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Lattice Boltzmann for CFD and beyond
The lattice Boltzmann method:

roots in statistical physics
velocity discrete Boltzmann equation

used to solve incompressible fluid flows
also used beyond classical CFD: e.g. 
MHD, multiphase, …, civil 
engineering, computational steering
iterative stencil scheme
with explicit time-step

vector data (e.g. D3Q19) – no reuse of data as in 
simple Jacobi-type schemes
low computational intensity; high memory intensity
only next neighbor communication
weak scaling drama:
number of time steps scales with resolution
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Performance Engineering – Our approach 

1. Analyze the minimum computational requirements (data 
volume, FLOP-ops) of the algorithm

2. Analyze the computational requirements (data access in 
cache/main memory, FLOPS, instruction mix,..) of the 
implementation. Optimize if they do not fit to data from 1.

3. Analyze the available computational resources of the target 
hardware: Cache/Memory bandwidth, SIMD capabilities,..

4. Determine max. performance (min. runtime) based on 2 and 3.

5. Measure performance and compare with 4. Go back to 2. / 3. if 
numbers differ substantially



3

Performance Engineering – Hardware capabilities

GPU vs. CPU 
light speed estimate:

1. Compute bound: 4-5 X
2. Memory Bandwidth: 2-4 X

Intel Core i5 – 2500 
(“Sandy Bridge”)

Intel X5650 DP node 
(“Westmere”)

NVIDIA C2070 
(“Fermi”)

Cores@Clock 4 @ 3.3 GHz 2 x 6 @ 2.66 GHz 448 @ 1.1 GHz
Performance+/core 52.8 GFlop/s 21.3 GFlop/s 2.2 GFlop/s
Threads@stream 4 12 8000 +

Total performance+ 210 GFlop/s 255 GFlop/s 1,000 GFlop/s
Stream BW 17 GB/s 41 GB/s 90 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (1.17 Billion / 95 W) 3 Billion / 238 W
* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device
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Lattice Boltzmann method
Analysis of prototype implementation
double precision F(0:iMax+1,0:jMax+1,0:kMax+1, 0:18,0:1)
do k=1,kMax

do j=1,jMax
do i=1,iMax

if( fluidcell(i,j,k) ) then
LOAD F( i  ,j  ,k  , 0,t)
LOAD F( i+1,j+1,k  , 1,t)
…
LOAD F( i  ,j-1,k-1 ,18,t) 
Relaxation (complex computations)
STORE F(i, j, k, 0, t+1)
STORE F(i, j, k, 1, t+1)
…
STORE F(i, j, k,18, t+1)

endif
enddo

enddo
enddo

Collide Step

Stream Step

Data layout
F(  I , J , K, Q)

38 cache lines 
(~2.5 KB) must 
be held in cache ~200 FLOPs / Update

If cache line of store operation is not in cache it must be 
loaded first (“write allocate”) – avoid them by NT stores

#loads from main memory:  (19 + 19) * 8Byte 
#store to main memory:        19 * 8Byte

456 [304]  Byte /Update
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Lattice Boltzmann method
Analysis of prototype implementation

Our baseline version contains all basic optimizations (fuse-
stream collide; work reduction,…) which are still ignored by
many people..

F(Q,I,J,K) Bad, but still widely used data layout

F(I,J,K,Q) Data layout with min. main memory transfers
SPLIT Split up inner most loop into several loops

SIMD SIMD intriniscs kernel
NT stores SIMD NT store intriniscs writing result to main

memory bypassing cache 304 Byte/Update
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Lattice Boltzmann method
Performance model (1)

Performance measure:  Million Fluid Lattice cell Updates Per 
second

MFLUP/s=

Roofline model
Assumption: Arithmetic (FP) or main memory bandwidth (BW) limits 
application performance

Determine max. LBM performance for given floating point performance and 
for main memory bandwidth separately

Minimum of both performance numbers limits LBM performance

sweeps*iMax*jMax*kMax
106 * Timesweeps Wallclock time to perform 

sweeps LBM iterations
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Lattice Boltzmann method
Performance model (2)

Arithmetic limit (FP):
A good implementation of a simple LBM step requires approx. 200 FLOP 

“FP_PeakPerformance”: Which one? DGEMM, arithmetic 
mix, SSE/AVX,…

Memory bandwidth limit (BW): 
Determine attainable memory bandwidth: Mem_BW [MByte/s]
(e.g. stream benchmark)

Performance estimate (BW):

19 Concurrent READ and 1 WRITE streams (STREAM: 1 READ; 1 
STORE) Ignoring intra cache data transfers
Perfect prefetching and associativity conflicts assumed

Mem_BW 
456 [304] Byte/FLUP 

FP_PeakPerformance 
200 FLOP/FLUP Performance estimate (FP):
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Lattice Boltzmann method
Performance model (3)

Single Intel Sandy Bridge (SNB) CPU (4-cores; 3,2 GHz):
Mem_BW = 17,000 MByte/s (stream copy)
PeakPerformance = 105 GFLOP/s (dp) [210 GFLOP/s (sp)]

AVX SIMD instructions are a must at least for SP kernels for SNB!
Performance estimates are upper qualitative boundaries 
Single socket numbers, i.e. 4-cores

Memory bandwidth (BW) FP performance

Basic NT stores Peak scalar ADD

Double 
precision 37 MFLUP/s 56 MFLUP/s 500 MFLUP/s 62 MFLUP/s

Single 
precision 74 MFLUP/s 112 MFLUP/s 1,000 MFLUPs 62 MFLUP/s
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Lattice Boltzmann method
Prototype performance (DP): Latest Intel desktop CPU 
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From kernels to full applications

waLBerla: Widely applicable LB solver from Erlangen (Uli Rüde’s
group) uses “prototype” kernel

“Patch-based” approach 
Large C++ framework with highly optimized 
C/FORTRAN/SIMD kernels

What about complex geometries? (“The tough boys play”)
ILBDC:
Sparse data structure: store fluid cells + adjacency list
Indirect addressing
NT stores can be used 
but “AA pattern” approach is more efficient
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Lattice Boltzmann solver for complex geometries 
Close to optimal parallel performance
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Questions

Who knows the theoretically attainable performance of their most 
important application on their standard production machine? 

Who is using this process in code development / code 
optimization?

Who has sufficient insight into computer architecture to go 
beyond simple main memory bandwidth models?

2011/11/17 1000x0=0
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