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Performance and Power Engineering:  

From Numbers to Insight 



Prerequisites 

Why care about program performance? 

1. Show off at parties? 

2. Win the Gordon Bell Award? 

3. Solve problems faster or solve larger problems in acceptable 

time! 

 

 

How do I know that performance is “good”? 

1. Good scalability across cores? 

2. High fraction of peak performance? 

3. Code execution hits the relevant bottleneck! 

 

… and how do I know what the relevant bottleneck is? 

 

 Performance Modeling! 
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Performance Modeling – What? 

What should be modeled? 

 

 The ability of a programmer, framework, library, compiler to 

generate efficient code? 

 

 

 The impact of a set of hardware metrics on application 

performance and scalability? 

 

 

 The performance of (ideally) 

 … an implementation of an algorithm 

 … on kernel, solver, application levels 

 … on a compute node, network, full system 

 

8/28/2012 PROPER 2012 3 



Performance Modeling – How? 

How should it be modeled?  

 

 “Black box” approach? 

 Determine utilization of processor resources, network, file system at runtime 

 Determine performance of given application for different input sets for a 

given architecture 

 Determine correlation of certain hardware metrics with performance 

behavior 

 Automatic “tuning”: Scan all implementation alternatives for best 

performance 

 

 “White box” approach! 

 Set up an (analytical) model for a given algorithm/kernel/solver/application 

on a given architecture 

 Compare with measurements to validate the model 

 (Probably) identify optimization opportunities and start again 
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Others have said it better… 
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An example from physics 

Newtonian mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

Fails @ small scales! 
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𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  

quantum  

mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 



Performance Engineering – What’s that? 

The Performance Engineering (PE) process: 

 

 

 

 

 

 

 

 

 

 

The performance model is the central component 

Algorithm/Code analysis 

Runtime profiling 

Machine characteristics 

Kernel benchmarking 

Traces/HW metrics 

Performance model Code optimization 
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“White Box” Models  

on the chip level 

Roofline model 

ECM model 

Power modeling for multicore 



An example: The roofline model 

1. Determine the applicable peak performance of a loop, assuming 

that data comes from L1 cache 

2. Determine the data traffic per Flop over the slowest data path 

utilized 

3. Determine the applicable peak bandwidth of the slowest data 

path utilized 
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Example: do i=1,N; s=s+a(i); enddo 

in DP on hypothetical CPU, N large 

 

ADD peak  (half of full peak) 

 

4-cycle latency per ADD if not unrolled 

 

Computational intensity 

Expected  

performance 



Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  
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analysis 

Code analysis: 
1 ADD + 1 LOAD 

architecture 

Throughput: 1 ADD + 1 LD/cy 
Pipeline depth: 4 cy (ADD) 

measurement 

Maximum memory 
bandwidth 10 GB/s 

Memory-bound @ large N! 
Pmax = 1.25 GF/s 



Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 Still probably some 

contributions from data access 
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision w/ CRS: 

 

 

 

 

 

 DP CRS code balance 

  quantifies extra traffic 

for loading RHS more than 

once 

 Predicted Performance = streamBW/BCRS 

 

 Determine   by measuring performance and actual memory bandwidth 

 

 

8 8 8 4 8 

8 
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Test matrices: Sparsity patterns 

 Analysis for HMeP matrix on Nehalem EP socket 

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s 

spMVM performance if  = 0 

 Measured spMVM performance = 2.25 Gflop/s 

 Solve 2.25 Gflop/s = BW/BCRS  for   ≈ 2.5 

 

 37.5 extra bytes per row  

 RHS is loaded 6 times from memory 

 about 33% of BW goes into RHS 

 

 

 

 Conclusion: Even if the roofline model does not work 100%, we 

can still learn something from the deviations 
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Input to the roofline model 

… on the example of spMVM with HMeP matrix 
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Code analysis: 
1 ADD, 1 MULT, 

(2.5+2/Nnzr) LOADs, 
1/Nnzr STOREs +  

Throughput: 1 ADD, 1 MULT + 1 
LD + 1ST/cy 

Maximum memory 
bandwidth 20 GB/s 

Memory-bound! 
 = 2.5 

Measured memory BW 
for spMVM 18.1 GB/s 



Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 In-core execution is sometimes hard to 

model 

 

 

 Saturation effects in multicore  

chips are not explained 
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A(:)=B(:)+C(:)*D(:) 

Roofline predicts 
full socket BW 



The multicore saturation mystery 

 Why can a single core often not saturate the memory bus? 

 Non-overlapping contributions from data transfers and in-cache execution to 

overall runtime 

 

 What determines the saturation point? 

 Important question for energy efficiency 

 Saturation == Bandwidth pressure on relevant bottleneck exhausts the 

maximum BW cacpacity 

 

 

 Requirements for an appropriate multicore performance model 

 Should predict single-core performance 

 Should predict saturation point 

 

 ECM (Execution – Cache – Memory) model 
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Example: ECM model for Schönauer Vector Triad 
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX  
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CL 
transfer 

Write-
allocate 
CL transfer 



Full vs. partial vs. no overlap 
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Results 
suggest no 
overlap! 



ECM prediction vs. measurements for  A(:)=B(:)+C(:)*D(:)  

on a Sandy Bridge socket (no-overlap assumption) 

Model: Scales until saturation 

sets in  

 

Saturation point (# cores) well 

predicted 

 

Measurement: scaling not perfect 

 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel 

code 
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ECM prediction vs. measurements for  A(:)=B(:)+C(:)/D(:)  

on a Sandy Bridge socket (full overlap assumption) 
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In-core execution is dominated by 

divide operation  

(44 cycles with AVX, 22 scalar) 

 

 Almost perfect agreement with    

    ECM model 

 

 



Example: Lattice-Boltzmann flow solver 
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 D3Q19 model 

 Empty channel, 2283 fluid lattice 

sites (3.7 GB of memory) 

 AVX implementation with compiler 

intrinsics 

 

 ECM model input 

 Core execution from Intel IACA tool 

 Max. memory bandwidth from multi-

stream measurements 



Lattice-Boltzmann solver: ECM (no-overlap) vs. measurements 

Saturation point again predicted 

accurately 

 

 

Saturation performance matches 

multi-stream benchmarks 

 

 

No-overlap assumption seems a 

little pessimistic 

Not all execution is LD and ST 
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Why the fuss about  

the saturation point? 

 

Energy consumption! 
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A simple power model for multicore chips 

Assumptions: 

 

1. Power is a quadratic polynomial in the clock frequency 

2. Dynamic power is linear in the number of active cores t 

3. Performance is linear in the number of cores until it hits a 

bottleneck ( ECM model) 

4. Performance is linear in the clock frequency unless it hits a 

bottleneck 

5. Energy to solution is power dissipation divided by performance 

 

Model: 

 

 

 

                                                           where  𝒇 = 𝟏 + ∆𝝂 𝒇𝟎 

8/28/2012 24 PROPER 2012 



How do we arrive at those assumptions? 

Performance and power vs. clock for different applications (SNB): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Assumptions (1) and (4) 
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all cores used 

single core 



How do we arrive at those assumptions? 

Power and CPI vs. Number of active cores: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Assumption (2) 
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Model predictions 

1. If there is no saturation, use all available cores to minimize E 

2. There is an optimal frequency fopt at which E is minimal in the 

non-saturated case, with 

𝒇𝐨𝐩𝐭 = 
𝑾𝟎

𝑾𝟐𝒕
 ,   hence it depends on the baseline power 

 “Clock race to idle” if baseline accommodates whole system! 

3. If there is saturation, E is minimal at the saturation point 

4. If there is saturation, absolute minimum E is reached if the 

saturation point is at the number of available cores  

5. Making code execute faster on the core saves energy since 

 The time to solution is smaller if the code scales (“Code race to idle”) 

 We can use fewer cores to reach saturation if there is a bottleneck 
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Validation using the lattice-Boltzmann example 

Performance and energy to solution vs. cores on SNB 
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Conclusions 

 Performance Engineering == Performance Modeling with “bells 
and whistles” 

 

 PE is more than just finding out about hot spots and trying to 
change “something in the code” to make it faster. It is about 
insight into the interaction of hardware and software! 

 

 PM works out best if it does not work  

 

 Saturation effects are ubiquitous; understanding them gives us 
opportunity to 

 Find out about optimization opportunities 

 Save energy 

 

 Simple models work best. Do not try to complicate things unless it 
is really necessary! 
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Make it as simple as possible, but not simpler. 

 

                           Albert Einstein 

 

 

 

 

Thank you. 
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OMI4papps  
 hpcADD 
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