

Case study: Hybrid-parallel sparse MVM (again)

SpMVM node performance model

 Concentrate on double precision CRS:

DP CRS code balance

once

• κ quantifies extra traffic

for loading RHS more than

do i = $1, N_r$ do $j = row_ptr(i)$, $row_ptr(i+1) - 1$ $C(i) = C(i) + val(j) * B(col_idx(j))$ enddo enddo $B_{\text{CRS}} = \left(\frac{12 + 24/N_{\text{nzr}} + \kappa}{2}\right) \frac{\text{bytes}}{\text{flop}}$ $= \left(6 + \frac{12}{N_{\text{par}}} + \frac{\kappa}{2}\right) \frac{\text{bytes}}{\text{flop}}.$

- Predicted Performance = streamBW/B_{CRS}
- Determine κ by measuring performance and actual memory BW

Test matrices: Sparsity patterns

Analysis for HMeP matrix on Nehalem EP socket

- BW used by spMVM kernel = 18.1 GB/s (as measured by likwid-perfctr)
 → should get ≈ 2.66 Gflop/s spMVM performance
- Measured spMVM performance = 2.25 Gflop/s
- Solve 2.25 Gflop/s = BW/B_{CRS} for $\kappa \approx 2.5$

 \rightarrow 37.5 extra bytes per row

 \rightarrow RHS is loaded 6 times from memory

→ about 33% of BW goes into RHS

Special formats that exploit features of the sparsity pattern are not considered here

- Symmetry
- Dense blocks
- Subdiagonals (possibly w/ constant entries)

Test systems

- Intel Westmere EP (Xeon 5650)
- STREAM triad BW (NT stores suppressed, counting write-allocate transfers):
 20.6 GB/s per domain
- QDR InfiniBand fully nonblocking fat-tree interconnect

- AMD Magny Cours (Opteron 6172)
- STREAM triad BW: 12.8 GB/s per domain
- Cray Gemini interconnect

Node-level performance for HMeP: Westmere EP (Xeon 5650) vs. Cray XE6 Magny Cours (Opteron 6172)

1000x0=0

Distributed-memory parallelization of spMVM

Results (again)

- Dominated by communication (and some load imbalance for large #processes)
- Comm overlap pays off especially with one process (12 threads) per node
- Communication overlap (over-)compensates additional LHS traffic

Conclusions from the spMVM case

We know that

- the implementation we have
- of the algorithm at hand
- on the machines we use

makes best use of the relevant node resource (memory bandwidth)

How do we know?

- Performance measurement (using a stopwatch)
- Bandwidth measurement (using a simple tool)
- Along the way we generated some understanding about data transfer properties
- Then we investigated hybrid MPI/OpenMP programming and
 - mitigated load imbalance on the node
 - overlapped communication and computation

to finally shift the 50% efficiency point to larger node counts