
Performance Engineering:

From Numbers to Insight

Georg Hager

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Erlangen, Germany

PROPER Workshop at Euro-Par 2012

August 28, 2012

Rhodes Island, Greece

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Performance and Power Engineering:

From Numbers to Insight

Prerequisites

Why care about program performance?

1. Show off at parties?

2. Win the Gordon Bell Award?

3. Solve problems faster or solve larger problems in acceptable

time!

How do I know that performance is “good”?

1. Good scalability across cores?

2. High fraction of peak performance?

3. Code execution hits the relevant bottleneck!

… and how do I know what the relevant bottleneck is?

 Performance Modeling!

8/28/2012 PROPER 2012 2

Performance Modeling – What?

What should be modeled?

 The ability of a programmer, framework, library, compiler to

generate efficient code?

 The impact of a set of hardware metrics on application

performance and scalability?

 The performance of (ideally)

 … an implementation of an algorithm

 … on kernel, solver, application levels

 … on a compute node, network, full system

8/28/2012 PROPER 2012 3

Performance Modeling – How?

How should it be modeled?

 “Black box” approach?

 Determine utilization of processor resources, network, file system at runtime

 Determine performance of given application for different input sets for a

given architecture

 Determine correlation of certain hardware metrics with performance

behavior

 Automatic “tuning”: Scan all implementation alternatives for best

performance

 “White box” approach!

 Set up an (analytical) model for a given algorithm/kernel/solver/application

on a given architecture

 Compare with measurements to validate the model

 (Probably) identify optimization opportunities and start again

8/28/2012 4 PROPER 2012

Others have said it better…

8/28/2012 5 PROPER 2012

An example from physics

Newtonian mechanics

Fails @ small scales!

8/28/2012 6 PROPER 2012

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Performance Engineering – What’s that?

The Performance Engineering (PE) process:

The performance model is the central component

Algorithm/Code analysis

Runtime profiling

Machine characteristics

Kernel benchmarking

Traces/HW metrics

Performance model Code optimization

8/28/2012 PROPER 2012 7

“White Box” Models

on the chip level

Roofline model

ECM model

Power modeling for multicore

An example: The roofline model

1. Determine the applicable peak performance of a loop, assuming

that data comes from L1 cache

2. Determine the data traffic per Flop over the slowest data path

utilized

3. Determine the applicable peak bandwidth of the slowest data

path utilized

8/28/2012 9 PROPER 2012

Example: do i=1,N; s=s+a(i); enddo

in DP on hypothetical CPU, N large

ADD peak (half of full peak)

4-cycle latency per ADD if not unrolled

Computational intensity

Expected

performance

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

8/28/2012 10 PROPER 2012

analysis

Code analysis:
1 ADD + 1 LOAD

architecture

Throughput: 1 ADD + 1 LD/cy
Pipeline depth: 4 cy (ADD)

measurement

Maximum memory
bandwidth 10 GB/s

Memory-bound @ large N!
Pmax = 1.25 GF/s

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Still probably some

contributions from data access

8/28/2012 11 PROPER 2012

Example: SpMVM node performance model

 Sparse MVM in

double precision w/ CRS:

 DP CRS code balance

  quantifies extra traffic

for loading RHS more than

once

 Predicted Performance = streamBW/BCRS

 Determine  by measuring performance and actual memory bandwidth

8 8 8 4 8

8

8/28/2012 PROPER 2012 12

Test matrices: Sparsity patterns

 Analysis for HMeP matrix on Nehalem EP socket

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s

spMVM performance if  = 0

 Measured spMVM performance = 2.25 Gflop/s

 Solve 2.25 Gflop/s = BW/BCRS for  ≈ 2.5

 37.5 extra bytes per row

 RHS is loaded 6 times from memory

 about 33% of BW goes into RHS

 Conclusion: Even if the roofline model does not work 100%, we

can still learn something from the deviations

8/28/2012 PROPER 2012 13

Input to the roofline model

… on the example of spMVM with HMeP matrix

8/28/2012 14 PROPER 2012

Code analysis:
1 ADD, 1 MULT,

(2.5+2/Nnzr) LOADs,
1/Nnzr STOREs + 

Throughput: 1 ADD, 1 MULT + 1
LD + 1ST/cy

Maximum memory
bandwidth 20 GB/s

Memory-bound!
 = 2.5

Measured memory BW
for spMVM 18.1 GB/s

Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled  pure data streaming assumed

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

8/28/2012 15 PROPER 2012

A(:)=B(:)+C(:)*D(:)

Roofline predicts
full socket BW

The multicore saturation mystery

 Why can a single core often not saturate the memory bus?

 Non-overlapping contributions from data transfers and in-cache execution to

overall runtime

 What determines the saturation point?

 Important question for energy efficiency

 Saturation == Bandwidth pressure on relevant bottleneck exhausts the

maximum BW cacpacity

 Requirements for an appropriate multicore performance model

 Should predict single-core performance

 Should predict saturation point

 ECM (Execution – Cache – Memory) model

8/28/2012 16 PROPER 2012

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX

8/28/2012 17 PROPER 2012

CL
transfer

Write-
allocate
CL transfer

Full vs. partial vs. no overlap

8/28/2012 18 PROPER 2012

Results
suggest no
overlap!

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:)

on a Sandy Bridge socket (no-overlap assumption)

Model: Scales until saturation

sets in

Saturation point (# cores) well

predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel

code

8/28/2012 19 PROPER 2012

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)

on a Sandy Bridge socket (full overlap assumption)

8/28/2012 20 PROPER 2012

In-core execution is dominated by

divide operation

(44 cycles with AVX, 22 scalar)

 Almost perfect agreement with

 ECM model

Example: Lattice-Boltzmann flow solver

8/28/2012 21 PROPER 2012

 D3Q19 model

 Empty channel, 2283 fluid lattice

sites (3.7 GB of memory)

 AVX implementation with compiler

intrinsics

 ECM model input

 Core execution from Intel IACA tool

 Max. memory bandwidth from multi-

stream measurements

Lattice-Boltzmann solver: ECM (no-overlap) vs. measurements

Saturation point again predicted

accurately

Saturation performance matches

multi-stream benchmarks

No-overlap assumption seems a

little pessimistic

Not all execution is LD and ST

8/28/2012 22 PROPER 2012

Why the fuss about

the saturation point?

Energy consumption!

8/28/2012 23 PROPER 2012

A simple power model for multicore chips

Assumptions:

1. Power is a quadratic polynomial in the clock frequency

2. Dynamic power is linear in the number of active cores t

3. Performance is linear in the number of cores until it hits a

bottleneck ( ECM model)

4. Performance is linear in the clock frequency unless it hits a

bottleneck

5. Energy to solution is power dissipation divided by performance

Model:

 where 𝒇 = 𝟏 + ∆𝝂 𝒇𝟎

8/28/2012 24 PROPER 2012

How do we arrive at those assumptions?

Performance and power vs. clock for different applications (SNB):

 Assumptions (1) and (4)

8/28/2012 25 PROPER 2012

all cores used

single core

How do we arrive at those assumptions?

Power and CPI vs. Number of active cores:

 Assumption (2)

8/28/2012 26 PROPER 2012

Model predictions

1. If there is no saturation, use all available cores to minimize E

2. There is an optimal frequency fopt at which E is minimal in the

non-saturated case, with

𝒇𝐨𝐩𝐭 =
𝑾𝟎

𝑾𝟐𝒕
 , hence it depends on the baseline power

 “Clock race to idle” if baseline accommodates whole system!

3. If there is saturation, E is minimal at the saturation point

4. If there is saturation, absolute minimum E is reached if the

saturation point is at the number of available cores

5. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck

8/28/2012 27 PROPER 2012

Validation using the lattice-Boltzmann example

Performance and energy to solution vs. cores on SNB

8/28/2012 28 PROPER 2012

Conclusions

 Performance Engineering == Performance Modeling with “bells
and whistles”

 PE is more than just finding out about hot spots and trying to
change “something in the code” to make it faster. It is about
insight into the interaction of hardware and software!

 PM works out best if it does not work 

 Saturation effects are ubiquitous; understanding them gives us
opportunity to

 Find out about optimization opportunities

 Save energy

 Simple models work best. Do not try to complicate things unless it
is really necessary!

8/28/2012 29 PROPER 2012

Make it as simple as possible, but not simpler.

 Albert Einstein

Thank you.

8/28/2012 30 PROPER 2012

OMI4papps
 hpcADD

References

 J. Treibig and G. Hager: Introducing a Performance Model for

Bandwidth-Limited Loop Kernels. Proceedings of the Workshop

“Memory issues on Multi- and Manycore Platforms” at PPAM 2009, the

8th International Conference on Parallel Processing and Applied

Mathematics, Wroclaw, Poland, September 13-16, 2009. DOI:

10.1007/978-3-642-14390-8_64

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel

sparse matrix-vector multiplication with explicit communication overlap

on current multicore-based systems. Parallel Processing Letters 21(3),

339-358 (2011). DOI: 10.1142/S0129626411000254

 G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance

and power properties of modern multicore chips via simple machine

models. Submitted. Preprint: arXiv:1208.2908

8/28/2012 31 PROPER 2012

http://www.ppam.pl/
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1208.2908

