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Tutorial outline (1)

Introduction

Architecture of multisocket
multicore systems

Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter

measurements

Online demo: likwid tools (1)
topology
pin

Monitoring the binding
perfctr basics and best practices

TAGSC

Impact of processor/node
topology on performance

Bandwidth saturation effects

Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code

Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

Case studies for shared memory

Automatic parallelization

Pipeline parallel processing for
Gaul-Seidel solver

Wavefront temporal blocking of
stencil solver

Summary: Node-level issues
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Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Thread-safety quality of MPI
libraries

Strategies for combining MPI
with OpenMP

Topology and mapping problems
Potential opportunities
Practical “How-tos” for hybrid

Online demo: likwid tools (2)
Advanced pinning
Making bandwidth maps

Using likwid-perfctr to find NUMA
problems and load imbalance

likwid-perfctr internals
likwid-perfscope

TAGG
Case studies for hybrid
MPI/OpenMP

Overlap for hybrid sparse MVM

The NAS parallel benchmarks
(NPB-M2)

PIR3D — hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid

Programming

Overall summary and goodbye
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Tutorial outline _
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multicore systems = Bandwidth saturation effects
* Nomenclature = Case study: OpenMP sparse MVM
= Current developments as an example for bandwidth-
* Programming models bound code
= Multicore performance tools * Programming for ccNUMA
= Finding out about system topology ' O.penMP performa.nce |
= Affinity enforcement = Simultaneous multithreading (SMT)
= Performance counter = [ntranode vs. internode MPI
measurements = Case studies for shared memory
= Online demo: likwid tools (1) = Automatic parallelization
= topology = Pipeline parallel processing for
= BN Gaul-Seidel solver
= Monitoring the binding = Wavefront temporal blocking of

stencil solver
= perfctr basics and best practices

= Summary: Node-level issues
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Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

In 1965 Gordon Moore claimed:
# of transistors on chip doubles every =24 months
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We are living in the multicore era - Is really everyone aware of that?
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Welcome to the multi-’/manycore era TAGG
The game is over: But Moore’s law continues

By courtesy of D. Vrsalovic, Intel

N transistors 'ﬂt&l Power envelope:

Max. 95-130 W

[] 2N transistors

1.73x

] Power
consumption:

1.02x P=f* (Vcore)2
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Welcome to the multi-'many-core era T2, ©
Th ' - But Moore’s | ti ?‘??’0
e game is over: But Moore’s law continues 5@&

Required relative frequency reduction to run m cores (m times
transistors) on a die at the same power envelope

Year: 2007/08

§ -0.6F o o o o O —
7] _ o ©° |
~ -0.5 _
&)
3 ]
2 0.4 —
g W™ 8 cores running at half speed of a single
% -0.3 core CPU = same energy
é 02 65 nm technology :
e A Sun T2 (,Niagara“) 1.4 GHz - 8 cores
0.1F Intel Woodcrest 3.0 GHz - 2 cores
_ | | | | 1
0 2 4 8 16

m: #cores per die
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Trading single thread performance for parallelism
| E
Power consumption limits clock speed: P ~ f2 (worst case ~f3)
Core supply voltage approaches a lower limit: V. ~1V
TDP approaches economical limit: TDP~80W,...,130 W

P5 /80586 (1993) | Pentium3 (1999) | Pentium4 (2003) | Core i7-960 (2009)

66 MHz 600 MHz 2800 MHz 3200 MHz

BW@V:.=5V) 22W@V.=2V |[68W@V.=15V| 130 W@ V. =1.3

800 nm |/ 3 M 130nm/55M | 45nm/730 M
| Quad-Core

TDP/

Core supply voltage Process technology /

Number of transistors in million
nnra’c law ic etill valid
WVWVIV b 1WA 1w LIl VUIINA e

more cores + new on-chip functionality (PCle, GPU)

\Z

Be prepared for more cores with less complexity and slower clock!
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The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)

=
>
oIz
P

2005: “Fake” dual-core 2006: True dual-core

socket

Harpertown
“Core2 Quad” 45nm

Woodcrest
“Core2 Duo” 65nm

2008: 2010/11: Wider SIMD units
Hyperthreading/SMT SSE - AVX
is back! 128 Bit > 256 Bit

socket

[ Other \
socket

Nehalem EP Westmere EP Sandy Bridge (Desktop)
“Core i7” “Core i7” “Core i7”
45nm 32nm 32nm
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Welcome to the multicore era TACG

A new feature: shared on-chip resources [

Fast data transfer

Fast thread synchronisation

AMD Opteron
Istanbul

6 cores @ 2.8 GHz

L1: 64 KB

L2: 512 KB

L3: 6 MB

- 12.8 GB/s

HT2000 - 8 GB/s/dir

ISC11Tutorial

Shared outer-level cache

Data Coherency!
Increased intra-cache traffic?
Scalable bandwidth?

MPI parallelization?

Intel Xeon
Westmere

EC R [ 6 cores @ 2.93 GHz

L1: 32 KB

Memory L2: 256 KB

L3: 12MB

3 X DDR3-1333

Memory bottleneck! ~ 31.8 GBI/s
2 X QPI6.4

- 12.8 GB/s/dir
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From UMA to ccNUMA TACG

Basic architecture of commodity compute cluster nodes
Dual-socket Intel “Core2” node:
s BE PP
-e © © i : C C E
" — Uniform Memory Architecture (UMA):
(V)] 0
>C'_J Flat memory ; symmetric MPs
Memory (11 . 7
But: system “anisotropy
Shared Address Space within the node!
Dual-socket AMD (Istanbul) / Intel (Westmere) node:
>,i_|_°_ PIPIPIPIP P PIPIPIPIP Cache-coherent Non-Uniform Memory
© PR FtEtetes  Architecture (ccNUMA)
O e HT / QP provide scalable bandwidth at
the expense of ccNUMA architectures:
Memory Memory Where does my data finally end up?
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Back to the 2-chip-per-case age:
AMD Magny-Cours — a 2x6-core socket

AMD: “Magny-Cours”

12-core socket comprising two 6-core chips
connected via 1.5 HT links

Main memory access: > 2 DDR3-Channels per 6-core chip 3 N
- 1/3 DDR3-Channel per core AGECE

2 socket server - 4 memory locality domains
- ccNUMA within a socket!

4P

4 socket server: (=)
,:‘;/ﬁ —

™

T

L] &'4\@1\ :
mj x16 kﬁ’] EJ Klﬁ"w

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 Bytes/Flop
(2003: Intel Xeon DP 2.66 GHz + GBit ~ 10 GF/s / 0.12 GB/s = 80 Bytes/Flop)
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Trading single thread performance for parallelism: TACC
GPGPUs vs. CPUs

GPU vs. CPU Control ALU  ALU
light speed estimate: ALU  ALU

Compute bound: 4-5 X _

Memory Bandwidth: 2-5 X

CPU GPU
Intel Core i5 — 2500 | Intel X5650 DP node NVIDIA C2070
(“Sandy Bridge”) (“Westmere”) (“Fermi”)
Cores@Clock 4 @ 3.3 GHz 2x6 @ 2.66 GHz 448 @ 1.1 GHz
Performance*/core 52.8 GFlop/s 21.3 GFlop/s 2.2 GFlop/s
Threads@stream 4 12 8000 +
Total performance® 210 GFlop/s 255 GFlop/s 1,000 GFlop/s
Stream BW 17 GB/s 41 GB/s 90 GB/s (ECcC=1)
Transistors / TDP 1 Billion* / 95 W 2 x (1.17 Billion / 95 W) | 3 Billion / 238 W
* Single Precision *Includes on-chip GPU and PCI-Express  Gomplete compute device
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Parallel programming models TAGG
on multicore multisocket nodes

Shared-memory (intra-node) A
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads

Intel Threading Building Blocks All del .
Cilk++, OpenCL, StarSs,... you name it modaels require

awareness of
Distributed-memory (inter-node) > _tOPOIogy and a?ffinity
MPI (current standard: 2.2) issues for getting

PVM (gone) best performance

out of the machine!
Hybrid )
Pure MPI >

AAADI s MNen~~-AID

IVII"I"'U[JellIVII"

J

MPI + any shared-memory model

J
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Parallel programming models:
Pure MPI

Machine structure is invisible to user:

- Very simple programming mode| s>
- MPI “knows what to do™!?

Performance issues

Intranode vs. internode MPI
Node/system topology

[ Memory ] [ Memory ] [ Memory ] [ Memory ]

| Network Int. ‘

communication network
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Parallel programming models: TA
Pure threading on the node

Machine structure is invisible to user

- Very simple programming mode| m=)> master thread
Threading SW (OpenMP, pthreads, v
TBB,...) should know about the details fork = ~
Performance issues _ parallel
Synchronization overhead v region
Memory access . /
join ™~
Node topology serial
region
\ 4 y
IPIPIIPIIP| PP |P|P
i LII) L1D L1=] LIZ) i LIZ) L1D L1D L1D i team Of
L e Lia ; Li e e e ) \ 4 threads

. coherent |

L T

] &
‘ Memory J\\J\\\\\\\\\\\\\\\\\T\\l Memory J v
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Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:
OpenMP threads on same
socket: “blockwise”

OpenMP threads pinned
“round robin” across
cores in nhode

Two MPI processes / socket
OpenMP threads
on same socket
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_ TAGC
Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software
Increasing core counts per socket (package)
4-12 today, 16-32 tomorrow?
X2 or x4 per cores node
Shared vs. separate caches
Complex chip/node topologies

UMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in
heavy fiux

We are left with MPIl and OpenMP for now

This is complex enough, as we will see...
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Tutorial outline _

= Introduction * Impact of processor/node
= Architecture of multisocket topology on performance
multicore systems = Bandwidth saturation effects
* Nomenclature = Case study: OpenMP sparse MVM
= Current developments as an example for bandwidth-
= Programming models bound code
= Multicore performance tools " Programming for ccNUMA
= Finding out about system topology ' O.penMP performa.nce |
= Affinity enforcement = Simultaneous multithreading (SMT)
= Performance counter = [ntranode vs. internode MPI
measurements = Case studies for shared memory
= Online demo: likwid tools (1) = Automatic parallelization
= topology = Pipeline parallel processing for
= BN Gaul-Seidel solver
= Monitoring the binding = Wavefront temporal blocking of

stencil solver
= perfctr basics and best practices

= Summary: Node-level issues
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Probing node topology

Standard tools
likwid-topology
hwloc



How do we figure out the node topology?

Topology =

TAGSC

Where in the machine does core #n reside? And do | have to remember this

awkward numbering anyway?
Which cores share which cache levels?

Which hardware threads (“logical cores”) share a physical core?

Linux
cat /proc/cpuinfo is of limited use

Core numbers may change across kernels
and BIOSes even on identical hardware

numactl --hardware prints
ccNUMA node information -> <

Information on caches is harder
to obtain

\

available:

node 0 cpus:
node 0 size:
node 0 free:
node 1 cpus:
node 1 size:
node 1 free:
node 2 cpus:
node 2 size:
node 2 free:
node 3 cpus:
node 3 size:
node 3 free:

/-S numactl --hardware
4 nodes (0-3)

012345

8189 MB

3824 MB

6 78 9 10 11
8192 MB

28 MB

18 19 20 21 22 23
8192 MB

8036 MB

12 13 14 15 16 17
8192 MB

7840 MB
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How do we figure out the node topology?

LIKWID tool suite:

Like

I

Knew

What

I’'m

Doing

Open source tool collection J. Treibig, G. Hager, G. Wellein: LIKWID: A

(developed at RRZE): lightweight performance-oriented tool suite
for x86 multicore environments. Accepted for
PSTI2010, Sep 13-16, 2010, San Diego, CA

http://code.google.com/p/likwid http://arxiv.org/abs/1004.4431
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. . TAGG
Likwid Tool Suite

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfctr: Measure performance counters
likwid-mpirun: mpirun wrapper script for easy LIKWID integration
likwid-bench: Low-level bandwidth benchmark generator tool
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I : : TAGG
likwid-topology — Topology information

Based on cpuid information

Functionality:
Measured clock frequency
Thread topology

Cache topology
Cache parameters (-c command line switch)

ASCII art output (-g command line switch)
Currently supported (more under development):

Intel Core 2 (45nm + 65 nm)
Intel Nehalem + Westmere (Sandy Bridge in beta phase)

AMD K10 (Quadcore and Hexacore)

ISC11Tutorial Performance programming on multicore-based systems 24



Output of likwid-topology TAGG

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz

hkhkkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkhkhkhkkkhkhkhkkkkhkhkhkkkhkhkhkkkhkhkhkkkk

Hardware Thread Topology
hkhkkkkhkkkhkkkhkkkhkkhkkkhkkhkkhkkhkhkkkhkkhkkkhkkhkkkhkkkhkkkhkkkhkkkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkkhkhkkhkkkkk
Sockets: 2
Cores per socket: 4
Threads per core: 2

HWThread Thread Core Socket

oo JdJoy Ul WNDEKE O

WWMNDNDMNMNPRPPRPOOWWDMNMDMNMRELRPRLROO
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o : TAGG
Output of likwid-topology continued

Socket 0: (0123456 7))
Socket 1: (8 9 10 11 12 13 14 15 )

khkhkkhkkkhkkkkhkkhkkhkhkkhkkhkhkkhkhkhkkhkkhkhkhkkhkkhkhkkhkhkhkhkkhkhkhkhkkkhkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkhkkkxkk

Cache Topology
Kkkkkhkhkhkkhhkhhhkkkhhhhkhhkkkhhhkhkhhkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkk

Level: 1

Size: 32 kB

Cache groups: (01) (23) (45) (67) (89) (1011 ) (12 13 ) ( 14 15 )
Level 2

Size: 256 kB

Cache groups: (01) (23) (45) (67) (89) (1011 ) (12 13 ) ( 14 15 )
Level 3

Size 8 MB

Cache groups: (01234567 ) (8910 11 12 13 14 15 )

hkhkkkkhkhkkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkhkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkkkkk

NUMA Topology
hkhkkkkhkhkkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkhkkkhkhkhkkkhkhkhkkhkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkkkkk

NUMA domains: 2
Domain O:
Processors: 012345617
Memory: 5182.37 MB free of total 6132.83 MB
Domain 1:
Processors: 8 9 10 11 12 13 14 15
Memory: 5568.5 MB free of total 6144 MB

ISC11Tutorial Performance programming on multicore-based systems 26



o TAGG
Output of likwid-topology

... and also try the ultra-cool e X

-g option! | +==——m- + dmm———- + Fomm——- TR T —— +
1 o0 11 | 2 3|1 | 4 51| 6 7| |
| +===——- + —————- TR N — AR —— + |
| +===——- + —————- TR N — AR —— + |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +-----—- + $-————- + $-————- + $-————- + |
| +------ + $-———— + $—————- + $-———— + |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------ + +-—————- + +-————- + 4-————- + |
| mmm e e e o + |
| | 8MB | |
| mmm e e e e m + |
e e +
Socket 1
o +
| +-----—- + $-————- + $-————- T —— + |
| | 8 9] |10 11| |12 13| |14 15| |
| +------ + +-—————- + +-————- + 4-————- + |
| +------ + +-—————- + 4-————- + +-—————- + |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +====—- + fm—————- + —————- TR - + |
| +====—- + fm—————- + —————- TR - + |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +===——- + —————- TR N — AR —— + |
| Hmmmmmmm e + |
|| 8MB [ 1
| Hmmmmm e e + |
S +
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hwloc

Alternative: http://www.open-mpi.org/projects/hwloc/

Successor to (and extension of) PLPA, part of OpenMPI

development

Comprehensive API and
command line tool to
extract topology info

Supports several
OSs and CPU types

Pinning API available

ISC11Tutorial

Machine (16GE)

TACC

Socket p#0 Socket p#l
L3 (4096KE) L3 (4096KE)
L2 (1024KE) L2 (1024KB) L2 (1024KE) L2 (1024KB)
L1 (16KE] L1 (16KE] L1 (16KE] L1 (16KE]
Core p#0 Core p#l Core p#0 Core p#l
Socket p#2 Socket p#3
L3 (4096KE) L3 (4096KE)
L2 (1024KE) L2 (1024KE) L2 (1024KE) L2 (1024KE)
L1 (16KE] L1 (16KE] L1 (16KE] L1 (16KE]
Core p#0 Core p#l Core p#0 Core p#l
PL p#2 PU p#10 PLU p#6 PLU p#14 PL p#3 PU p#1l PU p#7 PU p#15

Performance programming on multicore-based systems
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< -1 TACC TS

Enforcing thread/process-core affinity
under the Linux OS

Standard tools and OS affinity facilities
under program control

likwid-pin



Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

45000 T T T T T | T T T T T T T T
40000 — I =
B ;I; T —— -
35000 — i —
i 1U 1
‘' 30000 — —
% . - %) E |
% 25000 % —~ Memory Memory
S 20000_ j = |
& B 45000 ! L B |
o
8 15000 |- i T 7 - =
o 40000 (— T = - = _ " _ —
10000 NO plnnlng - % @ f % { - _
L 35000 — T —
5000 — B % % ]
L __ 30000 — —
0 | | | | | ‘ | | | | | | | | | | | | | | | “‘m{ — -
0o 2 4 6 8 10 12 14 16 18 20 I 500l % B
number of threads = L
_% 20000 — T —]
There are several reasons for caring about 15000 = m
affinity: 10000 o _ _ B
N . . Pinning (physical cores first)
Eliminating performance variation 50001 B
Making use of architectural features S P O R R T R RO NN BRI B RO N B
L. . 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Avoiding resource contention number of threads
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Generic thread/process-core affinity under Linux TA@
Overview

taskset [OPTIONS] [MASK | -c¢ LIST ] \
[PID | command [args]...]

taskset binds processes/threads to a set of CPUs. Examples:

taskset -c 0,2 mpirun -np 2 ./a.out # doesn’t always work
taskset 0x0006 ./a.out
taskset -c 4 33187

Processes/threads can still move within the set!

Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched setaffinity(pid t pid, unsigned int len,
unsigned long *mask) ;

Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

ISC11Tutorial Performance programming on multicore-based systems 31



TAGG
Generic thread/process-core affinity under Linux
| Rl

Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]
Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]
Bind process to specified ccNUMA node(s)

Many more options (e.g., interleave memory across nodes)
—> see section on ccNUMA optimization

Diagnostic command (see earlier):
numactl --hardware

Again, this is not suitable for a shared machine

ISC11Tutorial Performance programming on multicore-based systems 32



More thread/Process-core affinity (“pinning”) options
| Rl

Highly OS-dependent system calls
But available on all systems

Linux: sched setaffinity (), PLPA (see below) = hwloc
Solaris: processor bind()
Windows: SetThreadAffinityMask ()

Support for “semi-automatic” pinning in some
compilers/environments

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU

SGI Altix dplace (works with logical CPU numbers!)

Generic Linux: taskset, numactl, 1ikwid-pin (see below)

Affinity awareness in MPI libraries

SGI MPT
OpenMPI Example for prograragq trolled
Intel MPI affinity: Using f‘é‘(\\?"_..der Linux!
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Explicit Process/Thread Binding With PLPA on Linux: To ©
http://www.open-mpi.org/software/plpa/ g@@?

Portable Linux Processor Affinity

Wrapper library for sched *affinity () functions
Robust against changes in kernel API

Example for pure OpenMP: Pinning of threads

Care about correct
core numbering!

#include <plpa.h> 0...N-1is not always

. I |

Pinning contl_guous. If
#fpragma omp parallel available? required, reorder by
. { Ciont a map:
pragma omp critica

Cpu = map|Cpuj] ,

{ P plcpu]
if (PLPA NAME (api_probe) () !'=PLPA PROBE OK) {

cerr << "PLPA failed!" << endl; exit(1l);

} Which core to
plpa cpu set t msk; run on?
PLPA CPU_ZERO (&msk) ; :

int cpu = omp get thread num() ;
PLPA CPU_SET (cpu, &msk) ;
PLPA NAME (sched setaffinity) ((pid t)0, sizeof(cpu set t), é&msk);

}

Pin “me”

Similar for pure MPI and MPI+OpenMP hybrid code
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Process/Thread Binding With PLPA

Example for pure MPI: Process pinning

Bind MPI processes to cores in a cluster
of 2x2-core machines

MPI Comm rank (MPI COMM WORLD, &rank) ;

int mask = (rank % 4);

PLPA CPU_SET (mask, &msk) ;

PLPA NAME (sched setaffinity) ((pid t)O,
sizeof (cpu _set t), é&msk);

Hybrid case:
MPI Comm rank (MPI_ COMM WORLD, &rank) ;
#pragma omp parallel
{
plpa cpu _set t msk;
PLPA CPU ZERO (&msk) ;
int cpu = (rank % MPI_PROCESSES PER NODE) *omp num threads
+ omp get thread num() ;
PLPA CPU_SET (cpu, &msk) ;
PLPA NAME (sched setaffinity) ((pid t)0, sizeof(cpu set t), é&msk);
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Likwid-pin TAGG
Overview
Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset

Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (shepherd threads should not be pinned)

Based on combination of wrapper tool together with overloaded pthread
library

Can also be used as a superior replacement for taskset

Supports logical core numbering within a node and within an existing CPU
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI
start mechanism or a batch system

Configurable colored output

Usage examples:
likwid-pin -t intel -c 0,2,4-6 ./myApp parameters
mpirun likwid-pin -s 0x3 -¢c 0,3,5,6 ./myApp parameters
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Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP NUM THREADS=4
$ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

[l1ikwid-pin] Main PID -> core 0 - OK

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

[... some STREAM output omitted ...]

The

*best* time for each test is used

*EXCLUDING* the first and last iterations
[pthread wrapper] PIN MASK:
[pthread wrapper] SKIP MASK:

[pthread wrapper
threadid
[pthread wrapper
threadid
[pthread wrapper
threadid
[pthread wrapper
threadid

0] Notice:
1073809728
1] Notice:
1078008128
2] Notice:
1082206528
3] Notice:
1086404928

0->1 1->4 2->5

Main PID always
pinned

0x1
Using libpthread.
-> SKIP
Using libpthread.
-> core 1 - OK
Using libpthread.
-> core 4 - OK
Using libpthread.
-> core 5 - OK

[... rest of STREAM output omitted ...]

ISC11Tutorial
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Likwid-pin TAGG
Using logical core numbering

Core numbering may vary from system to system even with
identical hardware

Likwid-topology delivers this information, which can then be fed into likwid-
pin
Alternatively, likwid-pin can abstract this variation and provide a
purely logical numbering (physical cores first)

Socket O0: Socket O0:

B T i TR + o - +

| +--———- + - + - + - + | | 4= + e R + e +

I 1 0o 11| 2 31| 4 5| 6 7] | |1 o 8 | 1 9] | 210 | 311} |

| +-=-———- R + - R + | | 4= + - + - + o + |

| +-—-==- B R + - + 1 | +=————- e R + - + 1

| | 32kB]| | Socket 1: I | 32kB| | Socket 1:

| +=====- + ot + | +=====- ot o +

| === LA IR + - + A + - + | | +===-=- AL R + - + - + A +

| | 256kB| | . | | 8 9| |10 11| |12 13| |14 15] | | | 256kB| | . | | 4 12| | 5 13| | 6 14| | 7 15| |

| +------ L I + Fm————- + +-——--- + +----== + | | 4= L e B i I R i B + |

| === | +=————- R R A + | | == | === 4+ Am———— + A R +

|1 | | 32kB| | 32kB| | 32kB| | 32kB| | [ | | 32kB| | 32kB| | 32kB| | 32kB| |

| === | +=————- N R 4+ m————- + | | == | === 4+ Am———— + A R +

tommm | +-=———- + +----—= + +------ + +---=—= + | Fommm e | +---——- + +-----= + +----—= + +------ + |
| | 256kB| | 256kB| | 256kB| | 256kB| | | | 256kB| | 256kB| | 256kB| | 256kB| |
| +-————- + - + - + - + | | +-=-———- + - + - + + |
[ + | [ e + |
[ 8MB [ [ 8MB (I
[ + | [ e + |
B T e + - +

Across all cores in the node:
OMP NUM THREADS=8 likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
OMP NUM THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out
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Likwid-pin TACC

Using logical core numbering [T =

Possible unit prefixes

Default if —c is not

N node specified!
S socket
[ Memory ) | Memory ] |
M NUMA domain
C outer level cache group
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Likwid-pin TAGG

Using logical core numbering

. and: Logical numbering inside a pre-existing cpuset:

.
[ Memory f Memory ]
- LS
! i cHT16x | i
| = * * o !
K A L |
- ' ' ' L2 A Al 2 Lz L2 L2 Lz 2 ® !
= T : : un LD "-.FHTE“ /1 |an LD LD LiD ) LD E !
i E ..I-I"\- " i é i
¥ /dellpllrliplPllP||E
L@ | \) : =T
I t i ] E :
=1 fN ? !
\ / \ 1 i
sl IPIPP P S qPHPHPPPYP]E
. E L1D LD LD LD un ‘ L1D L1k Lo L0 L1k Lo E
P @ ' o

Memory

OMP_NUM THREADS=4 likwid-pin -c L:0-3 ./a.out
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Examples for hybrid pinning with likwid-mpirun:
1 MPI process per node

OMP NUM THREADS=12 likwid-mpirun -np 2 -pin N:0-11

L
'=I

L]
':I

||
£l
=
=]

l
!

L]
‘=I

|
:I
I

l

[32kB [ [ 32kB [ [32kB | [ 32kB [ [ 32kB | [ 32kB |

(256KkB | (256KkB | [256kB | [256kB | [256kB | [256KB |

12 MB

IIInII- In | In- IInII- Iln- Iln-l

[32«B | [ 32kB | |32kB | [ 32kB | | 32kB | [ 32kB |

(256Kk8 | {256kB | (256KB | [256KB | (256K | |256K8 |

12 MB

( o ] B
Bl () %) [ e [

(3268 [ (3268 | [32kB | [32kB | [32kB | [ 32¢B |

(2568 | (256KkB | [256kB | (256kB | (256KB | 256Kk |

12 MB

,ﬁ
[

(3266 | [32kB | 32k | [32x8 | [ 32x8 | [ 328 |

(2568 | (2568 | [256K8 | [256kB | [256KB | [256KB |

12 MB

ISC11Tutorial

Intel MPl+compiler:
OMP_ NUM THREADS=12 mpirun -ppn 1 -n 2 -env KMP AFFINITY scatter
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Examples for hybrid pinning with likwid-mpirun: TAGG
1 MPI process per socket

OMP NUM THREADS=6 likwid-mpirun -np 4 -pin S0:0-5 S1:0-5 ./a.out

(== e o e e E e (= o oE E e e

1 i o o f o O f o o o

[32k8 | | 32k8 | | 32kB | | 32k8 | | 328 | | 328 | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB |

[256k8 | |256kB | [256K8 | |256K8 | |256K8 | |256K8 | |256kB | |256kB | |256KB | | 256KB | |256kB | |256KB |
12 MB 12 MB

" vy - vy

i ) ( A
’IEJ 1’ ’lml | [ ’ E DN DB DB R W) oM
[32kB | | 32kB | [ 32kB | | 32kB | | 32kB | | 32B | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB |
[256kB | |256KkB | |256KB | |256kB | |256KB | |256KB | |256kB | |256kB | |256KkB | |256kB | | 256kB | |256KB |

12 MB 12 MB
\L 4 \ S

Intel MPl+compiler:
OMP_NUM THREADS=6 mpirun -ppn 2 -np 4 \
—env I MPI PIN DOMAIN socket —-env KMP AFFINITY scatter ./a.out
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Monitoring the Binding

How can we see whether the measures for binding are really effective®
sched getaffinity(),

top:

top - 16:05:03 up 24 days, 7:24, 32 users, 1load average: 5.47, 4.92, 3.52
Tasks: 419 total, 4 running, 415 sleeping, 0 stopped, 0 zombie
Cpu(s): 95.7% us, 1.1% sy, 1.6% ni, 0.0% id, 1.4% wa, 0.0% hi, 0.2% si

Mem: 8157028k total, 8131252k used, 25776k free, 2772k buffers
Swap: 8393848k total, 93168k used, 8300680k free, 7160040k cached
PID USER PR VIRT RES SHR NI $CPU $SMEM TIME COMMAND

99.9 2.8 23:42 dmrg 0.26_ WOODY
0.0 0:00 top

0.0 0:00 sshd

0.0 0:00 tcsh

23914 unrz55 25 277m 223m 2660
24284 unrz55 16 8580 1556 928
4789 unrz55 15 40220 1452 1448
4790 unrz55 15 7900 552 548

O O oo
nnxn™n
o
N

Press “H” for showing separate threads
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Probing performance behavi

TACG
or

How do we find out about the performance requirements of a

parallel code?

Profiling via advanced tools is often overkill

A coarse overview is often sufficient
likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AlX, “lipfpm” on

Linux/Altix)

Simple end-to-end measurement of hardware performance metrics

“Marker” API for starting/stopping
counters

Multiple measurement region
support

Preconfigured and extensible
metric groups, list with

likwid-perfotr -a mmmm) <

[ BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS DP: Double Precision MFlops/s
FLOPS SP: Single Precision MFlops/s
FLOPS X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s
\.TLB: TLB miss rate/ratio
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likwid-perfctr

Example usage with preconfigured metric group

$ env OMP NUM THREADS=4 likwid-perfctr -c 0-3 -g FLOPS DP likwid-pin

CPU type:

CPU clock: 2.93 GHz

Measuring group FLOPS DP

YOUR PROGRAM OUTPUT

| Metric

<+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Runtime [s]

| CPI

| DP MFlops/s (DP assumed)
| Packed MUOPS/s

| Scalar MUOPS/s

| SP MUOPS/s

| DP MUOPS/s

ISC11Tutorial

FP_COMP OPS EXE SSE FP SCALAR
FP_COMP OPS_EXE SSE SINGLE PRECISION

A KIS

0.326242
4.84647
245.399
122.698
0.00270351
0
122.701

Intel Core Lynnfield processor

Always
measured

TAGSC

-¢c 0-3 -s 0x1 ./stream.exe

Configured metrics
(this group)

————————————— B T e ittt -
| core 1 | core 2 | core 3 |
——————————— e A e
. | .31001e+08 | 2.30963e+08 | 2.31885e+08 |
9.56999%e+08 | .58401e+08 | 9.58637e+08 | 9.57338e+08 |
4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
882 | 0 | 0 | 0 |
0 I 0 I 0 I 0 I
4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
e T Fmmmmm - F-—mmmm - +
—————— el Tt
corel | core 2 | core 3 |
————————— L E TR PR Tt N
0.32672 | 0.326801 | 0.326358 |
4.14891 | 4.15061 | 4.12849 | Derived
189.108 | 189.024 | 189.304 | >,///// metrics
94.554 | 94.5121 | 94.6519 |
I 0 I 0 I
I 0 I 0 I
94.554 | 94.5121 | 94.6519 |
—————— fmmmmm ey
45

Performance programming on multicore-based systems



likwid-perfctr TACGG
Best practices for runtime counter analysis

Things to look at Caveats

Load balance (flops, instructions, Load imbalance may not show in

BW) CPI or # of instructions
_ Spin loops in OpenMP barriers/MPI
In-socket memory BW saturation blocking calls

Shared cache BW saturation :
In-socket performance saturation

may have various reasons
Flop/s, loads and stores per flop y

metrics
Cache miss metrics are overrated
SIMD vectorization If | really know my code, | can often
calculate the misses
CPI metric Runtime and resource utilization is
much more important
# of instructions,

branches, mispredicted branches
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_ TAGC
Section summary: What to take home

Figuring out the node topology is usually the hardest part
Virtual/physical cores, cache groups, cache parameters
This information is usually scattered across many sources
LIKWID-topology
One tool for all topology parameters
Supports Intel and AMD processors under Linux (currently)

Generic affinity tools

Taskset, numactl do not pin individual threads

Manual (explicit) pinning from within code
LIKWID-pin

Binds threads/processes to cores

Optional abstraction of strange numbering schemes (logical numbering)
LIKWID-perfctr

End-to-end hardware performance metric measurement

Finds out about basic architectural requirements of a program
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TACC

Tutorial outline _

= Introduction * Impact of processor/node
= Architecture of multisocket topology on performance
multicore systems = Bandwidth saturation effects
* Nomenclature = Case study: OpenMP sparse MVM
= Current developments as an example for bandwidth-
= Programming models bound code
= Multicore performance tools * Programming for ccNUMA
= Finding out about system topology ' O.penMP performa.nce |
= Affinity enforcement = Simultaneous multithreading (SMT)
= Performance counter = [ntranode vs. internode MPI
measurements = Case studies for shared memory
= Online demo: likwid tools (1) = Automatic parallelization
= topology = Pipeline parallel processing for
= BIN Gaul-Seidel solver
= Monitoring the binding = Wavefront temporal blocking of

stencil solver
= perfctr basics and best practices

= Summary: Node-level issues
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TACC

Live demo:

LIKWID tools
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Tutorial outline

TACC

= |ntroduction

= Architecture of multisocket
multicore systems

= Nomenclature
= Current developments
= Programming models
= Multicore performance tools
* Finding out about system topology
= Affinity enforcement
= Performance counter

measurements
= Online demo: likwid tools (1)
= topology
= pin

= Monitoring the binding
= perfctr basics and best practices

= Impact of processor/node
topology on performance

= Bandwidth saturation effects

= Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code

= Programming for ccNUMA

= OpenMP performance

= Simultaneous multithreading (SMT)
= Intranode vs. internode MPI

= Case studies for shared memory
= Automatic parallelization

= Pipeline parallel processing for
Gaul-Seidel solver

= Wavefront temporal blocking of
stencil solver

= Summary: Node-level issues

ISC11Tutorial
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General remarks on the performance
properties of multicore multisocket
systems




The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

for (int j=0; j < NITER; j++) {
#pragma omp parallel for
for(i=0; i < N; ++1i)
al[i]l]=b[i]+c[i]*d[i];
i f (OBSCURE)
dummy (a,b,c,d) ;
}

Report performance for different N

Choose NITER so that accurate time measurement is possible

ISC11Tutorial Performance programming on multicore-based systems
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The parallel vector triad benchmark TACGG
Optimal code on x86 machines

timing (&wct_ start, &cput start); // size = multiple of 8

#pragma omp parallel private (j) int vector size(int n) {

{ ] . ] return int(pow(1.3,n))&(-8);
for (j=0; j<niter; j++) { }

if (size > CACHE SIZE>>5) {
#pragma omp parattetr for
#pragma vector always
#pragma vector aligned > Large-N version (NT)
#pragma vector nontemporal
for (1=0; i<size; ++i)
al[i]=b[i]+c[i]*d[1]; <<
} else {
#pragma omp paxallel for

#pragma vector always

#pragma vector aligned > Small-N version
for (1=0; i<size; ++1i) (noNT)
a[i]=b[i]+c[i]*d[i]’
} _/

if(a[5]<0.0)
cout << a[3] << b[5] << ¢c[10] << d[6];
}

}
timing (&wct end, &cput end);

ISC11Tutorial Performance programming on multicore-based systems 53



The parallel vector triad benchmark
Performance results on Xeon 5160 node

5000 — - _
— serial

— OpenMP 1 thread

L1 performance model
OO = = = = = = = = = = = = = —
OMP overhead _
_—~ and/or lower

optimization w/ —
OpenMP active

3000

MFElop/s

2000

1000

0
10' 10° 10° 10" 10’ 10°
\— A__N AN _/
Y
L1 cache L2 cache memory
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

5000 — —
—— OpenMP 2 threads | socket
- |—— OpenMP 2 threads 2 sockets (sma") L2

4600 bottleneck |

| Py

3000 —

MFElop/s

2000 —

1000 |~ Aggregate

L2

D / | I | || | | L 1Tl || | [N | | | L 11111 | |
mlCross 10° 10 10" 10’ 10°
-ross- N

socket synch
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The parallel vector triad benchmark

Performance results on Xeon 5160 node

5000 —

OpenMP 4 threads inner parallel
B —— OpenMP 4 threads outer parallel

4000 —

3000 —

MFElop/s

2000 —

1000 —

Team restart

\

N

ISC11Tutorial

2 3

10 10

Performance programming on multicore-based systems

10

N

10

10




The parallel vector triad benchmark
Performance results on Xeon 5160 node

5000 — —
— OpenMP 4 threads outer parallel
| |—— OpenMP 4 threads outer parallel NT stores -

4000 —

3000 —

MFElop/s

2000 —

1000 —

{] | IIIIIII| | IIIIIII| | IIIIIII| ] ] LY | _L>

10' 10° 10” 10 e

N NT stores
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

— serial
:}’¥IS T TTTTT T T TTTT T T TTTTI
5000 — =
— 2T 28
i 4T
— 4T outer parallel
— 4T outer parallel NT stores
4000 -
@ 3000 — —
&
E - -
=
2000 — —
1000 —
() - 1 Lol Lol Lol ooz L>

10" 10’ 10° 10" 10 10

N
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MFlops/s , MB/s

Bandwidth limitations: Memory TACGG
Some problems get even worse....

System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s]
Typical balance ~ 0.25 Byte / Flop\é 4 Flop/Byte = 32 Flop/double

1E'+D5 L | I | I | I | I | I | I I | I @ I —
" |®—® Peak Bandwidth ° 1 Balance values:
- | OO Peak Flops ¢ i
i s - Scalar product:

(o000l o Core 2Quad 34 1 Flop/double
- Core 2 Duo 3.0 1 = 1/32 Peak
n ‘g —
! S

o E Dense
1000 O _
i =2 3 Matrix-Vector:
- ﬁ 1 2 Flop/double
Z e | - 1/16 Peak
P 200 E :
100 |- gé - Large

- | | | | | | | | | | | | | L | . MatrlxMatrIX

-
-
o
Mo
[ NN

1994 1996 1998 2000 2002 2004 2006 2008 2

year (BLAS3)
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Bandwidth saturation effects in cache and
memory

Low-level benchmark results



Bandwidth limitations: Main Memory TACC

Scalability of shared data paths inside NUMA domain (A (:)=B(:))
24 [ Westmere | | | | | | | |
2o O~ SandyBridge
20 -1 MagnyCours s

[ N
18 _—7
1 thread saturates
bandwidth

= 14
12
10
8

s T -

Saturation with
3 threads

_—

Bandwidth

1 thread cannot
saturate bandwidth

| | | | | | | | | | | |I"II | | | | | |
e

o N B

o
—
PO
w
I
o
(83

cores
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Bandwidth limitations: Outer-level cache TACG

Scalability of shared data paths in L3 cache
160 — . .
0=0 Westmere Sandy Bridge: | 1
OO0 SandyBridge| New design with
140|000 MagnyCours| segmented L3 cache load 7
= connected by wide ring =
1201 bus. Bandwidth scales! Westmere:
Queue-based sequential
- copy access. Bandwidth does
100+ not scale.
~{]]

Bandwidth [GB/s]
S 3
I I
I I

N
O
!

Magny Cours:
Exclusive cache with
larger overhead for

\

0 ' I ' I ' I | I | I streaming access.
0 1 2 3 4 9  Bandwidth scales on
cores low level. No difference

between load and copy.
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Case study:
OpenMP-parallel sparse matrix-vector

multiplication in depth

A simple (but sometimes not-so-simple)
example for bandwidth-bound code and
saturation effects in memory



_ _ TAGG
Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization,
solving linear systems)

Strongly memory-bound for large data sets
Streaming, with partially indirect access:

!SOMP parallel do

do i1 = 1,N_

do j = row ptr(i), row ptr(i+l) - 1
c(i) = c(i) + * b(col idx(3))

enddo

enddo

ISOMP end parallel do

Usually many spMVMs required to solve a problem

Following slides: Performance data on one 24-core AMD Magny
Cours node
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Application: Sparse matrix-vector multiply TACG
Strong scaling on one Magny-Cours node

Case 1: Large matrix

Coherent HyperTransport (16x+8x)

Memory

Memory
Memory

Intrasocket
bandwidth
bottleneck

ISC11Tutorial

8000

7000

6000

5000

4000

MFLOPS/s

3000

2000

1000

cant, 62451x62451, non-zero: 4007383

CRS-magnycour's ——

Good scaling
across sockets

MWl W W w wWilw e

threads
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 2: Medium size

Coherent HyperTransport (16x+8x)

Memory

Memory
Memory

Intrasocket
bandwidth
bottleneck

ISC11Tutorial

MFLOPS/s

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

TAGSC

mc2depi, 525825x525825, non-zero: 2100225

1 | | 1 — 1
CRS-magnycours —+
I Working set fits )
I in aggregate i
cache
O~ -
0 5 10 15 20 25

threads
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Application: Sparse matrix-vector multiply TAGG
Strong scaling on one Magny-Cours node

Case 3: Small size

Coherent HyperTransport (16x+8x)

Ae)[EF:
| a |l a
g ;_n_ E;: E rbs480a, 480x480, non-zero: 17088
= s ol a lge = 4500 T T T T
_— CRS-magnycours —+
=8 O o (5|3
_ __~___”_|g| e |la H - 4000 | B -
7 ala 3500 | \%_ ——
(=
5 ) a |l a ] 3000 | -
S §|clelel B2 o
H o[ F @
el g 2% :
LL
e uodmmdimiewd =
2000 -
No bandwidth Parallelization
bottleneck 1500 overhead -
dominates
1000 =
500 [ | [ | [ | [ |
0 5 10 15 20 25
threads
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Bandwidth-bound parallel algorithms: TAGC
Sparse MVM
Data storage format is crucial for performance properties

Most useful general format: Compressed Row Storage (CRS)
SpMVM is easily parallelizable in shared and distributed memory

For large problems, spMVM is HMeP
inevitably memory-bound N ,=92527872
Intra-LD saturation effect N= 6201600
on modern multicores
. M\
MPI-parallel spMVM is often
communication-bound
See hybrid part for what we

can do about this...
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TACC

SpMVM node performance model
Double precision CRS: doi=1,N.
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))
enddo ‘
enddo

/—\ 12424 /Ny, + K\ bytes
DP CRS code balance Bcrs = ( 5 ) lop
x quantifies extra traffic
for loading RHS more than _ (6—|— 12 n E) bytes |
once Nogr 2 ) flop

Predicted Performance = streamBW/Brg
Determine x by measuring performance and actual memory BW

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case
for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th,
2011, Anchorage, AK. Preprint: arXiv:1101.0091
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_ _ TAGG
Test matrices: Sparsity patterns

Analysis for HMeP matrix (N, =15) on Nehalem EP socket

BW used by spMVM kernel = 18.1 GB/s - should get = 2.66 Gflop/s
spMVM performance

Measured spMVM performance = 2.25 Gflop/s
Solve 2.25 Gflop/s = BW/Bggg for x=2.5

- 37.5 extra bytes per row

- RHS is loaded =6 times from memory, but each element is used N, =15
times

- about 25% of BW goes into RHS

Special formats that exploit features of the sparsity pattern are not
considered here
Symmetry

LJCTIIOT VIVUUNO

Subdiagonals (possibly w/ constant entries)
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TACG
Test systems
| Memory | Intel Westmere EP (Xeon 5650)

STREAM triad BW:
20.6 GB/s per domain

‘ Memory ‘

( Memory ) ( Memory )

———————————————————————————————————————————————

———————————————————————————————————————————————

AMD Magny Cours
(Opteron 6172)

STREAM triad BW:
12.8 GB/s per domain

(xg+x9l) nodsuei ] JodAH walayon

Coherent HyperTransport (16x+8x)

| Memory | | Memory |
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Node-level performance for HMeP: Westmere EP TACGC

(Xeon 5650) vs. Cray XE6 Magny Cours (Opteron 6172)
S50 P
B /
<<t bandwidth STREAM:Triad (Westmere) K
> > bandwidth STREAM:Triad (MagnyCours) )/ s
40 |-
! performance spMVM (HMeP -- Westmere) ;f;f.fﬂ 1.
- L performance spMVM (HMeP -- MagnyCours) ;/ ] 7 “g_
0 i , i H PTH
O, 301 aoross NUMA ”\ °G
- 18.1 GB/s domains ' % {5 g
E ' V1 &
© 2o} A==~ g% 4 €
IS . /.r" Cores useless for [, /s O
Pt computation! ¢§ 3
: ] Z N{ =
10 ZXRE
>~ fw%
7\
s % A
0 7N
1 1 AMD 1 node
Cores socket
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OpenMP sparse MVM: TAGG
Take-home messages

Yes, sparse MVM is usually memory-bound

This statement is insufficient for a full understanding of what’s
going on

Nonzeros (matrix data) may not take up 100% of bandwidth

We can figure out easily how often the RHS has to be loaded

A lot of research is put into bandwidth reduction optimizations for
sparse MVM

Symmetries, dense subblocks, subdiagonals,...

Bandwidth saturation - using all cores may not be required
There are free resources — what can we do with them?

Turn off/reduce clock frequency
Put to better use - see hybrid case studies
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< -1 TACC TS

Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes
First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touch



ccNUMA performance problems TACC
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local”
and "distributed” as possible?

Y . Y
Page placement is implemented in units of OS pages (often 4kB, possibly
more)
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Intel Nehalem EX 4-socket system
ccNUMA bandwidth map

0 1 2 3

15.5 GB/s

. 10.5 GB/s
123
0 2

Bandwidth map created with likwid-bench. All cores used in one
NUMA domain, memory is placed in a different NUMA domain.
Test case: simple copy A(:)=B(:), large arrays
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AMD Magny Cours 2-socket system
4 chips, two sockets

0 1 2 3

8.8 GB/s

5.0 GB/s

4.2 GB/s

1

ba

3
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AMD Magny Cours 4-socket system
Topology at its best?

0 1 2 3 4 5 6 7

8.7 GB/s

5.1 GB/s

4.3 GB/s

3.7 GB/s .

2.7 GB/s

2.0 GB/s
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ccNUMA locality tool numactl: TA@
How do we enforce some locality of access?

numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out
--preferred=<node> a.out

map pages only on <nodes>
map pages on <node>

and others if <node> is full
map pages round robin across
all <nodes>

-—-interleave=<nodes> a.out

H = H H I

Examples:

env OMP NUM THREADS=2 numactl --membind=0 -cpunodebind=1 ./stream

env OMP NUM THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?
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_ TAGG
ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch” means "write", not "allocate”

Example: Memory not
mapped here yet

double *huge = (double*)malloc (N*sizeof (double));

for (i=0; i<N; i++) // or i+=PAGE SIZE

huge[i] = 0.0; \

Mapping takes
place here

It is sufficient to touch a single item to map the entire page
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_ _ TAGC
Coding for Data Locality

The programmer must ensure that memory pages get mapped
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
|.e. we have to take a closer look at initialization code

Some non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s

double al[s]; // c99 feature
// where are the physical pages of a[] now???

}
Fine-tuning is possible (see later)

Prerequisite: Keep threads/pro
nt ( s ke

sses where they are
Affinity enforcement (pinning) is (

see earlier section)
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Coding for ccNUMA data locality

Simplest case: explicit initialization

TACC

integer,parameter
real*8 A(N), B(N)

A=0.d0

1SOMP parallel do

:: N=1000000

integer,parameter
real*8 A (N) , B(N)

ISOMP parallel do

do i =1, N
A(i)=0.d0

end do

ISOMP parallel do

:: N=1000000

schedule (static)

schedule (static)

do i=1, N do i =1, N
B(i) = function ( A(i) ) B(i) = function ( A(i) )
end do end do
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Coding for Data Locality

TAGSC

Sometimes initialization is not so obvious: I/O cannot be easily
parallelized, so "localize" arrays before 1/0

integer,parameter :: N=1000000

real*8 A(N), B(N)

READ (1000) A
ISOMP parallel do

integer,parameter :: N=1000000

real*8 A (N) , B (N)

ISOMP parallel do schedule(static)
do I =1, N
A(i1)=0.d0
end do

READ (1000) A
ISOMP parallel do schedule(static)

do I =1, N do I =1, N
B(i) = function ( A(i) ) B(i) = function ( A(1i) )
end do end do
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_ _ TAGC
Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to
be sure...

Imposes some constraints on possible optimizations (e.g. load balancing)

Presupposes that all worksharing loops with the same loop length have the
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable, more advanced methods may
be in order

How about global objects?
Better not use them
If communication vs. computation is favorabie, might consider properly
placed copies of global data
In C++, STL allocators provide an elegant solution (see hidden slides)
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Coding for Data Locality: ,°o°\
Placement of static arrays or arrays of objects OQ"\

Speaking of C++: Don't forget that constructors tend to touch the
data members of an object. Example:

class D {
double d;
public:
D (double d=0.0) throw() : d( d) {}
inline D operator+(const D& o) throw() {
return D (d+o.d) ;

}

inline D operator* (const D& o) throw() {
return D (d*o.d);
}
}i
— placement problem with
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Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that pfaces
the memory before constructors are called (PAGE_BITS = base-2 log of
pagesize)

template <class T> T* pnew(size t n) {
size t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE BITS;
char *p = new char[len];
#pragma omp parallel for schedule(static) private (ofs)
for (i=0; i<pages; ++i) {
ofs = static cast<size t>(i) << PAGE BITS;
plofs]=0;
}
#pragma omp parallel for schedule(static) private (ofs)
for (ofs=0; ofs<n; ++ofs) {
new (static_cast<void*> (pt+ofs*st)) T;

} T

return static cast<T*>(m); placement
} - new!

parallel first touch
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Coding for Data Locality:
NUMA allocator for parallel first touch in std: : vector<>

template <class T> class NUMA Allocator ({
public:
T* allocate(size type numObjects, const void
*localityHint=0) {
size type ofs,len = numObjects * sizeof (T);
void *m = malloc(len);
char *p = static cast<char*>(m);
int i,pages = len >> PAGE BITS;
#pragma omp parallel for schedule(static) private (ofs)
for (i=0; i<pages; ++i) {
ofs = static cast<size t>(i) << PAGE BITS;
plofs]=0;
}

return static cast<pointer>(m) ;

}

b Application:

vector<double,NUMA Allocator<double> > x(1000000)
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_ TAGG
Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:

Processes lose their association with the

CPU the mapping took place on originally

OS kernel tries to maintain strong affinity, but

sometimes fails !
Shared Memory Programming |
(OpenMP,...): = 7

Threads losing association with the CPU the ] ]
mapping took place on originally

Improper initialization of distributed data

All cases:

Other agents (e.g., OS kernel) may fill
memory with data that prevents optimal
placement of user data
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_ _ _ TAGG
Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your code...

Consider using performance counters
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP NUM THREADS=8 likwid-perfCtr -g MEM -c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out
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Using performance counters for diagnosing bad ccNUMA

access locality

Intel Nehalem EP node:

| INSTR RETIRED ANY
| CPU_CLK_UNHALTED CORE

|  UNC_QMC NORMAL READS ANY

| UNC_QMC WRITES FULL ANY

| UNC_QHL REQUESTS REMOTE READ
| UNC_QHL REQUESTS_ LOCAL_ READS

$-——_—_————e e = =

RDTSC timing: 0.827196 s

| Runtime [s]

| CPI

| Memory bandwidth [MBytes/s]
| Remote Read BW [MBytes/s]

ISC11Tutorial

S

Uncore events only

counted once per socket

Half of read BW comes
from other socket!

Fomm - e et dom - e et
| core 0 | core 1 | core 2 | core 3
et Fomm e et et
| 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08
| 1.90447e+09 | 1.90599e+09 | 1.90619%9e+09 | 1.90673e+09
| 8.17606e+07 | 0 | 0 | 0
| 5.53837e+07 | 0 | 0 | 0
| 6.84504e+07 | 0 | 0 | 0
| 6.82751e+07 | 0 | 0 | 0
o $om - o dom -
—————————— e et e e
core 0 | corel | core 2 | core 3 | core 4 |
—————————— e et e e
0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 |
3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 |
10610.8 | 0 | 0 | 0 | 10513.4 |
5296 | 0 | 0 | 0 | 5269.43 |
e - o e s +

.28269e+08
.90583e+09
.07797e+07
.51052e+07
.8107e+07

.76274e+07
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5.29083e+08
1.90746e+09

0

0

0

0
————————— +
core 7 |
————————— +
0.71515 |
3.60184 |
0 I
0 I
————————— +
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_ TACG
If all fails...

Even if all placement rules have been carefully observed, you may
still see nonlocal memory traffic. Reasons?

Program has erratic access patters > may still achieve some access
parallelism (see later)

OS has filled memory with buffer cache data:

# numactl --hardware # idle node!
available: 2 nodes (0-1)

node 0 size: 2047 MB
node 0 free: 906 MB -
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, 1load average: 0.00, 0.02, 0.00
Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

*****

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached
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ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache

If FS cache fills part of memory,
apps will probably allocate from
foreign domains

- non-local access!

“sync” is not sufficient to
drop buffer cache blocks

Remedies
Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical

memory before starting the real application
numactl tool can force local allocation (where applicable)

Linux: There is no way to limit the buffer cache size in standard kernels
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ccNUMA problems beyond first touch: TA@
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache

Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB
main memory

Run 4 concurrent

. 500
triads (512 MB each)
after writing a large BOT
file 4002
350
Report perfor- §300 e
mance vs. file size <250 o
=0
.g 200 T
= B Memory:
Drop FS cache after 150 =
- i O0—0 ccNUMA (2-socket Opteron 275) |
each data pOInt 100 B a—A UMA (2-socket Xeon 5150) B
50 ~
0 I ! ] ! ] ] ! ]
0 1000 2000 3000 4000

Disk Cache Size [MB] before running benchmark
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ISC11Tutorial

ccNUMA placement and erratic access patterns

Sometimes access patterns are
just not nicely grouped into
contiguous chunks:

double precision :: r, a(M)
1SOMP parallel do private(r)
do i=1,N
call RANDOM NUMBER(r)
ind = int(r * M) + 1
res(i) = res(i) + a(ind)
enddo
'OMP end parallel do

TACC

Or you have to use tasking/dynamic

scheduling:

1SOMP parallel
ISOMP single
do i=1,N
call RANDOM NUMBER (r)
if(r.le.0.5d0) then
1SOMP task
call do work with(p(i))
1SOMP end task
endif
enddo
1SOMP end single
1SOMP end parallel

In both cases page placement cannot easily be fixed for perfect parallel

dCCess

Performance programming on multicore-based systems

94



TAGG
ccNUMA placement and erratic access patterns
| Rl

Worth a try: Interleave memory across ccNUMA domains to get at least
some parallel access

Explicit placement:

ISOMP parallel do schedule(static,512)

do i=1,M .
= Observe page alignment of

a(i) = ..
enddo array to get proper
ISOMP end parallel do placement!
Using global control via numactl: This is for all memory, not
just the problematic
arrays!

numactl --interleave=0-3 ./a.out

Fine-grained program-controlled placement via 1ibnuma (Linux)
using, e.g., numa alloc interleaved subset(),
numa alloc interleaved () and others
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The curse and blessing of interleaved placement: TACG
OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

Parallel init: Correct parallel initialization
LDO: Force data into LDO via numactl -m 0O

Interleaved: numactl --interleave <LD range>

mparallelinit ®LD0O  minterleaved

120000

100000

80000

60000

40000

Bandwidth [Mbyte/s]

20000

1 2 3 4 5 6 7 8

# NUMA domains (6 threads per domain)
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< -1 TACC TS

OpenMP performance issues
on multicore

Synchronization (barrier) overhead



Welcome to the multi-‘/many-core era TACC
Synchronization of threads may be expensive!

1SOMP PARALLEL .. _ o
Threads are synchronized at explicit AND

| SOMP BARRIER implicit barriers. These are a main source of

1 SOMP DO overhead in OpenMP progams.
1SOMP ENDDO Determine costs via modified OpenMP
SOMP END PARALLEL Microbenchmarks testcase (epcc)

On x86 systems there is no hardware support for synchronization.

Tested synchronization constructs:
OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution

Test machines (Linux OS):

Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)

ISC11Tutorial Performance programming on multicore-based systems 98



Thread synchronization overhead TAGG

Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop
= BREA
4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) o977 814
gcc 4.4.3 41154 8075
Spin loop 1106 475

pthreads - OS kernel call ‘
Spin loop does fine for shared cache sync

OpenMP & Intel compiler

j Nehalem 2 Threads Shared SMT | shared L3 different socket
B[ [ threads

:, j pthreads_barrier_wait 23352 4796 49237

i i 2 omp barrier (icc 11.0) 2761 479 12006

“_3 Spin loop 17388 267 787

SMT can be a big performance problem for synchronizing threads
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Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:

!SOMP PARALLEL DO SCHEDULE (RUNTIME) REDUCTION (+:s)

do i=1,N

S = s + compute (i)
enddo o5
1SOMP END PARALLEL DO

N
(]

Choose N large so
that synchronization
overhead is negligible

compute() implements
purely computational
workload

—_
(@) ]

Performance [Mlterations/s]
=

= no bandwidth 5
effects
Run with 2 threads 0

B - 3 7
7 5 300f- :
| _“m—a 1S dynamic © ./I—I\Hﬂ_. -
o’ i 3
I 1S Stat'c § 2001~ B—8 1S dynamic 1
+—+ 1S guided & - B0 2S dynamic T
u o -a 2S dynamic © 100~ 0—0 28 static 1 -
. -O—O—0—0—0 1
O- -0 28 static | | | |
I &< 2S guided o= 4 16 64 |
I I | | | | |
1 2 4 8 16 32 64
Chunksize
100
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< -1 TACC TS

Simultaneous multithreading (SMT)

Principles and performance impact
Facts and fiction



SMT Makes a single physical core appear as two or more TA@
“logical” cores - multiple threads/processes run concurrently

SMT principle (2-way example):

Y
[T T ] _ —
. L{p | Registers @
o — | cache | A ™ <
o — L2 cache — — — =t
° || ] c
S — i -: g
° [T ] o
S L1 ~ L
» - - [ i
Memory . cache | Y
| | | |=—=| control =
I I ' ] I I
70 WZ%Z, L;;V/////////////g =<BZW%

- | 27 et LD Doy =
= %/ cache ~ =
> A L2 cache 7 = ‘ =
> @ - '{//;'{HVA ‘ W - g
2 vy ~—el D~ ~ TV T ¢

I: .A fr r 7,
‘z 7 %// A o

-7 2N /L1l v 2

%M % Y% % +é cache 7 Y e - -

emory 77 27m ,.,_,_,( 7, Control 4 >~
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_ TAGG
SMT impact B

i_

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, ...)
High data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths

Affinity matters!
If SMT is not needed

pin threads to physical cores
or switch it off via BIOS etc.

N\
X

Thread 0
Thread 1
Thread 2
Thread 2
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TACC

SMT impact

SMT adds another layer of topology
(inside the physical core)

Caveat: SMT threads share all caches!

Possible benefit: Better pipeline throughput
Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Westmere EP

Memory

Thread 0: Thread 1:
do i=1,N do i=1,N

a(i) = a(i-1)*c b(i) = func(i)*d
enddo / enddo \

Dependency - pipeline Unrelated work in other
stalls until previous MULT thread can fill the pipeline
is over bubbles

DAawwiara Cyuvans |-|-:r\n it All in A eceinAla thranAd dQ i=1_ _N

L)CVVGIC I_ACL:UL IH Iitail it a oll IUIU LHIncau 4 .

(if possible) may reach the same goal ;(?) = :(1‘1)_ *‘:d

without SMT: (1) = func(1)
enddo
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: TACC
SMT impact

Interesting case: SMT as an alternative to outer loop unrolling

Original code (badly pipelined) “Optimized” code
do i=1,N do i=1,N,2
! Tterations of j loop indep. ! Tterations of j loop indep.
do j=1,M do j=1,M
! !
! very complex loop body with ! loop body, 2 copies

many flops and massive
register dependencies
] ]

interleaved > better
pipeline utilization

enddo enddo
enddo enddo

This does not work!
Massive register use forbids outer loop unrolling: Register shortage/spill
Remedy: Parallelize one of the loops across virtual cores!
Each virtual core has its own register set, so SMT will fill the pipeline bubbles

J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein: Pushing the limits for medical image
reconstruction on recent standard multicore processors. Submitted. Preprint: arXiv:1104.5243
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. TAGG
SMT myths: Facts and fiction =

i_

Myth: “If the code is compute-bound, then the functional units
should be saturated and SMT should show no improvement.”

Truth: A compute-bound loop does not necessarily saturate the
pipelines; dependencies can cause a lot of bubbles, which may be
filled by SMT threads.

Myth: “If the code is memory-bound, SMT should help because it
can fill the bubbles left by waiting for data from memory.”

Truth: If all SMT threads wait for memory, nothing is gained. SMT
can help here only if the additional threads execute code that is
not waiting for memory.

Myth: “SMT can help bridge the latency to memory (more

ni1itet ndinﬂ rafaran ”

a ac)
Ouisiaiiuiiy iciciciivey).

Truth: Outstanding loads are a shared resource across all SMT
threads. SMT will not help.
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SMT: When it may help, and when not

Functional parallelization (see hybrid case studies)

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Strongly memory-bound code

ISC11Tutorial
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< -1 TACC TS

Understanding MPl communication in
multicore environments

Intranode vs. internode MPI
MPI Cartesian topologies and rank-subdomain
mapping



TACG
Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared
to internode

Reality
Intranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behavior

Other issues

Mapping between ranks, subdomains and cores with Cartesian MPI
topologies
Overlapping intranode with internode communication

ISC11Tutorial Performance programming on multicore-based systems 109



MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

5[:”:“2} ILLLLLILL | LU ILLLLLLLL ILLLLLLLL
o—0 QDR np2 7
oo QDR npd QDR Limit (4 GB/s)
40004 QDR np8
X% 3 DDR np2
— ¥ -3 DDR np4 B
7 DDR np8 2 R .
£ 3000 GBit np2 /"’( o9
= — GBit np4
£ GBit np8 i i
= P /?4 % ’DDR Limit (2 GB/s)
Z 2000 “ —
=
=
QDR/GBit ~ 30X s W R H—Ie K=
K.ﬂ"‘
1000 —
o0 AT X —
b1l |l .___nacnb_ti:‘..‘_’-_q’ha A e 4 1 ¥ 1 N NI
10 10° 10° 10° 10°
Message length [bytes)
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MPI and Multicores TACG
Clusters: Unidirectional intranode Ping-Pong bandwidth

Some BW
UILLLLLLLL | ILLLLLLL scalability for | INT TTTTTH IILLLULLLL
multi-intranode
connections
8000 = | %=X CS np2 - -1 Cross-Socket (CS)
% CS np4 _oR
- |0—0 IS np2 "-, \ i
O—0 IS np4 P " ] I
el o
: | | C
s “i —Jc i C
= , I——— W
= 4000 -
2
=)
g
= .
2000 = Intra-Socket (IS)
— | Single point-to-
[ v svii EEEERTTI [0 i _pOint BW similar

=2

0’ 107 10° 10° 108 to internode
Message length [bytes]

Mapping problem for most efficient communication paths!?
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“Best possible” MPI: TAGG
Minimizing cross-node communication

Example: Stencil solver with halo exchange

MPI Irecv()/
MPI Send()  MPI Wait ()

(N p

D_

/
/
/.
/
Z

Annna

o [o]=]=]=]

(3

Goal: Reduce inter-node halo traffic

Subdomains exchange halo with neighbors
Populate a node's ranks with “maximum neighboring” subdomains

TI.: B 2 ae R

I

— ' - LY S

iS minimizes a node's communication surface

7))

Shouldn’t MPI_CART CREATE (W/ reorder) take care of this?
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MPI rank-subdomain mapping in Cartesian topologies: TAGG

A 3D stencil solver and the growing number of cores per node
3007717171 | | | |
- - : : . “C bR MPI —
O—-0 Linear SD distribution .ib,‘;’:‘y".;‘;';,avio,
250~ |o-o Optimal SD distribution B

b

-

-}
|

Magny Cours 2-socket
Sun Niagara 2

For more details see
hybrid part!

W
3
e
= s
)] =
g s % 3 Magny Cours
150 - . S % ki 4-socket N
S | & 3 § 3 |
L (& N ! N e
3 -
¥ w3 Nehalem EX B
7z, 100 N o ©
E ¢ = 4-socket
» &8 & 9
.2 2 % i
o <
3 2
— o —
50— 8
f— ; —
0 | | | |

|
24 8 12 16 24 32 48 64
# cores per node
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_ TAGC
Section summary: What to take home

Bandwidth saturation is a reality, in OpenMP overhead
cache and memory Barrier (synchronization) often

Use knowledge to choose the
“right” number of
threads/processes per node

You must know where those
threads/processes should run

You must know the architectural
requirements of your application

dominates the loop overhead

Work distribution and sync
overhead is strongly topology-
dependent

Strong influence of compiler

Synchronizing threads on “logical
cores” (SMT threads) may be

ccNUMA architecture must be expensive
considered for bandwidth-bound Intranode MPI

ISC11Tutorial

Topology awareness, again
First touch page placement

Problems with dynamic
scheduling and tasking: Round-
robin placement is the “cheap
way out”

code May not be as fast as you

think...

Becomes more important as core
counts increase

May not be handled optimally by
your MPI library

Performance programming on multicore-based systems 114



Tutorial outline

TACC

= [ntroduction

= Architecture of multisocket
multicore systems

= Nomenclature
= Current developments
= Programming models
= Multicore performance tools
= Finding out about system topology
= Affinity enforcement
= Performance counter

measurements
= Online demo: likwid tools (1)
= topology
" pin

= Monitoring the binding
= perfctr basics and best practices

* Impact of processor/node
topology on performance

= Bandwidth saturation effects

= Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code

= Programming for ccNUMA

= OpenMP performance

= Simultaneous multithreading (SMT)
= Intranode vs. internode MPI

= Case studies for shared memory
= Automatic parallelization

= Pipeline parallel processing for
Gaul3-Seidel solver

= Wavefront temporal blocking of
stencil solver

= Summary: Node-level issues

ISC11Tutorial
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< -1 TACC TS

Automatic shared-memory parallelization:
What can the compiler do for you?




Common Lore TACC
Performance/Parallelization at the node level: Software does it

Automatic parallelization for moderate processor counts is known
for more than 15 years — simple testbed for modern multicores:

A A A \\i A
® & ® ¢ @

allocate( x(0:N+1,0:N+1,0:N+1) )
allocate( y(O:N+1,0:N+1,0:N+1) )

x=0.d0 "
y=0.d0
. somewhere in a subroutine ..
do k = 1,N ® & & & @
do j = 1,N Simple 3D 7-point stencil update(,Jacobi)
do i =1,N

y(i,3,k) = b*(x(i-1,3,k)+x(i+l,j, k)+ x(1i,3-1,k)+
x(i,j+1,k)+x(i,j, k-1)+x(i,J,k+1) )

enddo
enddo
enddo Performance Metric: Million Lattice Site Updates per second (MLUPSs)
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 24 Byte/LUP * MLUPs
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Common Lore TACC
Performance/Parallelization at the node level: Software does it

Intel Fortran compiler:
ifort -03 -xW -parallel -par-report2

Version 9.1. (admittedly an older one...)

Innermost i-loop is SIMD vectorized, which prevents compiler from auto-
parallelization: serial loop: line 141: not a parallel
candidate due to loop already vectorized

No other loop is parallelized...

Version 11.1. (the latest one...)

Outermost k-loop is parallelized: Jacobi 3D.F(139): (col. 10)
remark: LOOP WAS AUTO-PARALLELIZED.

Innermost i-loop is vectorized.

Most other loop structures are ignored by “parallelizer”, e.g. x=0.d0 and
y=0.d0: Jacobi 3D.F(37): (col. 16) remark: loop was not
parallelized: insufficient computational work
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Common Lore TACC
Performance/Parallelization at the node level: Software does it

PGI compiler (V 10.6)
pgf90 -tp nehalem-64 -fastsse —-Mconcur -Minfo=par,vect

Performs outer loop parallelization of k-loop
139, Parallel code generated with block distribution if

trip count 1s greater than or equal to 33

and vectorization of inner i-loop:
141, Generated 4 alternate loops for the loop Generated

vector sse code for the loop

Also the array instructions (x=0.d0; y=0.d0) used for initialization are

parallelized:
37, Parallel code generated with block distribution 1f

trip count 1s greater than or equal to 50

Version 7.2. does the same job but some switches must be adapted

gfortran: No automatic parallelization feature so far (?!)
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Common Lore
Performance/Parallelization at the node level: Software does it

2-socket Intel Xeon 5550 (Nehalem; 2.66 GHz) node

I
I
I
1C
e
I
I
I
I

—— single core {Intel / PGI} p——
o-—4 Intel V11.1 (4 threads) =

& — & Intel V11.1 (8 threads) Memory
1500 o—0 PGIV10.6. (4 threads) 36
== POTVIOG (8 threads) STREAM bandwidth:

Node: ~36-40 GB/s
Socket: ~17-20 GB/s

Performance
variations =2
Thread / core
affinity?!

GB/s

Intel: No
- scalability 4->8
threads?!

Cubic domain size: N=320 (blocking of j-loop)

1 | 1 | 1 | 1 | |
OD 20 40 60 80 108
run
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Controlling thread affinity / binding TACS
Intel / PGI compilers

Intel compiler controls thread-core affinity via KMP_AFFINITY
environment variable

KMP AFFINITY=“granularity=fine,compact,1l,0” packs the threads in

a blockwise fashion ignoring the SMT threads.
(equivalent to 1ikwid-pin -c 0-7)

Add ”"verbose” to get information at runtime

Cf. extensive Intel documentation

Disable when using other tools, e.g. likwid: KMP_AFFINITY=disabled
Builtin affinity does not work on non-Intel hardware

PGI compiler offers compiler options:
Mconcur=bind (binds threads to cores; link time option)

Mconcur=numa (prevents OS from process / thread migration; link time option)

Al alhAnit thranAd
Ul dvuul uiicauyu-

Interaction likwid €<-> PGl ?!

f-Fini-I-u

~Ara N
LUIT Aalliillity
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Thread binding and ccNUMA effects TACC
7-point 3D stencil on 2-socket Intel Nehalem system

Performance drops if 8 threads instead of 4 access a single memory domain:
Remote access of 4 through QPI!\
— single core

2000 | | | | #=—% Intel V11.1 {-parallel/ & threads / likwid)
o-—o Intel V11.1 (OpenMP / 4 threads / likowid)
s—= Intel V11.1 (OpenMP/ & threads / likwid)
B - = PGI V106 (-Mconcur=numa, bind £ 4 threads)
—_— PGI V106 (-Meooncur=mma, bind £ & threads)

—1 36

|
M
I
GB/s

............ R e T | = R T R R R e G R H R (R R T H I R R
SR SRR S H.';J‘ .

Scalabilty within socket (1 -> 4 cores): ~ 2x

Cubic domain size: N=320 (blocking of j-loop)

| | | | 1 | | | 1
20 40 60 80 1 08
Memory Memory run
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Thread binding and ccNUMA effects

7-point 3D stencil on 2-socket AMD Magny-Cours system

TAGSC

12-core Magny-Cours: A single socket holds two tightly HT-connected 6-core

chips - 2-socket system has 4 data locality domains

Cubic domain size: N=320 (blocking of j-loop)
OMP_SCHEDULE="static”

-
L

X
-

Performance [MLUPSs]
#threads | "-° | #sockets | Seral | Parallel
groups Init. Init.
1 1 1 221 221
6 1 1 512 512

ISC11Tutorial

3 levels of HT connections:
1.5x HT —1x HT - 0.5x HT
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Common Lore TACC
Performance/Parallelization at the node level: Software does it

Based on Jacobi performance results one could claim victory, but
increase complexity a bit, e.g. simple Gauss-Seidel instead of Jacobi

. somewhere in a subroutine ..

do k = 1,N
do j = 1,N
do i = 1,N
x(i,3,k) = b*(x(i-1,3,k)+x(i+1,5,k)+ x(i,5-1,k)+
x(i,3+1,k)+x(i,3,k-1)+ x(i,j, k+1) )
enddo
enddo A bit more complex 3D 7-point stencil
enddo

update(,Gauss-Seidel”)

Performance Metric: Million Lattice Site Updates per second (MLUPSs)

Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 16 Byte/LUP * MLUPs

Performance of Gauss-Seidel should be up to 1.5x faster than Jacobi if main
memory bandwidth is the limitation
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Common Lore TACC
Performance/Parallelization at the node level: Software does it

State of the art compilers do not parallelize GauB-Seidel iteration
scheme: loop was not parallelized: existence of
parallel dependence

That’s true but there are simple ways to remove the dependency
even for the lexicographic Gauss-Seidel

10 yrs+ Hitachi’s compiler supported “pipeline parallel processing”
(cf. later slides for more details on this technique)!

There seem to be major problems to optimize even the serial code
1 Intel Xeon X5550 (2.66 GHz) core

Reference: Jacobi
430 MLUPs

Intel V9.1. 290 MLUPs
Intel V11.1.072 345 MLUPs
pgfa0 V10.6. 149 MLUPs
pgfao V7.2.1 149 MLUPs

Target GauB-Seidel:
645 MLUPs
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Advanced OpenMP: Eliminating recursion

Parallelizing a 3D Gauss-Seidel solver by
pipeline parallel processing



The Gauss-Seidel algorithm in 3D

double precision, parameter :: osth=1/6.d0
do it=1,itmax ! number of iterations (sweeps)
! not parallelizable right away
do k=1, kmax
do =1, Jmax

do i=1,imax _.—" .

phi(i,Jj,k) = ( phi(1-1,73,k) + phi(i+1, ], k)
+ phi(i,3-1,k) + phi(i, j+1,k)
+ phi(i,3j,k-1) + phi(i,J,k+1) ) = osth
enddo
enddo
enddo
enddo

Not parallelizable by compiler or simple directives because of

lann_~arriad danandanaecwv
1IVUpP=Laiiicu UCpPCIiuciivy

Is it possible to eliminate the dependency?
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3D Gauss-Seidel parallelized

Pipeline parallel principle: Wind-up phase
Parallelize middle j-loop and shift thread execution in k-direction to account
for data dependencies T

Each diagonal (W,) is executed .-~ |
by t threads concurrentl}_{,_,.,-f-f-"”"

Threads sync
after each A
k-update

I
e e e e e e e e e e e

] % ;
.
H '
i \ )
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3D Gauss-Seidel parallelized

Full pipeline: All threads execute
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3D Gauss-Seidel parallelized: The code

'SOMP PARALLEL PRIVATE (k, j, 1, JjStart, jEnd, threadID)
threadID=0MP_GET_THREAD_NUM({)
I SOMP SINGLE
numThreads=0MP_GET_NUM_THREADS ()
| SOMP END SINGLE
jStart=jmax/numThreads*threadID
jEnd=7jStart+jmax/numThreads ! jmax is amultiple of numThreads
do 1=1, kmax+numThreads-1
k=1-threadID
if((k.ge.l).and. (k.le.kmax)) then

do j=jStart, jEnd ' this is the actual parallel loop
do 1=1, iMax
phi(i, J,k) = ( phi(1-1,3,k) + phi(i+l, j,k)
+ phi(i, j-1,k) + phi(i, j+1,k)
+ phi(1,3,k-1) + phi(i, J,k+1l) ) x osth
enddo

enddo

endif Global OpenMP barrier for
: / thread sync — better solutions
'SOMP BARRIER exist! (see hybrid part)
enddo

'SOMP END PARALLEL
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3D Gauss-Seidel parallelized: Performance results

ﬁ/ ‘__,/
7000
Performance model:
6000 6750 Mflop/s
(based on 18 GB/s
o 3000 STREAM bandwidth)
Q.
0 4000
[T
S 3000
2000 Intel Core i7-2600
1000 (“Sandy Bridge”)
0 3.4 GHz; 4 cores
Thread 1 s 4
0 z=1]E=2 Threads
1 [z=1]
p
3

Optimized Gauss-Seidel kernel! See:

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative stencil
computations. Journal of Computational Science 2 (2011) 130-137. DOI: 10.1016/j.jocs.2011.01.010,
Preprint: arXiv:1004.1741
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R
Parallel 3D Gauss-Seidel Qg@(\
o

Gauss-Seidel can also be parallelized using a red-black schenme

But: Data dependency representative for several linear (sparse)
solvers Ax=b arising from regular discretization
Example: Stone’s Strongly Implicit solver (SIP) based on incomplete
A ~ LU factorization
Still used in many CFD FV codes

L & U: Each contains 3 nonzero off-diagonals only!

Solving Lx=b or Ux=c has loop carried data dependencies similar
to GS - PPP useful
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< -1 TACC TS

Wavefront-parallel temporal blocking for
stencil algorithms

One example for truly “multicore-aware”
programming



Multicore awareness
Classic Approaches: Parallelize & reduce memory pressure

Multicore processors are still mostly programmed
the same way as classic n-way SMP single-core
compute nodes!

Simple 3D Jacobi stencil update (sweep): Memory

do j =1, Nj

do k =1 , Nk ® & & & @
do i =1, Ni )

y(i,j, k) = a*x(i,j, k) + b* é é
(x(i-1,3,k)+x(i+1,3,k)+
x(i,3-1,k)+x(i,3+1,k)+ o o o T@“
x(i,3,k-1)+x(i,j,k+1)) °

enddo i ‘) 0 ‘) ‘3 0
enddo
enddo

— = N N N

Performance Metric: Million Lattice Site Updates per second (MLUPS)
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs
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Multicore awareness

Standard sequential implementation

j-direction

k-direction

Cache

TAGSC

do t=1,t,.,
do k=1,N
do j=1,N
do i=1,N
yv(i,3,k) = ..
enddo
enddo
enddo

enddo

ISC11Tutorial Performance programming on multicore-based systems
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Multicore awareness TA@
Classical Approaches: Parallelize!

Cache

do t=1,t,,,
1SOMP PARALLEL DO private(..)
do k=1,N
do j=1,N
do i=1,N
yv(i,3,k) = ..
enddo
k-direction enddo
enddo
1SOMP END PARALLEL DO
enddo

j-direction
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Multicore awareness TACG
Parallelization — reuse data in cache between threads

Do not use domain
decomposition!

Instead shift 2"d thread by
three i-j planes and
proceed to the same
domain

- 2"d thread loads input
data from shared OL cache!

S Sync threads/cores after
o each k-iteration!
=
“Wavefront
k-direction Parallelization (WFP)”
coreO: x(:,:,k-1:k+1), 2> yv(:,:,k) g
corel:y(:,:, (k-3):(k-1)) .., 2> x(:,:,k-2),,,
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Multicore awareness TACG

WF parallelization — reuse data in cache between threads
- s ottt &
Use small ring buffer }

tmp(:,:,0:3) |
which fits into the cache I x( 1, :, 1)

|

Save main memory data
transfers fory (:,:,:) !

|

16 Byte / 2 LUP ! - ==

tmp( : , : ,0:3)
8 Byte / LUP !

Compare with optimal baseline (hontemporal stores on y):
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and
no overhead for OMP BARRIER after each k-iteration)
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Multicore awareness TACG

—

WF parallelization — reuse data in cache between threads A=

Thread 0: x(:,:,k-1:k+1), - tmp(:,:,mod(k,4))

Thread 1: tmp (:, : ,mod (k-3,4) :mod (k-1,4)) > x(:,:,k-2).,,

Performance model including finite cache bandwidth (B)

Time for 2 LUP:

T, up = 16 Byte/B,, + x * 8 Byte / B = T, (1 + x/2 * B/By)

i

!

tmp(:,:,O:I3)

ISC11Tutorial

Minimum value: x =2

Speed-Up vs. baseline: Sy, = 2*T /T, yp
=2/(1+ By/B.)

B and B,, are measured in saturation runs:
Clovertown: By,/B; = 1/12 - Sy =1.85
Nehalem :By/B:=14 > S, =1.6
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Jacobi solver TACGG
WFP: Propagating four wavefronts on native quadcores (1x4) _

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in
cache!

Max. performance gain (vs. optimal
baseline): tb = 4

Extensive use of cache bandwidth!
1 x 4 distribution

tmp1(0 3) | tmp2(0 3) 1| tmp3(0 3)
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Jacobi solver TACG

WF parallelization. New choices on native quad-cores _
Thread 0: x(:,:,k-1:k+1), - tmpl (mod(k,4))
Thread 1: tmpl (mod (k-3,4) :mod (k-1,4)) - tmp2 (mod (k-2,4))
Thread 2: tmp2 (mod (k-5,4 :mod (k-3,4) ) - tmp3 (mod (k-4,4))
Thread 3: tmp3 (mod (k-7,4) :mod (k-5,4)) > x(:,:,k-6),,,

1 x 4 distribution 2 x 2 distribution
o e
tmp1(0 3)| tmp2(0 3) | tmp3(0 3) tmpo( :, :| 0:3)
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Jacobi solver

Wavefront parallelization: L3 group Nehalem

140'0 [ K=2 ]

— 6.4 é- 4003
i \ . i ) MLUPs
o--o Standard; NoRFO * Qo b]=40
600 | w s w-front (b'=N) “ 48
B . W l“_ 7
400 N O—0 w-front {bfvz‘il'ﬂ} .‘-‘-‘_‘"_"ﬂﬂﬂ-ﬂ-if.x‘_._ 32 1 x 2 786
o0 w-ront (b’ =20)
i W o Nehalem )
200[- | wtont (b;=80) 1x4 I chip (4 cores) —1.6 2x2 1230
I %k w-front {b?=4ﬂ} ifort 11.0.074 2x2 distribution -
I 1 I 1 I 1 I 1 I 1 I
0 100 200 300 400 500 6000 1x4 1254
N

Performance model indicates some potential gain - new compiler tested.

Only marginal benefit when using 4 wavefronts = A single copy stream does not
achieve full bandwidth
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Multicore-aware parallelization
Wavefront — Jacobi on state-of-the art multicores

3250
i Core 2 2x2
3000 if} \ o—0 Nehalem EP 1x4
2750 L~ |stanbul 1xB
. fé a!i —O Westmere  1xB
2500 i = Nehalem EX 1x8
2250
2000
w
o 1750
-
1500
=

1250
1000
750
500

250

UU 100 200 300 400 200

size in all dimensions

Compare against optimal baseline!

Performance gain ~ B_,. = L3 bandwidth / memory bandwidth
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Multicore-specific features — Room for new ideas: TAGG
Wavefront parallelization of Gauss-Seidel solver

A{ Shared caches in Multi-Core processors
Fast thread synchronization
T Fast access to shared data structures

FD discretization of 3D Laplace equation:

Parallel lexicographical Gaul3-Seidel using
pipeline approach (“threaded”)

Combine threaded approach with wavefront
technique (“wavefront”)

threaded

18000 -
16000 - Intel Core i7-2600
on 14000 - 3.4 GHz; 4 cores
—
o
S
m— ™ Mthreaded
] Bmwavefront
Smmdgruupl ; ¢
Threadgroup 2 waverron 1 2 4 8
B moresdgroue 3 Threads TSMT
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_ TAGC
Section summary: What to take home

Auto-parallelization may work for simple problems, but it won’t
make us jobless in the near future

There are enough loop structures the compiler does not understand

Shared caches are the interesting new feature on current
multicore chips

Shared caches provide opportunities for fast synchronization (see sections
on OpenMP and intra-node MPI performance)

Parallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP

WFP technique can easily be extended to many regular stencil
based iterative methods, e.g.

Gaul-Seidel (= done)
Lattice-Boltzmann flow solvers (= work in progress)
Multigrid-smoother (= work in progress)
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TACC

Tutorial outline _

= Introduction = Impact of processor/node
= Architecture of multisocket topology on performance
multicore systems = Bandwidth saturation effects
* Nomenclature = Case study: OpenMP sparse MVM
= Current developments as an example for bandwidth-
= Programming models bound code
= Multicore performance tools * Programming for ccNUMA
= Finding out about system topology ' O.penMP performa.nce |
= Affinity enforcement = Simultaneous multithreading (SMT)
= Performance counter = [ntranode vs. internode MPI
measurements = Case studies for shared memory
= Online demo: likwid tools (1) = Automatic parallelization
= topology = Pipeline parallel processing for
= BN Gaul-Seidel solver
= Monitoring the binding = Wavefront temporal blocking of

stencil solver
= perfctr basics and best practices

= Summary: Node-level issues
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: : TAGG
Summary & Conclusions on node-level issues

Multicore/multisocket topology needs to be considered:
OpenMP performance
MP| communication parameters
Shared resources
Be aware of the architectural requirements of your code
Bandwidth vs. compute
Synchronization
Communication
Use appropriate tools
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfCtr
Lowlevel benchmarking: likwid-bench
Try to ieverage the new architecturai feature of modern muiticore
chips
Shared caches!
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Tutorial outline (2)

= Hybrid MPI/OpenMP
= MPI vs. OpenMP

= Thread-safety quality of MPI
libraries

= Strategies for combining MPI with
OpenMP

= Topology and mapping problems
= Potential opportunities
= Practical “How-tos” for hybrid

= Online demo: likwid tools (2)
= Advanced pinning
= Making bandwidth maps

= Using likwid-perfctr to find NUMA
problems and load imbalance

= likwid-perfctr internals
= likwid-perfscope

ISC11 Tutorial

TAGG
Case studies for hybrid
MPI/OpenMP

= Qverlap for hybrid sparse MVM

= The NAS parallel benchmarks
(NPB-M2)

= PIR3D - hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and
goodbye
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Tutorial outline

TACC

= Hybrid MPl/OpenMP
= MPI vs. OpenMP

= Thread-safety quality of MPI
libraries

= Strategies for combining MPI with
OpenMP

= Topology and mapping problems
= Potential opportunities
= Practical “How-tos” for hybrid

= Online demo: likwid tools (2)
= Advanced pinning
» Making bandwidth maps

» Using likwid-perfctr to find NUMA
problems and load imbalance

= likwid-perfctr internals
= likwid-perfscope

Case studies for hybrid
MPI/OpenMP

= Qverlap for hybrid sparse MVM

= The NAS parallel benchmarks
(NPB-MZ)

» PIR3D - hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and
goodbye

ISC11 Tutorial
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Clusters of Multicore Nodes

TAGSC

= Can hierarchical hardware benefit from a hierarchical
programming model?

Socket 1

Socket 2

| Quad-core_
CPU

Socket 1

CPU

| __Quad-core |

Socket 2

Core
CPU(socket)
ccNUMA node

Cluster of ccNUMA/SMP nodes

CPU

| Quad-core_

Node Interconnect

ISC11 Tutorial

L1 cache

L2 cache

Intranode network

Internode network
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MPI vs. OpenMP




Programming Models for SMP Clusters

Hybrid MPI+OpenMP

= Shared memory OpenMP

= Distributed memory MPI

Pure MPI (one process on each core)

Other: Virtual shared memory systems, PGAS, HPF, ...
Often hybrid programming (MPI+OpenMP) slower than pure MPI

TAGSC

= Why?
MPI local data in each process || OpenMP  (shared data) Master thread,
Sequential Q some_serial_code otherl threads
program on #pragma omp parallel for CELARY
each core for (j=...;...; _[++)

Explicit Message Passing
by calling MPI_Send & MPI|_Recv

block_to_be_par

again_some_serial _code

el Leu

eoe S|e:ep:ing eoe
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TACC

MPI Parallelization of Jacobi Solver
e

= Initialize MPI

CALL MPI_INIT (ierr)

= Domain decomposition ! Compute number of procs and myrank

= Compute local data

= Communicate shared

data

1D partitioning

ISC11 Tutorial

CALL MPI COMM SIZE (comm, p, ierr)

CALL MPI COMM RANK (comm, myrank, ierr)
'Main Loop

DO WHILE (.NOT.converged)

! compute
DO j=1, m local
DO i=1l, n

BLOC(i,3)=0.25* (ALOC(i-1,3)+
ALOC (i+1,3)+
AILOC(i,j-1)+
ALOC(i,j+1))
END DO
END DO
! Communicate
CALL MPI_SENDRECV(BLOC(1,1),n,
MPI_REAL, left, tag, ALOC(1,0),n,
MPI REAL, left, tag, comm,
status, ierr)
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OpenMP Parallelization of Jacobi Solver
=

'Main Loop
DO WHILE (.NOT.converged)

! Compute
!SOMP PARALLEL SHARED (A,B) PRIVATE (J,I)
1 SOMP DO
DO j=1, m
DO i=1, n
B(i,j)=0.25*(A(i-1,j)+
A(i+1l,3)+
A(i,j-1)+
implicit END DO A(i, j+1))
removablel END DO
barrier 1SOMP END DO
1 SOMP DO
DO j=1, m
DO i=1, n
A(i,j) = B(i,3)
END DO
END DO

1 SOAMD T'ND DO
. VVL'J.J: A=t LN LJ IS

1SOMP END PARALLEL
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mparison of MPI an nMP —
Comparison o and Ope
MPI OpenMP
= Memory Model = Memory Model
= Data private by default = Data shared by default
= Data accessed by multiple = Access to shared data requires
processes needs to be explicitly explicit synchronization
communicated : ..
. = Private data needs to be explicitly
= Program Execution declared
= Parallel execution starts with . :
MPI _Init, continues until Program E_xecutlon
MPI_Finalize = Fork-Join Model
= Parallelization Approach = Parallelization Approach:
= Typicall coarse grained, based on = Typically fine grained on loop level
dom_al.n decomposition = Based on compiler directives
= Explicitly programmed by user = Incremental approach

= All-or-nothing approach = Scalability limited to one shared
= Scalability possible across the memory node

whole cluster

= Performance: Manual parallelization
allows high optimization

= Performance dependent on
compiler quality
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Combining MPI and OpenMP:

= Simple Jacobi Solver
Example
= MPI parallelization in
j dimension
= OpenMP on i-loops
= All calls to MPI outside
of parallel regions

But what if it

noate marae

uvsv NI W

complicated?

ISC11 Tutorial
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TAGSC

Jacobi Solver

'Main Loop
DO WHILE (.NOT.converged)

! compute .
DO j=1 local length might be
1$OoMP PARALLEL DO small for many MPI procs

DO i=1, n

BLOC(i,3)=0.25* (ALOC(i-1,]j)+
ALOC(i+1,3)+
AIOC(i,j-1)+
ALOC(i,j+1))
END DO
'SOMP END PARALLEL DO
END DO
DO j=1, m
'SOMP PARALLEL DO
DO i=1l, n
ALOC (i, 3)
END DO
!SOMP END PARALLEL DO
END DO
CALL MPI SENDRECV (ALOC, ..
CALL MPI SENDRECV (BLOC, ..

BLOC (i, j)
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Support of Hybrid Programming

MPI OpenMP
= MPI-2: = API only for one execution
*=MPI Init Thread unit, which is one MPI process

= For example: No means to
specify the total number of
threads across several MPI
processes.

Request for
thread safety
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MPI2 MPI_Init_thread —
Init_

Syntax:

call MPI Init thread( irequired, iprovided, ierr)

int MPI Init thread(int *argc, char ***argv, int required, int *provided)

Support Levels Description
MPI_THREAD_ SINGLE Only one thread will execute
MPI_THREAD_ FUNNELED Process may be multi-threaded, but only main

thread will make MPI calls (calls are * " funneled"
to main thread). Default

MPI_THREAD SERIALIZED Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must

be '’ serialized").

MPI _THREAD MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, the highest supported level will be provided.
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Funneling through OMP Master

= Fortran

TAGSC

= C

include ‘mpif.h’
program hybmas

call mpi init thread (MPI THREAD FUNNELED,
.)

1SOMP parallel

ISOMP barrier
|SOMP master

!call MPI <whatever>(.., ierr)
! ster

1SOMP barrier

1SOMP end parallel\ $O|V|P master

end

does not have

implicit barrier

#include <mpi.h>
int main(int argc, char **argv) {
int rank, size, ierr, i;
ierr = MPI Init thread (...,
MP{_THREAQ_FUNNELED,...);
#pragma omp parallel
{
#pragma omp barrier
#pragma omp master

{

ierr:MP;m<Whatever>(m);

}

#pragma omp barrier
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Overlapping Communication and Work

= Fortran = C
include ‘mpi.h’ #include <mpi.h>
program hybover int main(int argc, char **argv) {
int rank, size, ierr, I;
call mpi init thread (MPI THREAD FUNNELED, ierr=MPI Init thread(...,
.) MPI THREAD FUNNELED,...);
1SOMP parallel #pragma omp parallel
if (ithread .eqg. 0) then {
call MPI <whatever>(..,ierr) if (thread == 0){
else ierr=MPI <Whatever>(..),
<work> }
endif else {
<work>
1SOMP end parallel }
end
}
}
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Funneling through OMP SINGLE

* Fortran = C

include ‘mpif.h’

program hybsing

call

mpi_init thread (MPI_THREAD FUNNELED,
-)

1SOMP parallel

'SOMP barrier
1SOMP single

call MPI <whatever>(..,ierr)
1SOMP end single

1SOMP end paralleI\\\\\\
end

#include <mpi.h>
int main(int argc, char **argv) {
int rank, size, ierr, i;
mpi init thread(..,
MPI THREAD FUNNELED,...)

#pragma omp parallel
{

#pragma omp barrier

#pragma omp single

{

ierr=MPI <Whatever>(..)

}

—

$OMP single has
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Thread-rank Communication

call mpi init thread( .. MPI_THREAD MULTIPLE, iprovided, ierr)
call mpi comm rank (MPI COMM WORLD, irank, ierr)
call mpl_comm;51ze(MPI_COMM_WORLD nranks, ierr)

ISOMP parallel private (i, ithread, nthreads)

nthreads = OMP_GET NUM THREADS () :
ithread = OMP GET THREAD NUM() Communicate between ranks.

call pwork(ith;éadT irank, nthreads, éiifff’}////
if (irank == 0) then

call mpi send(ithread,1l,MPI INTEGER, (l1/|(ithread{MPI COMM WORLD, ierr)
else

call mpi_recv ( j,1,MPI_INTEGER, |0,| ithread|MPI_COMM WORLD,
istatus,ierr)

print*, "Yep, this is " ,irank," threadg/ ", ithread,
" I received from ", j

’

endif

Threads use tags to differentiate.
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Strategies/options for Combining MPI
with OpenMP

Topology and Mapping Problems
Potential Opportunities



Different Strategies to Combine MPI and OpenMP

|

TAGSC

pure MPI
one MPI process
on each core

hybrid MPI+OpenMP
MPI: inter/intra-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

—

—

/\

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

\

Overlapping Comm. + Comp.
MPI communication by one or a few threads
while other threads are computing

|

Masteronly
MPI only outside
of parallel regions

SINGLE

\_

/\

/

Funneled
MPI only
on master-thread

Multiple
more than one thread
may communicate

ISC11 Tutorial

UNNELED

Performance programming on multicore-based systems

N —
4 s . )
Funneled & Funneled Multiple & Multiple
Reserved with Reserved with
thread ruifLoad threads for Full Load
for communication|| Balancing communication Balancing

YMULTIPLE

J
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Modes of Hybrid Operation
Pure MPI ' Fully Hybrid
4 MPI Tasks 1 MPI Task
16 MPI Tasks 4Threads/Task 16 Threads/Task

Master Thread of MPI Task
B MPI Task on Core

.J Master Thread of MPI Task
] Slave Thread of MPI Task

ISC11 Tutorial Performance programming on multicore-based systems 166



pure MPI

The Topology Problem with one MPI process
on each core

Application example on 80 cores: 10
= Cartesian application with 5 x 16 = 80 sub-domains g g eccece
" On system with 10 x dual socket x quad-core 0 O

o] [1] [2] [3]4] [5] [e] [7li-[8] [o] [1d [11—h2] [13] (14 [15

16 [17 [1 [19—po] [21] [22 [23)-|[24 [25 [2d [27—f28] [29 [30] [31

| |
32| (33 (34 El—se 37| (38| [39[|-[l40] [41 |42 §|—1|44 45 46| |47
| |

[ | [ |
48] [49 (50 [51—52] [53 [54] |[55||-|l56] (57 [5d [59—60| [61] [62 [63
[ | [ | [ | [ |

l64 [65 [6d [67—es] 69 [70] [7ll-l[72] [73 [74 [75—e| [r7] [re] [79)

+ 17 xinter-node connections per node Sequential ranking of
— 1 xinter-socket connection per node =~ MPI_COMM_WORLD

ra W)
L LI = B RN N N

Does it matter?
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pure MPI

The Topology Problem with one MPI process
on each core

Application example on 80 cores:
= Cartesian application with 5 x 16 = 80 sub-domains

JIJ
" On system with 10 x dual socket x quad-core
AHBHCHDHEHFHGHHEHTHJHA F
[ I L L T L 1 “\'g\--l
o e getat Ty
-GS et W - -ori
[ \,e( (¢ FHGHHHIHJHAHBHCHD
[ ANe [ L T L I I T ]
EFF [HIHAHBHCHDHEHFHGHHHTHU
+ 32 xinter-node connections per node Round robin ranking of

- - - == = " -~ LI I g

— 0 xinter-socket connection per node MPI_COMM_WORLD
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pure MPI

The Topology Problem with | ;¢ mpi process

on each core

Application example on 80 cores:
= Cartesian application with 5 x 16 = 80 sub-domains

. 1 O
= On system with 10 x dual socket x quad-core O
ol [1] [2] [3]Hl[4] [5] [e] [7]/A(8] [9] [1d [14|H[12] [13 [14 [15
i ¢+ 1r 1 (32§ 1 1|41 1 |
he| (17| [18| [9l|H|Ro| [21] [22] [23||H|24| [25| [26| [27||H|28| [29] [30] [31
32| |33 (34 |[35|H|[36] (37 (38 |[39|M(40| (41 (42 [43|H|44| [45 |46 |47
¢+ 1r 1 141 1 1j\+.-—1 1 |
4] [a9] [50] [51||H(62] [63| [54] [B5||H(66] [57] [58] [B9||H[60] [61] [62] [63
64 [65 [66 [67—68] [69] [70] F1l|H[72] [73 [74 [75~e] [77] [78] [79)

4+ 12 xinter-node connections per node

+ 4 x inter-socket connection per node

L LI = B RN N N

ISC11 Tutorial

Two levels of

domain decomposition

E N NP N

Bad affinity of cores to thread ranks
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pure MPI

The Topology Problem with one MPI process
on each core

Application example on 80 cores:
= Cartesian application with 5 x 16 = 80 subdomains concne
" On system with 10 x dual socket x quad-core

i
][]

[1 [
[] []

0 112 3Rl 4 S|T 16 71nIL8 om0 [Nty (314 (15

16| (17118 [9||H|[20] [21ff22| [23]|M|24] [251=126] [27I[H(28] [29r30] (31

32| (3334 [B5||H(36] [37T38| [39||H|[40| [41ii42] [43||MH|i44 [45T46| 47

48| 4950 [B1||HI[52| [53t=t54] [55||H|56| [57Hi(58| [59||HIE0| |B1F=62| 63

64 [69 [68 [67+bs] [69 [70| FAHI72 [73 [74 [79+—76] [77] [78] [79

+ 12 xinter-node connections per node Two levels of
+ 2 xinter-socket connection per node ' domain decomposition

L LI = B RN N N E N NP N

Good affinity of cores to thread ranks
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Hybrid Mode: Sleeping threads and network saturation

with

parallel regions

Masteronly
MPI only outside of

for (iteration ....)

{

#pragma omp parallel
numerical code
[*end omp parallel */

[* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)
MPI_Recv (halo data
from the neighbors)
} /*end for loop

ISC11 Tutorial

( SMP node SMP node
Socket 1 Socket 1
hVIaster |Master

(thread thread
<
.......... o\og = o\og .
o e
2 >

Node Interconnect

TAGSC

Problem 1:
= Can the master thread
saturate the network?
Solution:
= Use mixed
model, i.e., several MPI
processes per SMP node

Problem 2:

= Sleeping threads are
wasting CPU time

Solution:

= |If funneling is suported
use overlap of
computation and
communication

Problem 1&2 together:
= Producing more idle time
through lousy bandwidth
of master thread
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Pure MPI and Mixed Model

* Problem:
= Contention for network access

= MPI library must use appropriate
fabrics / protocol for intra/inter-node communication

= |Intra-node bandwidth higher than inter-node bandwidth

= MPI jmplementation may cause unnecessary
data copying - waste of memory bandwidth

* Ingrease memory requirements due to MPI buffer space

xed Model:

= Need to control process and thread placement
= Consider cache hierarchies to optimize thread execution

... but maybe not as much as you
think!

ISC11 Tutorial

16 MPI Tasks

4 MPI Tasks
4Threads/Task
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TACC

Fully Hybrid Model

Problem 1: Can the master thread saturate
the network? 1 MPI Task
Problem 2: Many Sleeping threads are wasting 16Threads/Task
CPU time during communication

Problem 1&2 together:
= Producing more idle time through lousy
bandwidth of master thread

Possible solutions:
= Use mixed model (several MPI per SMP)?
= If funneling is supported: Overlap commun|Cat|on/computat|on’?

= Both of the above?

Problem 3:
= Remote memory access impacts the OpenMP performance

Possible solution:
= Control memory page placement to minimize impact of remote access
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Other challenges for Hybrid Programming
—_

Multicore / multisocket anisotropy effects
= Bandwidth bottlenecks, shared caches

= |ntra-node MPI performance
= Core < core vs. socket « socket

= OpenMP loop overhead depends on mutual position of threads in team
Non-Uniform Memory Access:

= Not all memory access is equal
ccNUMA locality effects

= Penalties for inter-LD access

= Impact of contention

= Consequences of file 1/0 for page placement

= Placement of MPI buffers

Where do threads/processes and memory allocations go?
= Scheduling Affinity and Memory Policy can be changed within code with

(sched_get/setaffinity, get/set_memory_policy)
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Example: Sun Constellation Cluster Ranger (TACC)
—_

Highly hierarchical
= Shared Memory:

= 16 way cache-coherent, Non-uniform
memory access (ccNUMA) node

= Distributed Memory:
= Network of ccNUMA nodes

= Core-to-Core

= Socket-to-Socket

= Node-to-Node

= Chassis-to-chassis
Unsymmetric:
2 Sockets have 3 HT connected to neighbors o .._.- =

1 Socket has 2 connections to neighbors, Core core  Core Core
1 to network 1 ": :ﬂ 0

1 Socket has 2 connections to neighbors

INS
_
|
|

EE EHE

[ X1
HE HE
i -I.

}40M1aU

[

T
[HH
X1

N9
I |
| (@)
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MPI ping-pong microbenchmark
results on Ranger

" Inside one node:
Ping-pong socket 0 with 1, 2, 3
and 1, 2, or 4 simultaneous comm.

1400

1200

1000

800

600

A00

On-Node Communication Scaling (between 2 Sockets)

(quad-core)

» Missing Connection: Communication
between socket 0 and 3 is slower

» Maximum bandwidth:
1 x 1180, 2 x 730, 4 x 300 MB/s

= Node-to-node inside one chassis
with 1-6 node-pairs (= 2-12 procs) N
» Perfect scaling for up to 6 simultaneous comn
» Max. bandwidth : 6 x 900 MB/s

= Chassis to chassis (distance: 7 hops) with 1 M
simultaneous communication links
» Max: 2 x 900 up to 12 x 450 MB/s

Effe¢tive Bandwidth (MB/s)

Effective Bandwidth (MB/s)

200

1000

800

600

400

200

Exploiting Multi-Level Parallelism on the Sun % Ve

Constellation System”, L. Koesterke, et al., TACC,
TeraGrid08 Paper

ISC11 Tutorial Performance programmi

Bandwidth per Communication

Channel (MB/s)

[z}
o
o

B
o
(=]

]
[=]
o

0

0.1kB 1KB 10kB 100kB iMmB 10mB

On NEM Node-2-Node Communication Scaling

0.1kB 1B 10kB 100 kB 1MB 10mB

NEM to NEM Scaling Performance

0.1kB 1KB 10KB 100kB 1mB 10mB
Message Size




ACC
Overlapping Communication and Work
| —p—

= One core can saturate the PCle €->network bus.
Why use all to communicate?

= Communicate with one or several cores.
= Work with others during communication.

= Need at least MPI THREAD FUNNELED support.

Can be difficult to manage and load balance!
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Overlapping communication and computation
=
Three problems Overlapping
1. The application problem: Communication and
= one must separate application into: Computation
= code that can run before the halo data is mPI c;omr?]‘jn'cf:]'ontﬁy oze or a few
received rea S.W e other tnreads are
computing
= code that needs halo data

=>very hard to do !!!

2. The thread-rank problem: [if (my thread rank < 1) {
= comm. / comp. via thread-rank| MPI_Send/Recv...

= cannot use } else {
Worksharing directives my range = (high-low-1)/(num threads-1)+1;
=>loss of maj or my low = low + (my thread rank+l)*my range;
OpenMP support my high=high+ (my thread rank+1l+l)*my range;
(see next slide) my high = max(high, my_high)
for (i=my low; i<my high; i++) {
2 The load balancinad
v 111€ 1VaAau Udldllblllu
probl }
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New in OpenMP 3.0: TASK Construct

= Purpose is to support the
OpenMP parallelization of while
loops

= Tasks are spawned when
'Somp task oOr #pragma
omp task is encountered

= Tasks are executed in an
undefined order

= Tasks can be explicitly waited
for by the use of ! Somp
taskwait

= Shows good potential for
overlapping computation with
communication and/or 10 (see
examples later on)

ISC11 Tutorial

TAGSC

#pragma omp parallel ({
#pragma omp single private (p)
{
listhead ;
while (p) {
#pragma omp task
process (p)
p=next (p) ;
} // Implicit taskwait

p:
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Case study: Communication and Computation in Gyrokinetic TACC

Tokamak Simulation (GTS) shifter
MPI _Init MPI_Init
MPI process MPI process MPI process MPI process MPI process MPI process

Start l l Start l l l
treaddy OpenMP- b4 Comp- th readd OpenMP- ‘h\;““\ Comp-

| | parallel dol | = Uutation Tasking ; *o— utation
Merge__y = =
threads - Merge___,."' L I'ur ? u‘lﬁ \

J .
é % MPI comm- threads
unication
| | | | | MPI comm-
u 4 i #—1 LiI'_l unication
i y i y l

MPI_Finalize

sl

MPI_Finalize

A. Koniges et. al.: Application Acceleration on Current and Future Cray Platforms.

Presented at CUG 2010, Edinburgh, GB, May 24-27, 2010.
R. Preissl et. al.: Overlapping communication with computation using OpenMP tasks
on the GTS magnetic fusion code. Scientific Programming, I0S Press, Vol. 18, No. 3-4

(2010)

Slides courtesy of Alice Koniges, NERSC, LBNL
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Communication and Computation in Gyrokinetic Tokamak

Simulation (GTS) shift routine

do i1terations=1.,N

lcompute particles to be shifted
S8omp parallel do
shift_p=particles_to_shift(p_array);

'eommunicate amount of snifted
particles and reiurr if equal te 0
shift p=x4v

% MPL ALLREDUCE( shift p ,sum_shift_p);
m . 0 '
© if(sum_shift_p==0) ¢ return; }
2
S\'gack particle to move right and left
5 18omp parallel de

do m=1.x

sendright (m)=p_array (f(m)):
enddo

Somp parallel do

ue u—i,j
sendleft(n)=p_array(f(n));

enddo

}

der- remaining— partieles—= fi-+l
'_hole (p_array);

Lk

number of particles to move rig
SENDRECV(x,length=2,..);

to right and receive from left

Ln

=

SENDRECV(sendright ,length=g(x)

nirmbrer—af - rp aT-rFoTe 5 1D TTINTYE Eejf

9 SENDRECV(y,length=2,..);

rOo e frand "réeceive from " right_

11_SENDRECV(sendleft ,length=g(y) ,|.

t13ng shifted particles from right
np parallel do

13n=1,x
_array (h(m))=sendright (m);

17do

ng shifted particles from left ~
19™p parallel do

n=1,y
21_arra},'(h(n))=sendleft(n);
cuudo

Slides courtesy of Alice Koniges, NERSC, LBNL
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Overlapping can be achieved with OpenMP tasks (29 part)
=

!'Somp parallel

]

!'$omp parallel

' !'$Somp master 2
.$c:r;1p maste; 3 fadding shifted particles from right
| Omp fas ) ) do m=1.x—stride , stride 4
fill_hole(p_array); 'Somp - task
!Somp end task S ﬂuxnn:ﬂ.snide-—l.l 6
MPI_SENDRECV (x , length =2 ,..); 7 L U e St g
MPI SENDRECV ( sendright ,length=g(x) ,..); ISomp end task
MPL_SENDRECV(y,length=2,..); 9 enddo 10
! $omp end master !$omp task
!$omp end parallel 11 ‘do m=m, x 12
} p array(h(m))=sendright(m);
enddo 14
. . . . !$omp end task
Particle reordering of the remaining 16
MPI_SENDRECV( sendleft ,length=g(y) ,..):
!'Somp end master 18
!'$Somp end parallel
20
ladding shifted particles from left
!$omp parallel do 22
do n=1.y
p_array(hin))=sendleft(n); 24
enddo

lllllllllllllllllllllllllllllllllllll

Slides, courtesy of Alice Koniges, NERSC, LBNL
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Overlapping can be achieved with OpenMP tasks (15t part) =
| E
integer stride=1000 !pack particle to move left
!$omp paraliel 2 do n=1,y—stride , stride 18
!$omp master !$omp task
!pack parricle to move righr 4 do nn=0,stride —1,1 20
do m=1 .x—stride .stride sendleft (n+nn)=p_array (f(n+nn)):
' Somp ’ enddo 22
ISomp task 6 p
. I$omp end task
do mm=0_ stride —1._1
; _ enddo 24
sendright (mtmm)=p array (f(mumm)); 3 ' $om K
! p ras
enddo do n=n.,y 26
!Somp end task 10 sendleft (n)=p_array(f(n));
enddo enddo 28
I'somp rask 12 !$omp_end task
do m=m, x MPI_ ALLREDUCE(shift_p ,sum_shift_p); 30
sendright (m)=p_array (f(m)); 14 !'$omp end master
enddo !'$omp end parallel 32
I'$omp end task 16 if (sum_shift_p==0) { return; }

Overlapping MPI_Allreduce with particle work

« Overlap: Master thread encounters (!3omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

* MPI implementation has to support at least MPI_THREAD_ FUNNELED

« Subdividing tasks into smaller chunks to allow better load balancing and scalability
among threads. Slides, courtesy of Alice Koniges, NERSC, LBNL
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OpenMP tasking version outperforms original shifter, especially in TAGG
larger poloidal domains

256 size run 2048 size run
(mzetamax=) 124 ® 2 (=npartdom) imzetamax=) 128 x 16 (=npartdom)
300 250
250
. 200 M Tasking
— B Tasking —
w200 ] I Original
2 [ Original Ja, 30 rigina
o 150 @
E E 100
= 100 =
* 1 n ’ m
. - . |

shifter Allreduce  FillingHole SendRecv Shifter Allreduce  FillingHole  SendRecv

= Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI

pro-cess with varying domain decomposition and particles per cell on Franklin
Cray XT4.

= MPI communication in the shift phase uses a toroidal MPl communicator
(constantly 128).

= Large performance differences in the 256 MPI run compared to 2048 MPI run!

= Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands
CPUs since MPI communication is more expensive.
Slides, courtesy of

Alice Koniges, NERSC, LBNL
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Other Hybrid Programming Opportunities
| Rl

= Exploit hierarchical parallelism within the application:
= Coarse-grained parallelism implemented in MPI
= Fine-grained parallelism on loop level exploited through OpenMP

" Increase parallelism if coarse-grained parallelism is limited

* Improve load balancing, e.g. by restricting # MPI processes or
assigning different # threads to different MPI processes

= Lower the memory requirements by restricting the number of MPI
processes

= Lower requirements for replicated data
= Lower requirements for MPI buffer space

= Examples for all of this will be presented in the case studies
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Practical “How-Tos” for hybrid



TACC

How to compile, link and run
| E

Compiler usually invoked via a wrapper
script, e.g., “mpif90”’, “mpicc”
Use appropriate compiler flag to enable OpenMP
directives/pragmas:

-openmp (Intel), -mp (PGl), ~-gsmp=omp (IBM)
Link with MPI library

= Usually wrapped in MPI compiler script

= |f required, specify to link against thread-safe MPI library (Often
automatic when OpenMP or auto-parallelization is switched on)

Running the code
= Highly nonportable! Consult system docs! (if available...)
= |f you are on your own, consider the following points

= Make sure OMP_NUM THREADS efc. is available on all MPI processes
= E.g., start “env VAR VALUE . <YOUR BINARY>" instead of your binary alone

= Figure out how to start less MPI processes than cores on your nodes
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Compiling/Linking Examples (1)

= PGI (Portland Group compiler)
= mpif90 -fast -mp
= Pathscale :
= mpif90 -Ofast —openmp
= IBM Power 6:
" mpxlf r (-04 jgarch=pwr6 -gqtune=pwr6é -gsmp=omp

= [ntel Xeon Cluster:
* mpif90 —-openmp -02

High optimization
level is required
because enabling
OpenMP interferes
with compiler
optimization
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Compile/Run/Execute Examples (2)
—_

= NEC SX9

= NEC SX9 compiler

* mpif90 -C hopt -P openmp .. # —ftrace for profiling info
Execution:

export OMP NUM THREADS=<num threads>
MPIEXPORT="OMP NUM THREADS”

mpirun —-nn <# MPI procs per node> -nnp <# of nodes> a.out

v »n n =

= Standard x86 cluster:

= [ntel Compiler
* mpif90 —-openmp ..
= Execution (handling of OMP_NUM THREADS, see next slide):

$ mpirun ssh —-np <num MPI procs> -hostfile machines a.out
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Handling OMP_NUM_THREADS
—_

= without any support by mpirun:

= Problem (e.g. with mpich-1): mpirun has no features to export environment
variables to the via ssh automatically started MPI processes

= Solution:
export OMP NUM THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

= Problem: Setting OMP_NUM_THREADS individually for the MPI
processes:

= Solution:
test -s ~/myexports && . ~/myexports
in your ~/.bashrc
echo '$OMP NUM THREADS=<# threads per MPI process>' >
~/myexports
before invoking mpirun. Caution: Several invocations of mpirun cannot
be executed at the same time with this trick!
= with support, e.g. by OpenMPIl —x option:

avrnAard: OMD NITTM 'T'T.T'D'E'Af\Q— /'"' +hraad
cayu& | & \ /A=y &‘ U&J s &ddNdad £ AdLS widds G GLL

s pe
I

mpiexec —Xx OMP NUM THREADS -n <# MP

O K
(p]
O &
Q
(]
n
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Example: Constellation Cluster Ranger (TACC)

= Sun Constellation Cluster:
" mpif90 -fastsse -tp barcelona-64 -mp ..
= SGE Batch System
= ibrun numactl.sh a.out

= Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

TAGSC

#!'/bin/csh

#$ -pe 2way 512
setenv OMP NUM THREADS 8

ibrun numactl sh bt-mz-64.exe
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TACC

Example: Cray XT5

Cray XT5:

2 quad-core AMD Opteron per node ——__|
ftn -fastsse -mp (PGI compiler) B

Maximum of 8 threads per
MPI process on XT5

#!/bin/csh

#PBS -gq standard

#PBS -1 mppwidth=512

#PBS -1 walltime=00:30:00
module load xt-mpt

cd $PBS_O WORKDIR
setenv OMP NUM THREADS 8

aprun -n 64 -N 1 -d 8./bt-mz.6
setenv OMP NUM THREADS 4
aprun -n 128 -S 1 -d 4 ./bt-mz.
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TAGG
Example: Different Number of MPI Processes per Node (XT5)
L

= Usage Example:

= Different Components of an application require different resources, eg. Community
Climate System Model (CCSM)

aprun -n 8 - -d 1 ./ccsm.exe: -n

S 4 4 -S 2 -d 2 ccsm.exe : \
-n 2 -S1-d4 .ccsm.exe: -n 2 -N1-d4d8 ./

ccsm. exe

8 MPI Procs with 1 thread PE 0]: rank 0 is on nid00205 [PE 0] :
4 MPI Procs with 2 threads rank 1 is on nid00205 [PE 0]: rank 2
2 MPI Procs with 4 threads is on nid00205 [PE 0]: rank 3 is on
2 MPI Procs with 8 threads nid00205 [PE_0]: rank 4 is on

4
nid00205 [PE_O0]: rank 5 is on
nid00205 [PE 0]: rank 6 is on
nid00205 [PE_0]: rank 7 is on
nid00205 [PE 0]: rank 8 is on
export MPICH RANK REORDER DISPLAY=1 71400208 [PE 0]: rank 9 is on
nid00208 [PE 0]: rank 10 is on
nid00208 [PE 0]: rank 11 is on
nid00208 [PE 0O]: rank 12 is on
nid00209 [PE 0O]: rank 13 is on
nid00209 [PE 0]: rank 14 is on
nid00210 [PE_O0]: rank 15 is on
nid00211
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Example : IBM Power 6

= Hardware: 4.7GHz Power6 Processors, 150 Compute Nodes, 32
Cores per Node, 4800 Compute Cores

= mpxlf r @ garch=pwr6 -qtune=pwré6

enable OpenMP
Crucial for full optimization in

presence of OpenMP directives

#!'/bin/csh
#PBS -N bt-mz-16x4
#PBS -m be

#PBS -1 walltime=00:35:00

#PBS -1 select=2:ncpus=32:mpiprocs=8:ompthreads=4
#PBS -q standard

cd $PBS_O WORKDIR

setenv OMP NUM THREADS 4

poe ./bin/bt-mz.B.16
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TACC

Example : Intel Linux Cluster

#!/bash ScaliMPI
#PBS -gq standard

#PBS -j oe

cd $PBS_O WORKDIR

export OMP NUM THREAD /

#PBS -1 select=16:ncpus=4
mpirun -np 32 -npn 2 -affinity mode none ./bt-mz.C.32

#!/bash OpenMPI

#PBS -gq standard

#PBS -1 select=16:ncpus=4

#PBS -1 walltime=8:00:00

#PBS -j oe

cd $PBS_O WORKDIR

export OMP_NUM THREADS=2

mpirun -np 32 - -mz.C.32
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Topology choices with MPI/OpenMP:

One MPI process per node Lol el el | ta] te) el 1| Lol o] ) o) | ] o] el 1

env OMP NUM THREADS=8 mpirun -pernode \
likwid-pin -t intel -c N:0-7 ./a.out

One MPI process per socket e — r— i

env OMP NUM THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3 4,5,6,7" ./a.out

OpenMP threads pinned o ma moTm | B [ g ma] mal ma] |

m0m0m1m Imﬁm m1m1 :mgm msmallmzmzmamal

- I B T Tofb | T, T4 T, ] B4 Nt T T T b Ty To] T ] T4t

“round robin” across cores e ———— e s
in node env OMP NUM THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5 2,3,6,7" \
likwid-pin -t intel -c L:0,2,1,3 ./a.out

Two MPI processes per e e R ; e oy ;
socket | to] ] tof ] | to] 4] to] i) | to] ta] to] talt{ to] t4] to] t4]

env OMP NUM THREADS=2 mpirun -npernode 4 \
-pin "0,1 2,3 4,5 6,7" \
likwid-pin -t intel -c L:0,1 ./a.out
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TAGC
NUMA Control: Process and Memory Placement
| Rl

= Affinity and Policy can be changed externally through numactl at
the socket and core level.

Command: numactl <options> ./a.out

8,9,10,11 12,13,14,15

e EE
et
D¢
CeCT .
HE =

4,5,6,7 0,1,2,3

Pat

Socket References Core References
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TAGSC

NUMA Control: Process Placement

* Affinity and Policy can be changed externally throug
numactl at the socket and core level.

Command: numacti <options> ./a.out

8,9,10,11 12,13,14,15

Caution:
socket
numbering
system
dependent!

Socket References Core References

Example: numactl -N 1 ./a.out Example: numactl —c 0,1 ./a.out

Tutorial on Hybrid Programming PRACE Spring School 2011: Case Studies

723711 Tt
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TACC
Te=

NUMA Operations: Memory Placement

Memory allocation:
* MPI

— local allocation is best
* QOpenMP

— Interleave best for large, completely
shared arrays that are randomly
accessed by different threads

— local best for private arrays

*  Once allocated,
a memory-structure is fixed

Memory: Socket References

Example: numact]l -N 1 -1 ./a.out

Tutorlal on Hybrid Programming PRACE Spring School 2011: 12

3/23/11 Case Studles

06/19/09, Author:
Gabriele Jost
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TACC

Example: Numactl on Ranger Cluster (TACC)

Running BT-MZ Class D 128 MPI Procs, 8 threads

each, 2 MPI on each node on Ranger (TACC) 2 ”: 4‘ 3
HE =

Use of numactl for affinity: -I-X- i)

if [ $localrank == 0 ]; then ..0—0..

exec numactl \ 1 HE| Wl 0 2
--physcpubind=0,1,2,3,4,5,6,7 \ - I
-m 0’1 $* g ~

elif [ $localrank == 1 ]; then Rank 1

exec numactl \
-—-physcpubind=8,9,10,11,12,13,14,15 \
-m 2,3 $*

fi Rank 0

[

€

4,5,6,7 0,1,2,3
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TACC

Example: numactl on Lonestar Cluster at TACC
=

CPU type: Intel Core Westmere processor

khkkkkhkkkkkhkkkkhkkkkhkkkkhkkkkkhkkkkkhkkkkkhkkkkk

Hardware Thread Topology

khkkkkhkkkkkhkkkkhkkkkhkkkkhkhkkkkhkkkkkhkkkkkhkkkkk

Sockets: 2
Cores per socket: 6
Threads per core: 1

Socket 0: (1 35 7 9 11 )
Socket 1: (02 4 6 8 10 )

Half of the threads
access remote
memory

Running NPB BT-MZ Class D 128 MPI Procs, 6
threads each 2MPI per node

Pinning A:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,1,2,3,4,5 \
-m 0 $*

elif [ $localrank == 1 ]; then

exec numactl \
--physcpubind=6,7,8,9,10,11 \
-m 1 $*

£i 610 Gflop/s

Running 128 MPI Procs, 6 threads each

Pinning B:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,2,4,6,8,10 \
-m 0 $*

elif [ Slocalrank == 1 ]; then

exec numactl -physcpubind=1,3,5,7,9,11 \
-m 1 $*

£i 900 Gflop/s
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TACC

Lonestar Node Topology

P T S T T S T S S S S S o S R R R R R o R R o A R A A A A R A R A A R R A

Socket 0

+
+

likwid-topology

output

12HE

+
+

Socket 1

12HE
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Performance Statistics
e

= Important MPI Statistics: = Methods to Gather Statistics:

= Time spent in communication . S lina/Int t based Vi fi
= Time spent in synchronization ampiingrinterrupt based via a protiier

= Amount of data communicated, length of = Instrumentation of user code

messages, number of messages = Use of instrumented libraries, e.g.

* Communication pattern , instrumented MPI library
= Time spent in communication vs computation

= Workload balance between processes

* Important OpenMP Statistics:
= Time spent in parallel regions
= Time spent in work-sharing
= Workload distribution between threads
= Fork-Join Overhead

= General Statistics:

= Time spent in various subroutines

= Hardware Counter Information (CPU
cycles, cache misses, TLB misses, etc.)

= Memory Usage
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Examples of Performance Analysis Tools
| Rl

= Vendor Supported Software:
= CrayPat/Cray Apprentice2: Offered by Cray for the XT Systems.
= pgprof: Portland Group Performance Profiler
= |ntel Tracing Tools
= |BM xprofiler

* Public Domain Software:

see Case

= PAPI (Performance Application Programming Interface): .

= Support for reading hardware counters in a portable way StUdleS

= Basis for many tools

= http://icl.cs.utk.edu/papi/
= TAU: <«

= Portable profiling and tracing toolkit for performance analysis of parallel programs written in Fortran, C, C++ and

others

= University of Oregon, http://www.cs.uoregon.edu/research/tau/home.php
IPM (Integrated Performance Monitoring):

= Portable profiling infrastructure for parallel codes

= Provides a low-overhead performance summary of the computation

= http://ipm-hpc.sourceforge.net/
Scalasca:

= http://icl.cs.utk.edu/scalascal/index.html

Paraver:
= Barcelona Supersomputing Center
= http://www.bsc.es/plantillaA.php?cat_id=488
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Performance Tools Support for Hybrid Code

= Paraver tracing is done with
linking against (closed-source)
omptrace Or ompitrace

E‘i Avg. Vector length @ imd_mpi_nve_vec-bench_cu3au_1048k-16procs-16: — O X

| It.é:
1 jiEr

;
1 I
i34

* For Vampir/Vampirtrace performance analysis:
./configure —-enable-omp \
—enable-hyb \
-with-mpi-dir=/opt/OpenMPI/1.3-icc \
CC=icc F77=ifort FC=ifort
(Attention: does not wrap MPI_Init thread!)
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Scalasca — Example “Wait at Barrier”

File View

EXPERT: sweep3d.eap

Performance Properties

" Dynamic Call Tree

" Locations |

= 0.0 Total
=1 47.1 Execution

=l 2.4 MPI

= 0.0 Communication

0.0 Collective
0.0 Early Feduce
0.0 Late Broadcast
0.6 YWait at [ x [

2.7 PzP

0.0 Late Recefver

= 2.3 Late Sender
Ll 0.9 hessages in Virong Order

—- 0.0 1o

- 0.0 Synchronization

0.0 chap

1 0.0 Flush

—- 1.7 Fork

- 0.0 Synchronization

EH- 0.0 Barrier

[+ 0.0 Explicit

= 1.9 Implict
L[ 7.0 Walt at Barrier |

[ 0.0 Lock Competition

=1 0.0 driver
0.0 task_init
0.0 read_input
0.0 decomp
0.0 inner_auto
0.0 inner
0.0 initialize
0.0 barrier_sync
0.0 timers_
0.5 source
0.0 sweep
- 0.0 octant
- 0.0 roy real
EH- 0.0 Fomp parallel

- 7.3 %omp ibarrier
[ 0.0 snd_real

- 0.0 global int_ sum

- 0.3 flu_err

e 0.0 global_real sum

e 0.0 task end

B 0.0 Linwg Cluster

o0 0.0 zamDO8e3
=1 0.0 Process 0
—- 8.0 Thread 0
—l- 2.0 Thread 1
O 6.0 Thread 2
[ 8.7 Thread 3

8.0 Thread 0
1.8 Thread 1
6.7 Thread 2

. hread 3

8.1 Thread 0
1.8 Thread 1
7.0 Thread 2
3.7 Thread 3

[ 37.5 Idle Threads

Indication of
non-optimal load
g balance ) '
Screenshots, courtesy of KOJAK JSC, FZ Jilich

OhAP||
Il

1u| 20 a0 40 50
4:<4|
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Scalasca — Example “Wait at Barrier”, Solution

EXPERT: sweep3d dynamic 1.eap

(x|

File YView

Performance Properties " Dynamic Call Tree " Locations |

=1 0.0 Total
B 49.0 Execution
f—:} 2.3 MPI

= 0.0 Communication
0.0 Collective
III 0 Early Reduce
D.D Late Eroadcast
0.6 ‘Wait at [ = M
2.7 PzP
] I 0.0 Late Receiver
2 d Late Sender
LB 0.9 Messages in Wrong Order
- 0.0 G
B 0.0 Synchronization
)

1 Synchronization
0.0 Barrier
0.0 Explicit
= 1.4 Implict
LB { 7.3 Wal af Barrier |
[ 0.0 Lock Competition

[ 36.5 Idle Threads

= 0.0

‘IEI‘ 20 3EI| 4EI|

a0

driwer

0.0 task_init
0 read_input
decomp
inner_auto

fom e I

= 0.0 inner

0.0 initialize

0.0 barrier_sync

0.5 souwrce

0.0 timers_

0.0 sweep

- 0.0 octant

- 0.0 row_real

- 0.0 %omp parallel

O- 8.2 'Fomp ibarrier
- 0.0 snd_real

- 0.0 global int_sum

- 0.3 flu err

- 0.0 global real sum

1

e 0.0 task _end

= 0.0 Linw Cluster

=0 0.0 zamO0D8e3
=1 0.0 Process 0
- 5.2 Thread 0
- 7.9 Thread 1
- 49 Thread 2
‘I B.7 Thread 3
zamO08e4
0.0 Process 1
—O- 5.3 Thread 0
- 7.7 Thread 1
@ 5.1 Thread 2
I 7.1 Thread 3
zamiDOd8es
0.0 Process 2
- 5.2 Thread 0
O 7.7 Thread 1
—E- 5.1 Thread 2
[ 7.0 Thread 3
Zami08ek
0.0 Pr
O

;
e

;
e

=
as

55 3

Thread 0
B Thread 1
2.2 Thread 2
7.0 Thread 3

OMPI |
11

4x4|

with dynamic

ISC11 Tutorial

loop schedule

" Better load balancing

IIIISEIIIIIIIII

J

Screenshots, courtesy of KOJAK JSC, FZ Jilich
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MPI1/OpenMP hybrid “how-to”: Take-home messages
—_

= Be aware of inter/intra-node MPI behavior:
= available shared memory vs resource contention

= Observe the topology dependence of
* Inter/Intra-node MPI
= OpenMP overheads

= Enforce proper thread/process to core binding, using

appropriate tools (whatever you use, but use
SOMETHING)]

= OpenMP processes on ccNUMA nodes require correct
page placement
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Tutorial outline

TACC

= Hybrid MPl/OpenMP
* MPI vs. OpenMP

» Thread-safety quality of MPI
libraries

» Strategies for combining MPI with
OpenMP

» Topology and mapping problems
= Potential opportunities
= Practical “How-tos” for hybrid

" Online demo: likwid tools (2)
= Advanced pinning
= Making bandwidth maps

= Using likwid-perfctr to find NUMA
problems and load imbalance

= likwid-perfctr internals
= likwid-perfscope

Case studies for hybrid
MPI/OpenMP

= Qverlap for hybrid sparse MVM

= The NAS parallel benchmarks
(NPB-MZ)

» PIR3D - hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and
goodbye

ISC11 Tutorial
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TAGSC

Live demo:

LIKWID tools — advanced topics
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Tutorial outline

TACC

= Hybrid MPl/OpenMP
* MPI vs. OpenMP

» Thread-safety quality of MPI
libraries

» Strategies for combining MPI with
OpenMP

» Topology and mapping problems
= Potential opportunities
= Practical “How-tos” for hybrid

= Online demo: likwid tools (2)
= Advanced pinning
» Making bandwidth maps

» Using likwid-perfctr to find NUMA
problems and load imbalance

= likwid-perfctr internals
= likwid-perfscope

Case studies for hybrid
MPI/OpenMP

= Qverlap for hybrid sparse MVM

= The NAS parallel benchmarks
(NPB-M2)

= PIR3D - hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and
goodbye

ISC11 Tutorial
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Case study:
MPI/OpenMP hybrid parallel
sparse matrix-vector multiplication

A case for explicit overlap of communication and
computation



TAGSC

= Matrices in our test cases: N_, = 7...15 - RHS and LHS do matter!

= HM: Hostein-Hubbard Model (solid state physics), 6-site lattice, 6 electrons,
15 phonons, N, . =15

= SAMG: Adaptive Multigrid method, irregular discretization of Poisson stencil
on car geometry, N, .= 7

SpMVM test cases

HMeP "L, sAMG subblock
N, ,=92527872 ' N =160222796 occupancy

N= 22786800

N= 6201600 0.5
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TACC

Distributed-memory parallelization of spMVM

Local operation — no
communication
required

Nonlocal
> RHS
elements
for PO
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Distributed-memory parallelization of spMVM

= Variant 1: “Vector mode” without overlap

N-1
= Standard concept _ o [ o I
for “hybrid MPI+OpenMP” = g é
* Multithreaded computation - - - - - - s =
(all threads) j= = 9 =
Q =Rl — — — — — — © -
- = S @ =
= Communication only T S =
i | 3 & s =
outside of computation VP < 2 MPL MPL &

Irecv Isend Waitall

time
Benefit of threaded MPI process only due to message aggregation
and (probably) better load balancing

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,
May 4-7, 2009. PDF
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TAGG
Distributed-memory parallelization of spMVM
| Rl

= Variant 2: “Vector mode” with naive overlap (“good faith hybrid”)

= Relies on MPI to support N_1 - . %
asynchronous nonblocking | — — [ = ol —
point-to-point f-:: 2 % %
* Multithreaded computation , | - -} E o T e
(all threads) § = g S €
A ;. B G -
= Still simple programming kS E % E
= Drawback: Result vector o . o MPL & MPL_ =
is written twice to memory Irecv Isend Waitall &
= modified performance time

model
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TAGG
Distributed-memory parallelization of spMVM
| Rl

= Variant 3: “Task mode” with dedicated communication thread
= Explicit overlap, more complex to implement
One thread missing in —

team of compute threads | | § MPI_ MPL_ §

= But that doesn’t hurt here... § lsend Waitall §

= Using tasking seems simpler e § Q

but may require some o | = = Q o Q

work on NUMA locality =l S =\ 5 \

vl S o N 8 \

= Drawbacks = IR = Q

. - =l S o \= \

Result vector is written 5 2 \ = N

twice to memory -2 § = g

= No simple OpenMP a 5 o § @ §

worksharing (manual, I .

tasking) omp_barrier  omp_barrier time

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid
Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003.
DOI:10.1177/1094342003017001005

M. Wittmann and G. Hager: Optimizing ccNUMA locality for task-parallel execution under OpenMP and TBB on multicore-
based systems. Technical report. Preprint:arXiv:1101.0093

ISC11 Tutorial Performance programming on multicore-based systems 217



Advanced hybrid pinning: One MPI process per socket, TAGG
communication thread on virtual core (SMT)

OMP NUM THREADS=5 likwid-mpirun -np 4 -pin S0:0-3,9 S1:0-3,9 ./a.out

p
e e o) e e == e e e 5 5a)
| 32kB | [ 32kB | | 32kB | | 32kB | | 32kB | | 32B | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32B |
|256kB | |256kB | |256kB | |256kB | |256KB | |256KB | |256kB | |256kB | |256kB | |256KB | | 256kB | |256kB |
12 MB 12 MB
- J _ J

~

( N )
o e
|32k | | 32«8 | | 32kB | | 32kB | [ 32kB | | 32kB | [ 32k | | 328 | | 328 || 32«8 | | 32k | | 328 |
[256KB | |256KkB | |256kB | | 256K | |256KB | |256KB | |256kB | |256kB | |256KB | |256KB | | 256kB | |256KB |

12 MB 12 MB
\ ) N J

ISC11 Tutorial Performance programming on multicore-based systems 218



Results HMeP (strong scaling) on Westmere-based QDR

IB cluster (vs. Cray XEG6)

| 1 v | v 1 1 - 1 - | ] L v 1 v 1 - | |
_ (a) vector mode _ 1l 509 effici “
60 without overlap Tgsk mode uses 50% efficiency ;!
—_ . virtual core for ]| w/ respect to _\. d
D _ .. (b) vector mode w .. T /
3 50k naive overla 4 |k | communication ~' 4| best 1-noae / -
O — = (c) task mode @ 1 process/core || performance o
L .
O 40} best Cray 4 F -4 | -
@
c
S 30 ~F 41 F -
=
L 20 4 F 4 F -
'8'_ " A o
10 one MPI process 4 | one MPlprocess J L # one MPI process
_ per physical core per NUMA LD _ per node
0 | ] L ] L ] ] 2 ] 2 ] ] ] 2 ] 2 ] L ]
0 8 16 24 32 0 8 16 24 32 0 8 16 24 32
#nodes #nodes #nodes
= Dominated by communication (and some load imbalance for large #procs)
= Single-node Cray performance cannot be maintained beyond a few nodes
= Task mode pays off esp. with one process (12 threads) per node
= Task mode overlap (over-)compensates additional LHS traffic
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Results sAMG

120

(@
o

performance [GFlop/s]
(@)
o

W
o

- (a) vector mode 1 F 1 F -

without overlap
_ . (b) vector mode with
naive overlap

- — —. (c)task mode Ar 4 F -

best Cray -

i 1L 4 1L 1
one MPI process one MPI process one MPI process
per physical core 1 per NUMA LD per node

* | | 2 | ] | M | | | M | |

0 8 16 24 32 0 16 24 32 0 16 24 32
#nodes #nodes #nodes

* Much less communication-bound
= XEG6 outperforms Westmere cluster, can maintain good node performance
= Hardly any discernible difference as to # of threads per process
If pure MPI is good enough, don’t bother going hybrid!
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<ol TAGS HiEE

Case study:
The Multi-Zone NAS Parallel

Benchmarks (NPB-MZ)



TACC

The Multi-Zone NAS Parallel Benchmarks —
set up zones Nested
P MPI/OpenMP MLP OpenMP
y Time step sequential sequential sequential
initialize zonhes
inter-zones P e OpenMP
Processes Processes
¥ exchange data copy+
exchange boundaries eellllilA sync. SORilil>
boundaries
i intra-zones OpenMP OpenMP OpenMP
imestep

ZONes

" Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

“ Two hybrid sample implementations
" Load balance heuristics part of sample codes
" www.nas.nasa.gov/Resources/Software/software.html
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MPI/OpenMP BT-MZ

call omp set numthreads (weight)
do step = 1, itmax
call exch gbc(u, gbc, nx,..)

< call mpi_send/recv >

do zone = 1, num zones
if (iam .eq. pzone_id(zone)) then
call zsolve(u,rsd,..)
end if
end do

end do

subroutine zsolve (u,

1SOMP PARALLEL DEFAULT (SHARED)
| $OMP& PRIVATE (m,i,j,k...)

do k = 2, nz-1
1SOMP DO
do j = 2, ny-1

do i = 2, nx-1

dom=1, 5
u(m,i,j, k)=

dt*rsd(m,i,j, k-1)

end do
end do

end do

' SOMP
end

END DO nowait
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MPI1/OpenMP LU-MZ

call omp set numthreads (weight)
do step = 1, itmax
call exch gbc(u, gbc, nx,..)

(:::::: call mpi_send/recv ::::::)

do zone = 1, num zones
if (iam .eq. pzone id(zone)) then
call ssor
end if

end do

end do
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TACC

Pipelined Thread Execution in SSOR
—_
subroutine ssor subroutine syncl
!SOMP PARALLEL DEFAULT (SHARED) ..neigh = iam -1
1$OMP& PRIVATE (m,i,j,k...) do while (isync(neigh) .eq. 0)
call syncl (..) !$OMP FLUSH (isync)
do k = 2, nz-1 end do
1SOMP DO isync(neigh) = 0
do j = 2, ny-1 !SOMP FLUSH (isync)
do i = 2, nx-1
dom=1, 5 subroutine sync2
rsd(m,i,j, k)=
dt*rsd(m,i-1,3j-1,k-1) neigh = iam -1
end do do while (isync(neigh) .eq. 1)
end do !SOMP FLUSH (isync)
end do end do
1SOMP END DO nowait isync(neigh) =1
end do !SOMP FLUSH (isync)

call sync2 (..)

11 2 Y = )

1 $OMP END PARALLEL ‘PPP without global sync” —
cf. Gauss-Seidel example in
OpenMP section!

ISC11 Tutorial Performance programming on multicore-based systems 225



TACC
Benchmark Characteristics
= =

= Aggregate sizes:
= Class D: 1632 x 1216 x 34 grid points .
= Class E: 4224 x 3456 x 92 grid points Expectations:

= BT-MZ: (Block tridiagonal simulated CFD application) Pure MPI: Load )
= Alternative Directions Implicit (ADI) method balancin ioblems'
= #Zones: 1024 (D), 4096 (E) Good : Z'd f .
= Size of the zones varies widely: L ood candidate for

= large/small about 20 MPL+OpenP

= requires multi-level parallelism to achieve a good load-balance

= LU-MZ: (LU decomposition simulated CFD application)
= SSOR method (2D pipelined method)
=  #Zones: 16 (all Classes)
= Size of the zones identical:
= no load-balancing required
= [imited parallelism on outer level

Limited MPI )
Parallelism:
- MPI+OpenMP
increases Parallelism

= SP-MZ: (Scalar Pentadiagonal simulated CFD application)
= #Zones: 1024 (D), 4096 (E)

I\ W\

= Size of zones identical
= no load-balancing required

Load-balanced on
MPI level: Pure MPI
should perform best
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TACC

Benchmark Architectures
| E

= Sun Constellation (Ranger)

= Cray XTS5

= Cray XEG6

= |IBM Power 6
= Some miscellaneous others
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Sun Constellation Cluster Ranger

= Located at the Texas Advanced
Computing Center (TACC),
University of Texas at Austin
(http:/lIwww.tacc.utexas.edu)

= 3936 Sun Blades, 4 AMD Quad-
core 64bit 2.3GHz processors per
node (blade), 62976 cores total

= [InfiniBand Switch interconnect
= Sun Blade x6420 Compute Node:
= 4 Sockets per node
= 4 cores per socket
= HyperTransport System Bus
= 32GB memory

= http:/Iservices.tacc.utexas.edu/index.php/ran
ger-user-quide

ISC11 Tutorial

Control process
and memory
affinity!

TAGSC

Compilation: Enable
- PGl pgfa0 7.1 OpaVES
*= mpif90 -tp barcelona-64 -r8 -mp

Cache optimized benchmarks

Execution: Set number of
= MPI is MVAPICH

" setenv OMP NUM THREADS \
nthreads

i

" ibrun tacc affinity bt-mz.exe
numactl controls

( = Socket affinity: select sockets to run

= Core affinity: select cores within socket

= Memory policy:where to allocate
memory
=  http://www.halobates.de/numaapi3.pdf

Performance programming on multicore-based systems 228



NPB-MZ Class E Scalability on Ranger

TAGSC

NPB-MZ Class E Scalability on Sun Constellation / BT \
Significant improve-
5000000 N
4500000 || @ SP-MZ (MPI) — ment (235 A.))'
4000000 O SP-MZ MPI+OpenMP Load balancing
3500000 |0 BT-MZ (MPI) issues solved with
BT-MZ MPI+OpenMP
o 3000000 | " +Open \__MPI+OpenMP
g 2500000 4 SP I
2000000 1 L] Pure MPI is already
1500000 - load-balanced.
1000000 But hybrid
500000 T 9.6% faster, due to
0 | smaller message
1024 2048 rate at NIC
4 )
= Performance in Mflop/s 8192 max # of MP!
= We report pure MPI and the highest achieved hybrid L procs
performance Hybrid: N

= MPI/OpenMP outperforms pure MPI
= Use of numactl essential to achieve scalability

SP: still scales

. BT: does not scale
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Numactl - Pitfalls:
Using Threads across Sockets

bt-mz.1024x8 yields best workload
balance BUT:

#$ -pe 2way 8192 _# in batch script! Rank 1

export OMP NUM THREADS=8 # in batch script

In tacc_affinity:

Rank O

my rank=$PMI RANK
local rank=$(( Smy rank % $myway ))
numnode=$ (( $local rank + 1 ))

In original tacc affinity:

numactl -N $numnode -m $numnode $*

Bad performance!

= Processes bound to just one socket

= Each process runs 8 threads on 4 cores
= Memory allocated on one socket
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Numactl - Pitfalls:
Using Threads across Sockets

bt-mz.1024x8

export OMP_ NUM THREADS=8

my rank=$PMI RANK
local rank=$(( $my rank % $myway ))
numnode=$ (( $local rank + 1 ))

Oriqginal:
numactl -N $numnode -m $numnode $*

Modified:
if [ $local rank -eq 0 ]; then
numactl -N 0,3 -m 0,3 $*
else
numactl -N 1,2 -m 1,2 §$*

fi

Achieves Scalability!

lﬁf\t\t\f\t\ (B P aYatelravaldate f\l’\ e aValaaval s VieYaldatele

= rrocess uses cores ana IIICIIIUIy dlUl Voo L
sockets
= Suitable for 8 threads
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Using TAU on Ranger

" module load papi kojak pdtoolkit tau
= Compilation:

= Use a TAU Makefile which supports profiling of MPl and OpenMP, eqg:

" export TAU MAKEFILE=$TAU LIB/Makefile.tau-icpc-papi-mpi-pdt-
openmp-opari

= Use tau_ £90. sh to compile and link.

= Execution :
* export COUNTER1I=GET TIME OF DAY
* export COUNTER2=PAPI FP OPS
" export COUNER3=PAPI L2 DCM
" ibrun a.out /bt-mz.exe

= Generates performance statisitics:
* MULTI LINUX TIMERS
= MULTI_PAPI_FP OPS
= MULTI_PAPI L2 DCM

" View with paraprof (GUI) or pprof (text based)
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TACC

BT-MZ TAU Performance Statistics
[T==]

& N TAL
Options

ParaPrnof: Functinon Data Window: /scraten /00327 /gjost/NPREI . 3-MZ-MPI/S ULTI PA2 L2 DCM
Windows llelp = 3
% TAU: ParaProf: Function Data Window: /scratch/00921/gjost/NPB3.3-MZ-MPI/5...

ns Windows Help

File _
\J'a’ne: co [DpentF I'nn:aﬂnn: file:x_solwe. File Optio
Welric Mamre: FAPI_LZ _DZM
Walue: Exclusive

Mame: do [Opent P location: file:x_sakve. chk.f <54 406]
nits: caounts

L2DC |metric Mame: PAPILLZ _DEM
Walla: Exclusive
Initz: counts

L2 DCM for bad placement

[ Tl
2.1634E7 | =
2-1603e7 1 2.2613E7 | | nct12,0,0 = TTTHHITRE
éigiégi‘ Il 223081E7 | | nctd0,0 mmi
5 1466E7 | 2.2372E7 | | n,c,t68,0,0 T
S las7E7 | 2.2254E7 | | n,ct42,0,0
S 144967 | 2 208267 | | n,ct47,0,0 (LT T TR TTH

214267 | 219eE R 0111111~
. n,c,t 86,0,
2.1416E7 | 2.1661E7 | | ne12600 | LI
2. 140187 | 2 147E7 | | net117.0.0 | LR NN
2. 1397E7 | 2.1346E7 | | n,ct29,0,0 T THHE
2.138E7 | 2.1335E7 | ] n.c,t329,0,4 [T T
2.1254E7 | 2 1082E7 | | n,c 18800 ]:IIIIIE]EE
2.1244E7 | 2.1074E7 | | n,ct95,0,7
2 1329E7 | 2 1017E7 | | nctsgo1 || LI T
2.1324E7 | 2. 1008E7 | | nct6,0,0 T BT
2 1286E7 | 2.0899E7 | | nct31,0,4
2. 1266E7 | 2 .0889E7 | | n,c,t95,0,4 %
2.1254E7 | 2 0B36E7 | | nci680,2
2 1244E7 | 2.0756E7 | | n,ct96,0,3 T T T
2.1224E7 | 2.072E7 | | nct10,0,2 [ TR P
2.0706E7 | nct71,0,4
515335 : 2.0701E7 | | n,ct74,0,% %
2 12147 | 2.0687EY | | nct9602
151567 | 2 .0655E7 | | netozo0 | |TEECH EEETIE
5 1172E7 | 2 0653E7 | ] nct12,0,1 [TH T ST Yy
S 117E7 | 2.0652E7 | | nct72,03
S TeerT | 2.0651E7 | | nct4z,0,1
LA UL}LVI i \jll?fﬁll:};ll ITW T AL6NINVUINVL TV I . I—TEI'H] ﬂ1 J}/‘:
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Cray XTS5

" Results obtained by the courtesy of the HPCMO Program and the Engineer
Research and Development Center Major Shared Resource Center, Vicksburg, MS
(http://Iwww.erdc.hpc.mil/index)

Node

= Cray XT5 is located at the Arctic Region Supercomputing
Center (ARSC) (http://www.arsc.edu/resources/pingo)

= 432 Cray XT5 compute nodes with
= 32 GB of shared memory per node (4 GB per core)

= 2 quad core 2.3 GHz AMD Opteron processors
per node.

= 1 Seastar2+ Interconnect Module per node.

= Cray Seastar2+ Interconnect between all compute
and login nodes

)JoM)}au

NUMA Node
(Socket)
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Cray XT5: NPB-MZ Class D Scalability @@

i_

Results reported for
Class D on 256-2048 cores

3000
2048 cores ‘\
2500
= BT-MZ Gope _-® SP-MZ Pl scales up to
best of category\ 1024 cores
2000 7 4op MZ Gops \\ = SP-MZ MPI/OpenMP scales to
2048 cores
1024 core
£ 1500 . = SP-MZ MPI/OpenMP
© """ outperforms pure MPI for 1024
512 cores cores

1000 17256 cores

\
\
. \
E \
\
\

= BT-MZ MPI does, n

f--++ BT-MZ MPI/O
| ' 2048 cores

500

..... I
.

] ]
&P FE P B P P

MPIxOpenMP

Unexpected!
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TACC

LU-MZ Class D —
U-Mz Clas [TE=
= Kraken: Cray XT5
TeraGrid system at NICS/
" Cray XT5 (Kraken) University of Tennessee
w0 B = Two 2.6 GHz six-core AMD
W Cray XT5 Kraken Opteron processors
G= (Istanbul) per node

0 0 = 12-way SMP system
P s = 16 GB of memory per
S node

s = Cray SeaStar2+

|l I . interconnect

' i !
16x1 163 16xd Narts | compiler available!
MPIxOMP

o 16x1 on 192 cores: )
= Pure MPI limited to 16 processes 2x speed-up vs 16x1 on 16
= Hybrid MP1/OpenMP improves scalability cores
considerably BUT: 11 idle cores per
\node! )

ISC11 Tutorial Performance programming on multicore-based systems 236



CrayPat Performance Analysis (1)
| Rl

" module load perftools

= Compilation (PrgEnv-pgi):
= ftn -fastsse -tp barcelona-64 -r8 -mp=nonuma, [trace ]

= |Instrument:
"pat build -w [ -T TraceOmp], -g mpi,omp bt.exe bt.exe.inst

= Execution :
" export PAT RT HWPC={0,1,2,..}
" export OMP NUM THREADS=4
"aprun -n NPROCS -S 1 -d 4 ./bt.exe.inst

= Generate report:

" pat report \
-0 load balance,thread times,program time,mpi callers \
-0 proflle_pe th <tracefile>
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CrayPat Performance Analysis (2)

* How to obtain guidance for profiling instrumentation:

1.

Sampling-based profile with instrumentation suggestions:
pat build -0 apa a.out

Execution:
aprun -n NPROCS -S 1 -d 4 ./a.out+apa

Generate report:
pat report tracefile.xf

This will produce a file tracefile.apa with instrumentation
suggestions
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TAGG

Cray XT5: BT-MZ 32x4 Function Profile

| $0MP PARALLEL DEFAULTESHARED) PRIVATE(n.m.k.i.j ksize)
LE0MPE  SHRARED(d=5,dz4 .dz3,d=z2 . dz1,t=2 . tz1,dt ,c1345, 04 .03, cond 3, cacd . cl,
e e

C Compute the indices for stosgg the block-diagonal matrix:
C determing ¢ (labeled f) and = jacom

I:— - - - - - - - -

| $0MP D0
do j = 1, ny-2
do i =1, nx—Z
do k = 0, ksize

tmpl = 1,.d0 4 il i,j k)
tmpd = tmpl * tmpl
tmpd = tmpl * tmpZ

0,do
0,do
0,do
1.d0
0, di

ISC11 Tutorial




TACGGC
==

Cray XT5: BT-MZ Load Balance 32x4 vs 128x1

Table 2: Load Balance across PE's by FunmctionGroup Table &: Load Balance across PE's by FunctionGroup
Time & | Time | Calls [Experiment=1 Time & | Time | Callz [Group

I I | Group I I | PE[mmn ]

I I | PE [ ]

I I |  Thread 100,08 | 24,277014 | 38208 |TuLal

100,08 | 1,782602 | 18662 |Total 54,2% | 13,166225 | 4545 HMPI

0,9% | 16,454333 | 4846 |pe,9l

I
86,14 | 1,535163 | 7753 IUSER
N - I 0.5 | 14, 06F587 | 2434 |pe, 3
I
I

2,74 | 1,535387 | EBB1Z lpe.0 0,08 | 0,285479 | 2434 |pe,D

1,535357 | 6135 |thread,l

| -

| 0,72 | " =====

| 0,72 | 1,539871 | 6188 Ithread.3 i lsitintitinivtises il

| 0,7% | 1,535329 | G182 |thread,?

| 0,72 | 1,466954 | E813 |thread,D TR e IE:EW
I:Ef;%:f:fEEE:TE;:T:??BE T | 0,32 | 8,070397 | 17983 Ipe.dl

| _ _ _ —=== =—==== —=—===c==c=

| 0,7¢ | 1,535147 | 7072 Ithread,l bt-mz-C.128x1
| 0,7¢ | 1,534395 | 7072 |thread,3

: EEII I 1.534368 | 7072 Ithread.: maximum, median, minimum PE are shown

1,290502 | 7783 |thread,O

bt-mz.C.128x1 shows large imbalance in User

- and MPI time
0,72 | 1,534239 | 7072 lthread.l , - - o
0,74 1 1,634101 | 7072 |thread,2 bt-mz.C.32x4 shows well balanced times
0,72 | 1,524076 | 7072 |thread,?
0,62 | 1,268085 | 7782 |thread,D

2,048 1 1,534233 | 7783 lpe.lb

— R R ] — — — Ch] e Rl ] — — — R W R — — — — —

bt-mz-C.32x4
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Cray XEG6 (Hector)

= Located at EPCC, Edinburgh, Scotland, UK National Supercomputing
Services, Hector Phase 2b (http://www.hector.ac.uk)

= 1856 XE6 compute nodes.

= Around 373 Tflop/s theoretical peak performance

= Each node contains two AMD 2.1 GHz 12-core processors
for a total of 44,544 cores

= 32 GB of memory per node

= 24-way shared memory system, four ccNUMA domains

= Cray Gemini interconnect

[ Memory J [ Memory J

Node layout:

{xg+xg|) Hodsue.]1adAiH Walayon

Coherant HyperTransport (16x+8x)

_____________________________________________________________________________________________

| Memory | Memory J
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TACC

Graphical likwid-topology output Cray XE6 (Hector)
=

CPU type: AMD Magny Cours processor

Hardw Th dT 1 .

s TESEE TOPOSOTY 4 NUMA domains

Cores per socket: 12 no SMT
Threads per core: 1 /
socket 03

| + + 4 + 4 + 4 + 4 + 4 t + |
T O e I = O e e I D I b / / 3 lli:l I I / 11 ||
|+ + 4 + o+ + 4 + 4 + 4 + |
| + + 4 + 4 + 4 + 4 + 4 + |
| 1 B4kE | | B4kE I | B4kB | | B4kE | | B4kE | | B4kE I I BdkE I/ﬁﬂIKB I I E% I I BdkE I I faIIiE Il BdkE | |
| + + 4 + 4 + 4 + 4 + 4 + |
| + o4 + o4 + o4 o4 Fo4 + o4 o
|1 512kE | | 512kE | | 912kE | | 512kE | | 912kE | | 512kE II/?Z@ I I 512kE I I 12kE I I 512kE I I#lEkB I S12kE ||
| + + o4 + o4 + o4 + o4 b oAt + + o4 o+ +—————— + |
| 4 / &
(! bME / I / SME I «' (!
- / l .
Socket 13 / I
12 1 113 11 13 1 20 11 21 || 23 / 13 L1 11 1. |1 17 |

I
I
I
| + + o4 + o4 + o4 + o4 + o4 t
| 1 B4kB I 1 B4kB | | EB4kBE | | EB4kB | | E4kB | | EdkBII Ew}(BII EdkBII EdkBII EdkBII EdkEII E4kE |
| + + 4 + 4 + 4 + 4 + 4 t
| +
I
I
I
I
I

| 512kE | | 512kE | | 512kE | | 512kE | | 512kE | | 512kE I/ElEkB I I S12kE I I 012kE I I ElEkBII I 912kE I I 212kE |
+ + 4 + 4 + 4 + 4 + 4 / l +

I aME ﬁ I SHE Jl I
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SP-MZ Class E Pure MPI Scalability on Cray XE6 TACC

Scalability of SP-MZ Class E on Cray XEB

W SP-p T Class E

o L

256%1 51kl 1024%1 204981 40961
MPIOMP

Observations:

Good Scalability for Pure MPI! = #used cores divides #zones

No need for hybrid approach = Not all allocated cores are used

= 24-way nodes - <24 idle cores

ISC11 Tutorial Performance programming on multicore-based systems 243



TACC

SP-MZ Class D Hybrid MPI/OpenMP Performance Cray XEG6 _

SP-MZ Class D on 768 cores Cray XEG [(Hector)

900

E0a

foa

BOO

E 500
& 400
300 -
200 -
100 -

feBxl 38dd 2563 128x6 edxll

= #cores does not
divide #zones!

= Hybrid approach
yields
performance gain
due to better load
balancing
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SP-MZ Class D Hybrid MPI/OpenMP Scalability Cray XE6

S

SP-MZ Class D Scalability Hector

Pure MPI does not

Due to bad load

B 5P-pAZ Class D Scalability

Hechor

balancing

250

200

154

Hax1

192x1 18dxl TeExl

ISC11 Tutorial

Performance programming on multicore-based systems

scale from 384 to 768.
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Craypat Statistics for SP-MZ Class D

MPI Message Stats by Caller

MPI Msg | MPI | MsgSz | 16B<= | 256B<= | 64KB<= | 1MB<= |Experiment=1
Bytes | Msg | <l6B | MsgSz | MsgSz | MsgSz | MsgSz |Function
| Count | Count | <256B | <4KB | <IMB | <16MB | Caller
2616644.0 | 6.1 | 1.0 | 0.2 | 0.2 | 3.7 | 0.9 |Total
| __________________________________________________________________________
|  2616533.0 | 4.6 | -— | -— | -— | 3.7 | 0.9 |MPI ISEND
I I I I I I I | exch gbc
3 | | | | I | | MAIN
L T e
4111 26329600.0 | 44.0 | -— | -— | -— | 33.0 | 11.0 |pe.33
411 | 0.0 | - | - | - | -= | - | -- |pe.6l0
411 | 0.0 | - | - | - | - | - -- |pe.242
R e
MPI Msqg | MPI | MsgSz | 16B<= | 256B<= | 4KB<= | 64KB<= |Experiment=1
Bytes | Msg | <l6B | MsgSz | MsgSz | MsgSz | MsgSz |Function
| Count | Count | <256B | <4KB | <04KB | <IMB | Caller
6156152.0 | 57.8 | 8.0 | 2.0 | 2.0 | 3.7 | 42 .2 |Total
| _________________________________________________________________________
| 6152960.0 | 45.8 | -— | -— | - | 3.7 | 42.2 |MPI_ ISEND
I I I I I I I | exch gbc
3 I | I I | I |  MAIN
LT O e
4111 7180800.0 | 44.0 | -— | -— | -—— | - 44.0 |pe.l1l27
4111 7180800.0 | 55.0 | -— | -— | -— | 11.0 | 44.0 |pe.b4
41| 4421120.0 | 44.0 | -—— | -— | -— | 22.0 | 22.0 |pe.4
|
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IBM Power 6

Results obtained by the courtesy of the HPCMO Program and the
Engineer Research and Development Center Major Shared
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

The IBM Power 6 System is located at
(http://www.navo.hpc.mil/davinci_about.html)

150 Compute Nodes

32 4.7 GHz Power6 Cores per Node (4800 cores total)
64 GBytes of memory per node

QLOGIC Infiniband DDR interconnect

IBM MPI: MPI 1.2 + MPI-IO
" mpxlf r |-04| —-qarch=pwré -qtune=pwr6é -—-gsmp=omp

o N— _| Flag was essential to achieve full
compiler optimization in
presence of OMP directives!

= poe launch $PBS O WORKDIR/sp.C.1l6x4.exe
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LU-MZ Class D on Power6
e

700

600
W LU-MZ Gops

500

Gops

300

200

100

M

T

16x1 16x4 16x8 16x16 16x32
MPIXOMP

= LU-MZ significantly benefits from hybrid mode:
= Pure MPI limited to 16 cores, due to #zones = 16
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NPB-MZ Class D on IBM Power 6: TACG
Exploiting SMT for 2048 Core Results [T ==

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh

2048

2500 1024 cores #PBS -l select=32:ncpus=64:
best of category = mpiprocs=NP:ompthreads=NT
B BT-MZ Gops
2000 71 = Results for 128-2048

B SP-MZ Gops

cores
= Only 1024 cores were

1500
available for the
L experiments
B o = BT-MZ and SP-MZ show
benefit from
500 Simultaneous

~~~~~~ Multithreading (SMT):
2048 threads
on 1024 cores

512x4
256x8 B

— N S 0 o NS 0 o= NS 0 W NS QO N
x X X X X X X X X X X X = X X X X —= x X
W S N O © 0 & &N N 8O 0 x £ N O @0 x 0
N O mMmA 1N ANOOm AN O L NS S N
—i o = oy e MmO "N N - WO DO
— [ |

MPIxOpenMP
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Performance Analysis with gprof on IBM Power 6

= Compilation:
= mpxlf r

= Execution:

-04

—garch=pwr6

= export OMP NUM THREADS 4

" poe

—qtune=pwr6

TAGSC

—gsSmp=omp —pgd

launch $PBS O WORKDIR./sp.C.16x4.exe

= (Generates a file gmount .MPI_RANK.out for each MPI Process

= Generate rep

ort:

= gprof sp.C.l6x4.exe gmon*
% cumulative self self total
time seconds seconds calls ms/call ms/call name
16.7 117.94 117.94 205245 0.57 0.57 .Q@10@x solve@OL@1l [2]
14.6 221.14 103.20 205064 0.50 0.50 =@l5@z:scgl\_re@QL@l [3]
12.1 307.14 86.00 205200 0.42 0.42 .Q@12Qy solveQOLR1l [4]
6.2 350.83 43.69 205300 0.21 0.21 .@8@compute rhs@OLR1Q@OLE@6 [5]
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Conclusions. TACC
onciusions.

= BT-MZ:
= Inherent workload imbalance on MPI level
= #nprocs = #nzones yields poor performance

= #nprocs < #zones => better workload balance, but decreases parallelism

= Hybrid MP1/OpenMP vyields better load-balance,
maintains amount of parallelism

= SP-MZ:
= No workload imbalance on MPI level, pure MPI should perform best

=  MPI/OpenMP outperforms MPI on some platforms due contention to network access
within a node

= LU-MZ:

= Hybrid MP1/OpenMP increases level of parallelism

= “Best of category”

= Depends on many factors
= Hard to predict

AV AS FAS 4N

= Good thread affinity is essential
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Numerical Approach

= Solve 3-D (or 2-D) Boussinesq
equations for incompressible fluid
(ocean or atmosphere)

= FFT’s for horizontal derivatives
(periodic BC)

= Higher-order compact scheme for
vertical derivatives

= 2nd order Adams-Bashforth time-
stepping
(projection method to ensure
incompressibility —
requires solution to Poisson’s
Equation at every time step)

= Sub-grid scale model

= Periodic smoothing to control small-
scale energy — compact approach in
vertical, FFT approach in horizontal

TAGSC

Start Time-Step Loop
CALL DCALC (calculate time
derivatives)
DO ADVECTION LOOP
CALL DMOVE (derivs 2 =>
derivs 1)
CALL PCALC (solve Poisson’s
equation)
DO PROJECTION LOQP
CALL/ TAPER (apply
conditions)

End Time-Step Loop

oundary

Multiple x-derivatives in y-plane

1AL L

I\/I/uz‘iple z-and y- derivatives in x

/

2D FFTs in z-plane
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TACG
Development of MPI Parallelization
| —p—

= |nitial code developed for vector processors
= MPI Version: Aim for portability and scalability on clusters of SMPs

= 1D domain decomposition (based on scalar/vector code structure):

= x-slabs to do z- and y-derivatives, y-slabs to do x-derivatives, z-slabs for
Poisson solver

= Each processor contains
= x-slab (#planes=locnx=NX/nprocs)
= y-slab (#planes=locny=NY/nprocs)
= z-slab (#planes=lochz=NZ/nprocs)
= for each variable

= Redistribution of data (swapping) required during execution
= Basic structure of code was be preserved
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TAGG
Domain Decomposition for Parallel Derivative Computations _

NZ| <o

locn[xyz] = N[XYZ] / nprocs
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Initial PIR3D Timings Case 512x256x256
| E

PIR3D Timings Cray XT4

4500
4000 Cray XT4 4 cores

3000 B Cray XT4 2 cores

PIR3D Timings on Sun Constellation

0
St 4 cores/socket

M 2 cores/socket

3500
2500 -

3000 B 1 cores/socket

2000 -
2500

1500 2000

Time in Seconds

1000 T 1500 1
0 - 500
32 64 128 256

#MPI Procs | el 128

Real Time in seconds

256

#MPI Procs

L PIR3D Timings 512x256x256 Problem Size 512x256x256

Cray XT4: 4 cores per node
Cray XT5: 8 cores per node
2000 Sun Constellation: 16 cores per node

Significant time decrease when using 2 cores
per socket rather than 4

00 I - - = BUT: Using only 2 cores:
N
64 128 256

= [ncreases resource requirement
#MPI Processes (#CoreS/ nOd eS)

3000 B Cray XT4 2 cores
M Cray XT5 2 cores

e
U
=
S
u

1500

Time in Seconds

=
o
[=}
o

32

= Leaves half of the requested cores idle
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PIR3D Performance

= What causes performance decrease when using all cores per
socket?

= Some increase in User CPU Time
= Significant increase in MPI time
= Swapping requires global all-to-all type communication
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CrayPat Performance Statistics for Cray XT5

4 cores per socket

ISC11 Tutorial

Table 1: FProfile by Function
samp % | Samp [Group

|| ®.4% | 57437 |dcalc

|| 3.0% | 34240 |getdiv
| 4. 1% | 2E3I23 jwveale
|| 4.0% | 27202 |cstit

|| 2.3% | 13693 |swapyx
[| 1.5%a | 151 |swapxy

16, 1% | 109624 [mpr wantell
P_ .

|| 4. 1% | ZKZI533 mpr_send

|| 2.9% | 265365 \mp1_1hsend

3. 3% | 22363 mp1 irecv

1.9%, | 13100 |mpi_bsend

| 6.9% | 46856 |dgtts?

|| 4.6% | 31179 | ¢ mcopys
|| <4.3% | 29496 |[daxpy k

|| 1.3% | 10027 |heZebdftw 8
| 1.2% | B117 |[dghbmv n

Tahle 1: Protile by Function
Samp Yo | Samp | Group
O ¥y | 442157 | Total

[| 10.9%, | 48416 | dealc
[| 4.9% | 21543 | getdiv_
| <4.3% | 1964 | rveale
[l 3.1% | 13795 | cstit_

|| 2.6% | 11331 | swepyx
[| 1.6% | €941 swanxy
| 1.3% | 3679 sciit

[ 104% | 46117 |detie2
| 6.7% | 29648 |daxpy k
4. 3% | 18820 | © mcopys
[l 2.1% | %194 hcZ2cbdfiv 8
Iﬂl’l 1. 8% | 8108 debmnmvy i
======================%=:

i
i
19)20S 19d 8109 L

T.3% | 32290 jmpL wantall

4. 7% | 20944 jmp1 ibsend
[| 3.5% | 13558 \|mpL_recv

2.5% | 10862 impr1 send
\|L 2.2%, | G755 mpi_bsend ,l
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All-to-All Throughput

30

25

20

15

#bytes/usec

10

35 1

All-to-All Throughput Cray XTS5

/\,/ 16 Procs 4 cores/socket

/ =16 procs 1 core/socket
—64 procs 4 cores/socket ||

/ =64 procs 1 core/socket

Message Length in #bytes

ISC11 Tutorial

#Bytes/usec

Inter-Node Communication requires

network access

FE IV SYY Wi Iy WA L

16

14

12

10

TAGSC

All-to-All Throughput Sun Constellation

16 Procs 4 cores/socket

——16 Procs 1 core/socket
—64 Procs 1 core/socket

—0B64 Procs 4 cores/socket

16384 32768 65536 131072 262144 524288 1048576 2097152 4194304
Message length in #bytes

81

2

Intra-Node Communication only!
No network access required.
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Limitations of PIR3D MPI Implementation

= Global MPI communication yields resource contention within a
node (access to network)

= Mitigate by using fewer MPI processes than cores per node

= #MPI Procs restricted to shortest dimension due to 1D domain
decomposition

= Possible solution: Use 3D Domain Composition, but would mean
considerable implementation effort

= Memory requirements may restrict run to use at most 1
core/socket

= 3D Data is distributed, each MPI Proc only holds a slab
= 2D Work arrays are replicated
= Necessary to use fewer MPI Procs than cores per node

All-the-cores-all-the-time: How can OpenMP help?
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OpenMP Parallelization of PIR3D (1)

= Motivation:

Increase performance by taking
advantage of idle cores within one shared
memory node

= OpenMP Parallelization strategy:

ISC11 Tutorial

|dentify most time consuming routines

Place OpenMP directives on the time
consuming loops

Only place directives on loops across
undistributed dimension

MPI calls only occur outside of parallel
regions: No thread safety is required for
MPI library

TAGSC

DO 2500 IX=1,LOCNX

!Somp parallel do private(iy, rvsc)
DO 2220 IZ=1,NZ
DO 2220 IY=1,6NY
VYIX(IY,IZ) = YF(IY,IZ)
VY X(IZ,IY,IX) = YF(IY,IZ)
RVSC = RVISC X(IZ,IY,IX)
DVY2 X(IZ,IY,IX) =
DVY2 X(IZ,IY,IX) -
(VYIX(IY,IZ)+VBG(IZ)) *
YDF (IY,IZ)+RVSC*YDDF (IY,IZ)
2220 CONTINUE
ISomp end parallel do

2500 CONTINUE
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TACC

OpenMP Parallelization of PIR3D (2)
= Thread safe LAPACK and FFTW subroutine csfftm(isign,ny,..)
routines required implicit none
= FFTW initialization routine not integer isign, n, m,
thread safe: Execute outside of integer 1, ny
paraIIeI region integer omp get num threads
real work, tabl
real a(l:m2,1:m)
= Limitation of current OpenMP complex £(1:ml,1:m)
parallelization: | $omp parallel if (isign.ne.O0)
= Only a small subset of '$omp do
routines have been doi=1m
parallelized CALL csfft (isign,ny,..)
end do

= Computation time distributed
across a large number of
routines

ISomp end do

ISomp end parallel
return
end
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Hybrid Timings for Case 512x256x256

[T ==
Timings on Cray XT5 = Use all 4 cores/per socket
200 = Benefits of OpenMP:
o = |ncrease the number of usable
cores

140
120
100
80 -
60
40
20

= 128x2 outperforms 256x1 on
256 cores,128x4 better than
256x2 on 512 cores

64x1 128x1 64x2 256x1 128x2 64x4 256x2 128x4 64x8 256x4 128x8 s e .
Timings on Sun Constellation

450

400

350

But: Most of the g 300
performance due to 8 250
“spacing” of MPI. About E 200 1
12% improvement due S
to OpenMP 1:2 [] I
~ / | II s

B4x1 128x1 64x2 256x1 128xZ2 64x4 256x2 128x4 64x8 256x4 128x8 256x8

MPI Procs x OMP Threads
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TACG
=

Hybrid Timings for Case 1024x512x256

Case 1024x512x256 on Cray XT5

=  Only 1 MPI Process per
socket due to memory
500 = 1 MPI/socket consumption

= 14%-10% performance
increase on Cray XT5

= 13% to 22%
performance increase on
Sun Constellation

600

400

300

200

100

64x1 64x2 G64x4 64x8 128x1 128x2 128x4 128x8 256x1 256x2 256x4 256x8

Case 1024x512x256 on Sun Constellation
1000

900
800
700
600
500
400
300
200 -
100 -

B 1 MPIl/socket
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— PIR3D per Process Memory

Requirements ® PIR3D per Procss Memory
Reuirements Total Resident
Data
250
200 —
g 150
2 100 - -
50 1 —
[ —
256x1 Ideal 256x1 128x2
MPIxOPMP

Includes distributed and replicated data and
MPI buffers for problem size 256x512x256
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Conclusions for PIR3D

= Hybrid OpenMP parallelization of PIR3D was beneficial
= Easy to implement when aiming for moderate speedup
= Reduce MPI time for global communication:
= Lower number of MPI processors to mitigate network contention
= Take advantage of idle cores allocated for memory requirements
= Lower memory requirements ( e.g., replicated data, MPI buffers)

= |ssues when using OpenMP:
= Runtime libraries: Are they thread-safe? Are they multi-threaded? Are they
compatible with OpenMP?
= Easy for moderate scalability (4-8 threads), But for 10’s or 100’s of threads?

= Are there sufficient parallelizable loops? Only moderate speed-up if not enough
parallelizable loops

= Good scalability may require to parallelize many loops!

= Issues when running hybrid codes:
= Placement of MPI processes and OpenMP threads onto available cores is:

1A NS AS A S AL S S A A" | b |

= critical for good performance
= highly system dependent
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Tutorial outline

TACC

= Hybrid MPl/OpenMP
* MPI vs. OpenMP

» Thread-safety quality of MPI
libraries

» Strategies for combining MPI with
OpenMP

» Topology and mapping problems
= Potential opportunities
= Practical “How-tos” for hybrid

= Online demo: likwid tools (2)
= Advanced pinning
» Making bandwidth maps

» Using likwid-perfctr to find NUMA
problems and load imbalance

= likwid-perfctr internals
= likwid-perfscope

Case studies for hybrid
MPI/OpenMP

= Qverlap for hybrid sparse MVM

= The NAS parallel benchmarks
(NPB-M2)

» PIR3D - hybridization of a full
scale CFD code

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and
goodbye

ISC11 Tutorial
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Elements of Successful Hybrid Programming

= System Requirements:
= Some level of shared memory parallelism, such as within a multi-core node

= Runtime libraries and environment to support both models
= Thread-safe MPI library
= Compiler support for OpenMP directives, OpenMP runtime libraries

= Mechanisms to map MPI processes and threads onto cores and nodes
= Application Requirements:

= Expose multiple levels of parallelism
= Coarse-grained and fine-grained
= Enough fine-grained parallelism to allow OpenMP scaling to the number of cores per node

= Performance:
= Highly dependent on optimal process and thread placement
= No standard API to achieve optimal placement

= Optimal placement may not be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution

= I\llnmnr\/ tra 'FFf\ Vi Irlc resource conten tinn on miilticore nodeac

IVINVIT IV IV y MY 1 WOV UL VW UUJVlIILtwi IL NI VI 11TITUVINTVVITT Vv 1TVIVWY

= Cache optlmlzatlon more critical than on single core nodes
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Recipe for Successful Hybrid Programming

= Familiarize yourself with the layout of your system:
= Blades, nodes, sockets, cores?
= |Interconnects?
= Level of Shared Memory Parallelism?
" Check system software
= Compiler options, MPI library, thread support in MPI
= Process placement

= Analyze your application:
= Architectural requirements (code balance, pipelining, cache space)

= Does MPI scale? If yes, why bother about hybrid? If not, why not?
= Load imbalance - OpenMP might help
= Too much time in communication? Workload too small?

= Does OpenMP scale?
= Performance Optimization
= Optimal process and thread placement is important
= Find out how to achieve it on your system
= Cache optimization critical to mitigate resource contention
= Creative use of surplus cores: Overlap, functional decomposition,...
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Hybrid Programming: Does it Help?

* Hybrid Codes provide these opportunities:

= Lower communication overhead
= Few multithreaded MPI processes vs many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
= Lower memory requirements
= Reduced amount of replicated data
= Reduced size of MPI internal buffer space
= May become more important for systems of 100’s or 1000’s cores per node
= Provide for flexible load-balancing on coarse and fine grain
= Smaller #of MPI processes leave room to assign workload more even
= MPI processes with higher workload could employ more threads
" [ncrease parallelism
= Domain decomposition as well as loop level parallelism can be exploited
= Functional parallelization

YES, IT CAN!
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Abstract
e

Tutorial: Performance-oriented programming on multicore-based clusters
with MPI, OpenMP, and hybrid MP1/OpenMP

Presenters: Georg Hager, Gabriele Jost, Jan Treibig, Gerhard Wellein

Authors: Georg Hager, Gabriele Jost, Rolf Rabenseifner, Jan Treibig,
Gerhard Wellein

Abstract: Most HPC systems are clusters of multicore, multisocket nodes. These
systems are highly hierarchical, and there are several possible programming models; the
most popular ones being shared memory parallel programming with OpenMP within a
node, distributed memory parallel programming with MPI| across the cores of the

cluster, or a combination of both. Obtaining good performance for all of those models
requires considerable knowledge about the system architecture and the requirements of
the application. The goal of this tutorial is to provide insights about performance
limitations and guidelines for program optimization techniques on all levels of the
hierarchy when using pure MPI, pure OpenMP, or a combination of both.

We cover peculiarities like shared vs. separate caches, bandwidth bottlenecks, and
ccNUMA locality. Typical performance features like synchronization overhead, intranode
MPI bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache and
memory) are discussed in order to pinpoint the influence of system topology and thread
affinity on the performance of parallel programming constructs. Techniques and tools for
establishing process/thread placement and measuring performance metrics are
demonstrated in detail. We also analyze the strengths and weaknesses of various hybrid
MPI1/OpenMP programming strategies. Benchmark results and case studies on several
platforms are presented.
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