
Quantum chemistry towards
exascale with QMC=Chem

A. Scemama,
M. Caffarel

Laboratoire de Chimie et
Physique Quantiques

CNRS - IRSAMC
Université de Toulouse,

France

E. Oseret,
W. Jalby

Exascale Computing
Research Laboratory

GENCI-CEA-Intel
Université de Versailles St

Quentin, France

Ab initio Quantum chemistry

 Many chemical problems need highly
accurate models, using an ab initio quantum
mechanical description (Configuration
Interaction or Coupled Cluster methods).

 Due to their iterative nature, synchronizations
limit the parallel efficiency.

 These methods are not yet suited to
massively parallel machines

 Such methods need a large
amount of memory and disk
space.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) are methods that :

 require a small amount of memory (~100MB
per core)

 make very few network communications

 have a much better scaling than standard
methods with the size of the chemical system

but:
require a large amount of CPU time

The evolution of massively parallel
machines is very favorable to QMC
methods

QMC methods are good candidates
for exascale

During the run, each
process is completely
autonomous (single
core processes).
The scaling is ideal !

Communications are
mandatory only at the
initialization and the
finalization stages.

The initialization and
finalization times don't
depend on the length
of the run.

QMC=Chem key points
 All the processes are completely

independent

 Additional compute nodes can be
added/removed dynamically to a
running simulation

 Fault tolerance : any compute
node can fail without killing the
whole run

 I/O and network communications
are fully asynchronous

 An almost ideal scaling with the
number of cores is obtained

 Very good single core
performance

Parallel efficiency of QMC=Chem

Benchmarks performed on Curie (TGCC/CEA/GENCI, France) in April 2011.
The blue curve is estimated from the data collected on the green curve

The performance of
the application is
determined by the
efficiency of the
single-core
executable

Single-core performance

The scaling of one Monte Carlo step is limited by

• A matrix inversion, via the Intel MKL library (O(N³))

• Matrix-matrix products using a sparse-dense implementation

(O(N²))

Two approaches to optimize the matrix product (ECR contribution)

• Static Analysis with MAQAO : Disassemble the binary and give

information on the inner-most loops

• Decremental Analysis with DECAN : remove FP instructions or

memory instructions from the binary and compare the timings with

the real binary

Dense x Sparse Matrix multiplication
Static Analysis

!DIR$ VECTOR ALIGNED
do j=1,LDC
C1(j,i)=C1(j,i)+(A(j,k_vec(1))*d11 &

+ A(j,k_vec(2))*d21 &
+ A(j,k_vec(3))*d31 &
+ A(j,k_vec(4))*d41)

C2(j,i)=C2(j,i)+(A(j,k_vec(1))*d12 &
+ A(j,k_vec(2))*d22 &
+ A(j,k_vec(3))*d32 &
+ A(j,k_vec(4))*d42)

enddo

 Examine the two hottest loops with MAQAO

 FLOP/cycle was not optimal : 12.8 but could be 16 (AVX, 32 bits
elements, perfect ADD / MUL balance)

 Loop count (LDC) is always a multiple of 8. Replacing loop count with
its hard coded value allows the compiler to factor loads

 We obtained a theoretically perfect efficiency for these loops

MAQAO Static analysis before (top) and after (bottom) optimization

DECAN: results on QMC=Chem

Function
Loop

weight
original MI FP

MAQAO
asymptotic

Speed-up over
original

MI
MI
1B

FPI

sparse_ full_ mm5_ 20.0% 517 449 289 224 1.1 1.2 1.8

14.0% 389 285 289 224 1.3 1.1 1.3

6.7% 241 205 201 140 1.2 1.2 1.2

1.1% 1353 1197 33 280 1.1 1.1 NA

bld_ao_oned_bloc_ 2.9% 109 69 57 112 1.6 1.8 1.9

provide_elec_dist_ 1.4% 1801 1775 221 324 1.0 1.0 8.1

provide_ao_value_block_ 1.2% 1213 1217 277 248 1.0 1.0 4.4

Invert (MKL) 16%

Fully vectorized loops

DECAN: results on QMC==Chem

 FP matching MI matching original (3 loops out of 7)

 Code balanced, no clear bottleneck, no obvious optimization

 MI matching original (3 loops out of 7)

 Loop dominated by memory accesses

 MAQAO Asymptotic match FP (4 loops out of 7)

 No short vector issue

 Measurement accuracy challenged

 1 loop out of 7 is less than 100 cycles per instance

 Computational efficiency

 MKL “invert” 54%

 3 hand written loops are 99%, 75% and 53%

Single-core performance
The scaling of one Monte Carlo step is limited by

• A matrix inversion, via the Intel MKL library (O(N³))

• Matrix-matrix multiplications using an efficient sparse-dense

implementation (O(N²))

Molecular System Number
of

electrons

% Peak
performance of
Multiplication

% Peak
performance of

Inversion

time(Inversion)/
time(Multiplication)

158 50% 24% 0.5

434 64% 53% 0.6

1056 58% 68% 2.0

1731 53% 68% 2.6

Overall single-core performance
Molecular System Number of

electrons
RAM/core

(MB)
CPU time /

step on
Core2¹ (s)

CPU time /
step on Sandy

Bridge² (s)

158 9.8 0.0073 0.0033

434 65 0.0504 0.0186

1056 133 0.3421 0.0980

1731 313 1.2480 0.4226

1. Intel Xeon 5140, Core 2 2.33GHz, Dual core, 4MB shared L2 cache
2. Intel Xeon E31240, Sandy Bridge 3.30GHz, Quad core, 256KB L2 cache/core, 8MB shared L3 cache

Overall single-core performance
Molecular System Number of

electrons
RAM/core

(MB)
% CPU Peak
performance

on Core2²

% CPU Peak
performance

on Sandy
Bridge²

158 9.8 25% 23%

434 65 34% 38%

1056 133 37% 49%

1731 313 47% 55%

1. Intel Xeon 5140, Core 2 2.33GHz, Dual core, 4MB shared L2 cache
2. Intel Xeon E31240, Sandy Bridge 3.30GHz, Quad core, 256KB L2 cache/core, 8MB shared L3 cache

Latest performance results

We have modelled a peptide involved in Alzheimer's disease on a BullX
supercomputer:

• Intel Sandy Bridge sockets, 2.7GHz, 8 cores, 20MB cache

• 190 dual socket nodes (3 040 cores)

• 64GB RAM/node

An average of 27.8 TFlops/s was obtained on a 7 minutes run.

For a 1 hour run we would obtain 31.2 TFlops/s.

We would be able to reach 1PFlops/s with 97 500 cores for 1 hour.

