns to-

wards near-neighbor exchange. Since the RCM-optimized

structure showed no performance advantage over the HMeP

variant (Fig. 3 (b)) neither on the node nor on the highly par-

allel level, we will not consider RCM any further here.

The second matrix was generated by the adaptive multi-

grid code sAMG (see [17, 18], and references therein) for

the irregular discretization of a Poisson problem on a car ge-

ometry. Its matrix dimension is 2.2× 107 with an average

of Nnzr ≈ 7 entries per row (see Fig. 3 (c)).

For real-valued, symmetric matrices as considered here

it is sufficient to store the upper triangular matrix ele-

ments and perform, e.g., a parallel symmetric CRS sparse

MVM [10]. The data transfer volume is then reduced by

almost a factor of two, allowing for a corresponding per-

formance improvement. We do not use this optimization

here for two major reasons. First, the discussion of the hy-

brid parallel vs. MPI-only implementation should not be

restricted to the special case of explicitly symmetric matri-

ces. Second, to our knowledge an efficient shared memory

implementation of a symmetric CRS sparse MVM base rou-

tine has not yet been presented.

2 Node-level performance analysis

The basis for each parallel program must be an efficient

single core/node implementation. Assuming general sparse

matrix structures the CRS format presented above is very

suitable for modern cache-based multicore processors [19].

Even advanced machine-specific optimizations such as non-

temporal prefetch instructions for Opteron processors pro-

vide only minor benefits [10] and are thus not considered

here. A simple OpenMP parallelization of the outermost

loop, together with an appropriate ccNUMA-aware data

placement strategy has proven to provide best node-level

performance. We choose the HMeP matrix as a reference

problem. The results presented hold qualitatively for the

other matrix structures as well. Differences will be dis-

cussed where relevant.

Intrasocket and intranode spMVM scalability should al-

ways be discussed together with effective STREAM triad

numbers, which form a practical upper bandwidth limit.1

Figure 4 shows the memory bandwidth on the Cray XE6

and Westmere EP platforms (dashed lines) drawn by the

STREAM triad, and the corresponding spMVM perfor-

mance. While the STREAM bandwidth soon saturates

within a socket, the spMVM code needs about four cores

to reach saturation. This is typical behavior for codes with

(partially) irregular data access patterns. However, the fact

that more than 85% of the STREAM bandwidth can be

reached with spMVM (as measured by the LIKWID [11]

tool) indicates that our CRS implementation makes good

use of the resources. The maximum spMVM performance

can be estimated by dividing the memory bandwidth by the

code balance (1), using Nnzr = 15 and κ = 0. For a single

Westmere socket the spMVM draws 18.1 GB/s (STREAM

triads: 21.2 GB/s), allowing for a maximum performance

of 2.66 GFlop/s (3.12 GFlop/s). Combining the measured

performance (2.25 GFlop/s) and bandwidth of the spMVM

operation with BCRS(κ) we find κ = 2.5, i.e., 2.5 additional

bytes of memory traffic on B(:) per inner loop iteration

(37.3 bytes per row) are required due to limited cache capac-

ity. Thus the complete vector B(:) is loaded six times from

main memory to cache, but each element is used Nnzr = 15

times. This ratio gets worse if the matrix bandwidth in-

creases. For the HMEp matrix we found κ = 3.79, which

translates to a 50% increase in the additional data transfers

for B(:). The code balance implies a performance drop of

about 10%, which is consistent with our measurements.

While the AMD system is slower on a single LD, its

node-level performance is about 25% higher than on West-

mere due to its four LDs per node. Within the domains sp-

MVM saturates at four cores on both architectures, leaving

ample room to use the remaining cores for other tasks, like

communication (see Sect. 3.3).

3 Distributed-memory parallelization

Strong scaling of MPI-parallel sparse MVM is inevitably

limited by communication overhead. Hence, it is vital to

find ways to hide communication costs as far as possible.

A widely used approach is to employ nonblocking point-to-

point MPI calls for overlapping communication with useful

work. However, as has been shown in Sect. 1.3, most MPI

1Nontemporal stores have been suppressed in the STREAM measure-

ments and the bandwidth numbers reported have been scaled appropriately

(×4/3) to account for the write-allocate transfer.
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Figure 5: Schematic timeline view of the implemented hybrid kernel versions. From left to right: no communication/calcu-

lation overlap, naive overlap using nonblocking MPI, and explicit overlap by a dedicated communication thread

implementations support progress, i.e., actual data transfer,

only when MPI library code is executed by the user process,

although the hardware even on standard InfiniBand-based

clusters does not hinder truly asynchronous point-to-point

communication. In the following sections we will con-

trast the “naive” overlap applying nonblocking MPI with

an approach that uses a dedicated OpenMP thread for ex-

plicitly asynchronous transfers. We adopt the nomenclature

from [7] and [1] and distinguish between “vector mode” and

“task mode.”

MPI parallelization of spMVM is generally done by dis-

tributing the nonzeros (or, alternatively, the matrix rows),

the right hand side vector B(:), and the result vector C(:)

evenly across MPI processes. Due to off-diagonal nonzeros,

every process requires some parts of the RHS vector from

other processes to complete its own chunk of the result, and

must send parts of its own RHS chunk to others. Note that

it is generally difficult to establish good load balancing for

computation and communication at the same time. We use a

balanced distribution of nonzeros across the MPI processes

here. At a given number of processes, the resulting com-

munication pattern depends only on the sparsity structure,

so the necessary bookkeeping needs to be done only once.

The actual spMVM computations can be performed either

by a single thread or, if multithreading is available, by mul-

tiple threads inside the MPI process.

3.1 Vector­like parallelization: Vectormodewith­
out overlap

Gathering the data to be sent by a process into a con-

tiguous send buffer may be done after the receive has

been initiated, potentially hiding the cost of copying (see

Fig. 5 (a)). We call this naive approach “hybrid vector

mode,” since it strongly resembles the programming model

for vector-parallel computers [7]: The time-consuming (al-

though probably parallel) computation step does not over-

lap with communication overhead. This is actually how

“MPI+OpenMP hybrid programming” is still defined in

most publications. The question whether and why using

multiple threads per MPI process may improve performance

compared to a pure MPI version on the same hardware is

not easy to answer. Depending on the problem, different

aspects come into play, and there is no general rule.

3.2 Vector­like parallelization: Vector mode with
naive overlap

As an alternative one may consider hybrid vector mode

with nonblocking MPI (see Fig. 5 (b)) to potentially overlap

communication with the part of spMVM that can be com-

pleted using local RHS elements only. After the nonlocal

elements have been received, the remaining spMVM oper-

ations can be performed. A disadvantage of splitting the

spMVM in two parts is that the local result vector must be

written twice, incurring additional memory traffic. The per-

formance model (1) can be modified to account for an addi-

tional data transfer of 16/Nnzr bytes per inner loop iteration,

leading to a modified code balance of

B
split
CRS =

(

6+
20

Nnzr
+

κ

2

)

bytes

flop
. (2)

For Nnzr ≈ 7 . . .15 and assuming κ = 0, one may expect a

node-level performance penalty between 15% and 8%, and

even less if κ > 0.

For simplicity we will also use the term “vector mode”

for pure MPI versions with single-threaded computation.

3.3 Task mode with explicit overlap

A safe way to ensure overlap of communication with

computation is to use a separate communication thread and

leave the computational loops to the remaining threads. We

call this “hybrid task mode,” because it establishes a func-

tional decomposition of tasks (communication vs. com-

putation) across the resources (see Fig. 5 (c)): One thread
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executes MPI calls only, while all others are used to copy

data into send buffers, perform the spMVM with the local

RHS elements, and finally (after all communication has fin-

ished) do the remaining spMVM parts. Since spMVM satu-

rates at about 3–5 threads per locality domain (as shown in

Fig. 4), at least one core per LD is available for communi-

cation without adversely affecting node-level performance.

On architectures with SMT, like the Intel Westmere, there

is also the option of using one compute thread per physical

core and bind the communication thread to a logical core.

Apart from the additional memory traffic due to writing

the result vector twice (see Sect. 3.2), another drawback of

hybrid task mode is that the standard OpenMP loop work-

sharing directive cannot be used, since there is no concept

of “subteams” in the current OpenMP standard. Work dis-

tribution is thus implemented explicitly, using one contigu-

ous chunk of nonzeros per compute thread. It is possible

to simplify the code by using OpenMP tasking along the

lines of [4], but ccNUMA placement issues have to be taken

into account if a team of threads spans more than a single

LD [20].

4 Internode performance results and discus-

sion

Figures 6 and 8 show strong scaling results for the two

chosen matrices (HMeP and sAMG). We compare the hy-

brid kernel versions presented in Fig. 5 on the Cray XE6

and present the best result obtained on the Westmere clus-

ter for reference (see [5] for a thorough discussion of those

results). For the considered matrix sizes and largest node

counts, a single spMVM takes a couple of milliseconds.

4.1 Testcase HMeP (see Fig. 6)

At one MPI process per physical core (left panel), there

is hardly any discernible difference between the two vec-

tor modes (task mode is ruled out here, since no resources

are left for communication threads). The overhead for the

additional data transfer on the result vector does not seem

to have much impact on the performance, which leads to

the conclusion that load imbalance effects play an important

role at large process counts. The Westmere cluster delivers

roughly the same performance per node as the XE6, with

task mode being the best variant. In this case, one SMT

thread per core is used for computation and the other per-

forms communication. This could also be a usable model

for MPI libraries that support progress threads, given that

thread-core affinity issues can be appropriately resolved.

With one process per ccNUMA locality domain (middle

panel) there is a slight advantage for task mode (one out of

six cores per domain runs a communication thread), which

can be attributed to the smaller number of MPI processes;

now there is a chance for the hidden communication to pay

off. The Westmere system clearly outperforms the XE6

by about 25% at larger node counts, so the per-node per-

formance advantage of the Magny Cours cannot be saved

into the highly parallel domain. Since the memory bus of

a Westmere socket is already saturated with four threads, it

does not make a difference whether six worker threads are

used with one communication thread on a virtual core, or

whether a physical core is devoted to communication.

Best results are obtained on the XE6 when using a single

MPI process with 24 threads per node (right panel). The

performance advantage of task mode versus the other vari-

ants is close to 30%. The symbols in Fig. 6 indicate the 50%

parallel efficiency point (with respect to the best single-node

XE6 performance of 5.3 GFlop/s, as reported in Fig. 4) on

each data set. In practice one would not go beyond this

number of nodes because of bad resource utilization. For

the matrix and the system under investigation it is clear that

task mode allows strong scaling to much higher levels of

parallelism than any variant of vector mode.

Contrary to expectations based on the single-node per-

formance numbers (Fig. 4), the Cray XE6 can generally

not match the performance of the Westmere cluster at larger

node counts, with the exception of pure MPI where both are

roughly on par (left panel, Westmere results for task mode

with one communication thread per physical core). When

using threaded MPI processes (middle and right panel), task

mode performs best on the Cray system. The advantage

over the other kernel variants is by far not as pronounced

as on Westmere, however. We have observed a strong in-

fluence of job topology and machine load on the commu-

nication performance over the 2D torus network. Figure 7

shows two scaling runs with the HMeP matrix and pure MPI

(one process per core) up to 32 nodes. In one case, only the

required 32 nodes were allocated through the batch system;

in the other case, 150 nodes (almost the full machine) were

requested. Since other user jobs were running one the rest

of the machine, the influence of machine load on perfor-

mance is evident. Also, as sparse MVM requires significant

non-nearest-neighbor communication with growing process

counts, the nonblocking fat tree network on the Westmere

cluster seems to be better suited for this kind of problem.

The results presented in Figs. 6 and 8 are best values ob-

tained on a dedicated machine.

Interestingly, the hybrid vector mode variants with one

MPI process per LD or per node show almost the same per-

formance as pure MPI on the XE6. There is also a universal

drop in scalability beyond about six nodes, which is largely

independent of the particular hybrid mode. This can be as-

cribed to a strong decrease in overall internode communica-

tion volume when the number of nodes is small. The effect

is somewhat less pronounced for pure MPI, since the over-

head of intranode message passing cannot be neglected.
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on the 176-node machine.

4.2 Testcase sAMG (see Fig. 8)

The sAMG matrix has much weaker communication re-

quirements than HMeP, and the impact of load imbalance is

very small. On the Cray XE6, vector mode without overlap

performs best across all hybrid modes, with a measurable

advantage when running one MPI process with six threads

per LD. Surprisingly, vector mode with naive overlap is sig-

nificantly slower than the other variants; a close inspection

of message sizes, communication timings, and the influence

of eager mode would be in order to fully understand this be-

havior. This aspect is still to be investigated. Comparison

with the Westmere performance data (vector mode without

overlap in all cases) shows that the Cray XE6 is able to

maintain its node-level performance advantage also in the

parallel case.

These observations support the general rule that it makes

no sense to consider MPI+OpenMP hybrid programming

if the pure MPI code already scales well and behaves in

accordance with a single-node performance model.

5 Summary and outlook

Starting from the observation that truly asynchronous

nonblocking point-to-point communication is not possi-

ble in most current MPI implementations (although the

hardware is often able to support it), we have investi-

gated the performance properties of different pure MPI and

MPI+OpenMP hybrid variants of sparse matrix-vector mul-

tiplication on Cray XE6 and Westmere-based InfiniBand

cluster systems, using two matrices with significantly differ-

ent sparsity patterns. The single-node performance model

and analysis on Intel Westmere and AMD Magny Cours

processors showed that memory-bound sparse MVM satu-

rates the memory bus of a ccNUMA locality domain already

at about four threads, leaving free resources for implement-

ing explicit computation/communication overlap. Explicit

overlap enables substantial performance gains in strong

scaling scenarios for communication-bound problems, es-

pecially when running one process per ccNUMA domain

or per node. Since the communication thread can run on
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a virtual core, MPI implementations could use the same

strategy for internal “progress threads” and so enable asyn-

chronous communication without changes in MPI-only user

code. This leaves some potential to be exploited in upcom-

ing AMD processors (“Bulldozer”), since the current AMD

architecture does not feature hardware threads.

Future work will cover a more complete investigation of

load balancing effects, and a careful analysis of the perfor-

mance properties of the Cray XE6 system. We will also

investigate further the asynchronous communication capa-

bilities of MPI implementations for small messages.

Acknowledgments

We thank J. Treibig and R. Keller for valuable discus-

sions, A. Basermann for providing the RCM transforma-
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