
Evaluation of the Coarray Fortran Programming Model on
the Example of a Lattice Boltzmann Code

Klaus Sembritzki
Friedrich-Alexander University

Erlangen-Nuremberg
Erlangen Regional Computing

Center (RRZE)
Martensstrasse 1

91058 Erlangen, Germany
klausem@gmail.com

Georg Hager
Friedrich-Alexander University

Erlangen-Nuremberg
Erlangen Regional Computing

Center (RRZE)
Martensstrasse 1

91058 Erlangen, Germany
georg.hager@rrze.fau.de

Bettina Krammer
Université de Versailles
St-Quentin-en-Yvelines

Exascale Computing
Research (ECR)

45 Avenue des Etats-Unis
78000 Versailles, France

bettina.krammer@uvsq.fr

Jan Treibig
Friedrich-Alexander University

Erlangen-Nuremberg
Erlangen Regional Computing

Center (RRZE)
Martensstrasse 1

91058 Erlangen, Germany
jan.treibig@rrze.fau.de

Gerhard Wellein
Friedrich-Alexander University

Erlangen-Nuremberg
Erlangen Regional Computing

Center (RRZE)
Martensstrasse 1

91058 Erlangen, Germany
gerhard.wellein@rrze.fau.de

ABSTRACT
The Lattice Boltzmann method is an explicit time-stepping sche-
me for the numerical simulation of fluids. In recent years it has
gained popularity since it is straightforward to parallelize and well
suited for modeling complex boundary conditions and multiphase
flows. Starting from an MPI/OpenMP-parallel 3D prototype im-
plementation of the algorithm in Fortran90, we construct several
coarray-based versions and compare their performance and requi-
red programming effort to the original code, demonstrating the per-
formance tradeoffs that come with a high-level programming style.

In order to understand the properties of the different implemen-
tations we establish a performance model based on microbench-
marks, which is able to describe the node-level performance and
the qualitative multi-node scaling behavior. The microbenchmarks
also provide valuable low-level information about the underlying
communication mechanisms in the CAF implementations used.

1. INTRODUCTION
In contrast to the popular Message Passing Interface (MPI), PGAS

(Partitioned Global Address Space) languages like UPC (Unified
parallel C), the Coarray Fortran (CAF) programming language de-
fined in 1998 by Robert Numrich and John Reid [1] [2], and the
SHMEM library [3] have not (yet) managed to gain greater ac-
ceptance outside academia. However, advocates of PGAS langua-
ges claim that PGAS languages can and should replace MPI and
OpenMP, typical arguments being that they are more readable and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

easier to learn.
With the Fortran 2008 standard, coarrays became a native Fort-

ran feature [2]. The “hybrid” nature of modern massively parallel
systems, which comprise shared-memory nodes built from multico-
re processor chips, can be addressed by the compiler and runtime
system by using shared memory for intra-node access to codimen-
sions. Inter-node access may either by conducted using an existing
messaging layer such as MPI or SHMEM, or carried out natively
using the primitives provided by the network infrastructure.

Cray has a long tradition with PGAS languages, starting with
the support for coarrays on the Cray T3E in 1998 [4]. UPC is al-
so supported by the Cray Programming Environments, the claim
being that Cray Computers can efficiently map PGAS high-level
constructs to network calls. One compute platform used throughout
this work is therefore a Cray XE6 machine with Gemini routers [5]
[6].

In order to compare with a commodity-type environment we
used a standard Infiniband Intel Westmere Cluster. On this hardwa-
re, the Intel Fortran Compiler 12.0 (update 4) was chosen, which
can be considered a very common choice among software devel-
opers. The Rice University CAF 2.0 compiler and a development
version of the Open64 compiler 4.2 with CAF support were evalua-
ted, but found to be too immature for productive use.

As application testcase, we chose a solver implementing the Lat-
tice Boltzmann method, an area of research pursued at the Uni-
versity of Erlangen Nürnberg for the past few years. In particular,
two large scale production codes have been developed at the RRZE
(Erlangen Regional Computing Center) [7] and the LSS (Chair for
System Simulation) [8]. The Lattice Boltzmann method is an ex-
plicit time-stepping scheme for the numerical simulation of fluids,
straightforward to parallelize and well suited for modelling com-
plex boundary conditions and multiphase flows. In addition to its
production code, the RRZE maintains a small prototype 3D Lattice
Boltzmann code [9, 10], which is written in Fortran and is already
single core optimized and parallelized with MPI and OpenMP. This
work extends this code by parallelization with coarrays and compa-
res performance and programming effort to the MPI implementati-

Rank 3Rank 2

Rank 1Rank 0
Fluid cell

Ghost cell

Figure 1: Exchange of ghost cells in vertical and horizontal direc-
tion. Diagonal neighbours are exchanged indirectly.

on. The measurements are supplemented by low-level benchmarks
to evaluate the quality of different hardware-compiler combinati-
ons and to be able to draw conclusions about the applicability of
the coarray programming paradigm for other algorithms.

This paper is organized as follows. Section 2 describes the im-
plementation of the Lattice Boltzmann use case, both for MPI and
CAF. Section 3 gives an overview of the hardware and software en-
vironments that were used and describes the performance charac-
teristics of the different hardware-software combinations by means
of low-level benchmarks. These results are then used to establish
performance models for the MPI and CAF implementations of the
Lattice Boltzmann solver. In section 4 we present the Lattice Boltz-
mann benchmark results and validate our performance models. Fi-
nally, section 5 gives an overview on related work, and section 6
contains a short summary of lessons learnt and some conclusions.

2. IMPLEMENTATION OF THE LATTICE
BOLTZMANN SOLVER

Lattice Boltzmann methods (LBM) were derived from lattice gas
automata by regarding the interaction not of single particles but of
particle clusters with discrete velocities. The typical implementa-
tion of the algorithm discretizes the space with a Cartesian latti-
ce. Each lattice cell stores a discrete particle distribution function
(PDF), a set of positive scalar values fi giving the probability of
finding a particle with the discrete velocity of index i in the cell.
The discrete velocities are chosen such that a particle, which is in
the center of one cell and has one of these discrete velocities, mo-
ves exactly into the center of one adjacent cell in one time step.
So, in each time step, the values of fi are changed according to
the velocities of the other particles in the cell, and each particle
conglomerate represented by the fi values moves to one adjacent
lattice cell thereafter.

For correct boundary handling a “bounce-back” step is required,
which implements no-slip boundary conditions. The computatio-
nal effort for this step is usually small compared to the fluid cell
updates (N2 vs. N3, where N is the number of fluid cells), so we
ignore it for the performance analysis below.

In the D3Q19 model implemented in our prototype LBM code,
19 scalar values are stored for each cell. Parallelization is done
similarly to other stencil codes, via a Cartesian distribution of the
lattice cells among processes and by exchange of halo cells as de-
picted in Fig. 1. Our LBM code allows for a 1D, 2D or 3D domain
decomposition, though, in this paper, we focus on the 2D and 3D
cases only. As access to main memory is fastest when the accesses
have stride one, there exist slow and fast axes for traversing a multi-
dimensional array. The traversal is therefore fastest if slices that cut
the 3D array along its slowest axis are exchanged. For Fortran, the
last and therefore third axis is the slowest axis.

subroutine exchange_ghost_cells(A, B)
call mpi_irecv(recvBufA , A, recvReqstA)
call mpi_irecv(recvBufB , B, recvReqstB)

if (A>=0) call copy_cells(A, sendBufA)
call mpi_isend(sendBufA , A, sendReqstA)

if (B>=0) call copy_cells(B, sendBufB)
call mpi_isend(sendBufB , B, sendReqstB)

! missing code: wait for recvReqstA and recvReqstB

if (A>=0) paste_cells(recvBufA)
if (B>=0) paste_cells(recvBufB)

! missing code: wait for sendReqstA and sendReqstB
end subroutine

Listing 1: Simplified version of the MPI communication code for
exchanging ghost cells with direct neighbours (rank A and B) in one
direction (dummy neighbour MPI_PROC_NULL at the borders of com-
pute domain), with manual buffering.

2.1 MPI Implementation
The MPI implementation uses non-blocking send/receive pairs

and manual buffering. The copy_cells subroutine copies the data
from the array storing the ghost parts of the PDF to the send buf-
fer, while the paste_cells function copies the data from the receive
buffer into the ghost parts of the PDF.

For the sake of simplicity, the code shown in listing 1 assumes
that the send and receive buffers have the same size in each direc-
tion, which means that the ghost cells in x, y and z direction must
have equal size. The actual application code does not have this
restriction.

2.2 MPI-like, Buffered Coarray Fortran Im-
plementation

The MPI-like, buffered CAF version was created by converting
the receive buffers of the MPI implementation into coarrays. The
corresponding code is shown in listing 2. While MPI ranks are
numbered starting from 0, CAF images are numbered starting from
1, hence images_index()=rank+1.

The line recvBufA[B]=sendBufB is discussed in more detail. By de-
finition as in the original MPI code in listing 1, recvBufA contains
the ghost cells received from A. Using the original MPI rank notati-
on, suppose that there exist only two processes, rank 0 being wes-
tern of rank 1. Then, rank 0 calls exchange_ghost_cells(A=-1, B=1)

and rank 1 calls exchange_ghost_cells(A=0, B=-1), both using the
dummy neighbour -1 at their outer borders. This means that rank 1
expects the data from rank 0 in recvBufA and rank 0 has to execute
recvBufA[B]=sendBufB. This is the so-called push mode, as data are
pushed from A to B, in pull mode the data transfer would have to
be initiated by B. Before and after pushing data, synchronization is
needed to ensure consistency of data between A and B.

Again, the simplified code shown here expects the ghost cells in
x, y and z direction to be of equal size, the actual application code
does not have this restriction.

2.3 Unbuffered Coarray Fortran Implemen-
tation

The main part of the unbuffered CAF implementation is hidden
in the subroutine transmit_slice (listing 3). In the buffered, MPI-
like CAF implementation, it was relatively easy for the sender to
determine the place where the receiver would expect the data from
its neighbour to be stored: B expected the data to be in recvBufA. In

subroutine exchange_ghost_cells(A, B)
if (A/=-1) call copy_cells(A, sendBufA)
if (B/=-1) call copy_cells(B, sendBufB)

if (A/=-1 .and. B/=-1) sync images ([A, B]+1)
if (A/=-1 .and. B==-1) sync images ([A]+1)
if (A==-1 .and. B/=-1) sync images ([B]+1)

if (A/=-1) recvBufB[A] = sendBufA
if (B/=-1) recvBufA[B] = sendBufB

if (A/=-1 .and. B/=-1) sync images ([A, B]+1)
if (A/=-1 .and. B==-1) sync images ([A]+1)
if (A==-1 .and. B/=-1) sync images ([B]+1)

if (A/=-1) call paste_cells(A, recvBufA)
if (B/=-1) call paste_cells(B, recvBufB)

end subroutine

Listing 2: Simplified, MPI-like, buffered CAF code for exchanging
ghost cells with direct neighbours A and B (images_index()=rank+1)
in one direction (dummy neighbour -1 at the borders of compute
domain), with manual buffering.

subroutine exchange_ghost_cells(A, B)
if (A/=-1 .and. B/=-1) sync images ([A, B]+1)
if (A/=-1 .and. B==-1) sync images ([A]+1)
if (A==-1 .and. B/=-1) sync images ([B]+1)

if (A/=-1) call transmit_slice(A)
if (B/=-1) call transmit_slice(B)

if (A/=-1 .and. B/=-1) sync images ([A, B]+1)
if (A/=-1 .and. B==-1) sync images ([A]+1)
if (A==-1 .and. B/=-1) sync images ([B]+1)

end subroutine

subroutine transmit_slice(destRank)
integer :: srcMin (3), srcMax (3), dstMin (3), dstMax (3)
integer :: links (5)

! missing code: from destRank ,
! compute srcMin , srcMax , dstMin , dstMax and links

pdf(dstMin (1) : dstMax (1),
dstMin (2) : dstMax (2),
dstMin (3) : dstMax (3), links)[destRank] = &

pdf(srcMin (1) : srcMax (1),
srcMin (2) : srcMax (2),
srcMin (3) : srcMax (3), links)

end subroutine

Listing 3: Unbuffered CAF communication for exchanging data
with direct neighbours A and B in one direction (dummy neigh-
bour -1 at the borders of compute domain), with calculation of slice
boundaries.

contrast, in the case of unbufferd CAF communication the sender
has to calculate the boundaries of the corresponding halo slice on
the receiver process (see the variables dstMin and dstMax).

3. LOW-LEVEL BENCHMARKS AND PER-
FORMANCE MODEL

3.1 Experimental Set-up
The LBM code was run on two different machines, the Cray

XE6 of the Swiss National Supercomputing Center (CSCS) [11]
and the “Lima” cluster of the Erlangen Regional Computing Cen-
ter (RRZE) [12]. Table 1 summarizes the hardware and software
characteristics of both systems.

Cray XE6 Lima cluster

Processor AMD 6172 Intel X5650
Clock frequency 2.20 GHz 2.67 GHz
DP peak per node 211 GFLOP/s 128 GFLOP/s
#Physical cores per
node 24 12

#Virtual cores per node N/A 24
#Sockets per node 2 2
#NUMA domains per
socket 2 1

L3 cache size per NU-
MA domain 5 MB 12 MB

Measured memory
bandwidth/node 50 GB/s 40 GB/s

Network topology 2D torus Fat tree
Measured network BW
per connection 10 GB/s 6 GB/s

#Nodes 176 500

Compiler Cray Fortran 7.4.2 Intel Fortran
12.0 update 4

MPI Cray Programming Intel MPI
Environment 3.1.61 4.0.3

Table 1: Compute hardware and software data sheet

node 1

rank 0

node 2

rank 1

(a) Ringshift with
2 ranks, bidirec-
tional communi-
cation

node 1

rank 0

node 2

rank 1

node 3

rank 2

node 6

rank 3

node 5

rank 4

node 4

rank 5

(b) Ringshift with 6 ranks on
torus network: Optimal node
selection results in unidirec-
tional communication

node 1

rank 0

node 2

rank 1

node 3

rank 2

node 4

rank 3

node 5

rank 4

node 6

rank 5

(c) Ringshift with 6 ranks on torus network: Linear node selection
results in bidirectional communication

Figure 2: Possible locations of nodes on the Cray XE6 torus net-
work for the ringshift benchmark, which was used to mimic the
halo exchange communication in the LBM implementation.

The process affinity was always chosen such that the amount of
traffic that has to pass the inter-NUMA-domain connections (Hy-
pertransport and QuickPath, respectively) was minimized.

The memory and network bandwidths in table 1 have been ob-
tained by microbenchmarks (see sections 3.2.1 and 3.2.2). The
XE6 has a torus network topology and the total network bandwidth
available per node does therefore not only depend on the communi-
cation patterns but also on the selection of the nodes (see figure 2).
Since there was no way to influence the node selection on the Cray
machine, the network bandwidth given here refers to the bandwidth
available per connection of two nodes.

The network interface of the Cray XE6 is based on the Gemini

double precision :: a(n), b(n)
for i=1..n

a(i) = b(i)
end for

Listing 4: Copy benchmark with two memory streams

double precision :: a(n,19), b(n,19)
for i=1..n

for l=1..19
a(i,l) = b(i,l)

end for
end for

Listing 5: Copy benchmark with 2 ·19 memory streams

interconnect [5] and promises to provide good hardware support
for coarrays. The Lima cluster, on the other hand, can only support
coarrays by appropriate software emulation.

3.2 Low-level Benchmarks
Low-level benchmarks are required to provide reasonable input

data for the performance model [13] in section 3.3. This pertains
to the main memory bandwidth and the latency and bandwidth for
inter-node communication.

3.2.1 Memory Bandwidth
The benchmark codes used for the memory bandwidth measu-

rements are shown in listings 4 and 5. We have used our own co-
de instead of the popular STREAM benchmark, since the 19-way
copy (listing 5) mimics the data access behavior of the LBM im-
plementation. The code examples use the variable n to specify the
size of the double precision arrays. The following sections will,
however, use the variable N = n · 8Bytes to denote the array size
in bytes. We have chosen the array sizes such that all data has to
be streamed from and to main memory, since we are interested in
memory-bound situations.

On modern cache-based architectures, a write miss in the cache
hierarchy triggers a write-allocate transfer of the corresponding ca-
che line from memory to cache. Hence, for every store to array a

there is an implicit load, adding 50% to the overall data traffic. In
principle, the write-allocate is not strictly required in the low-level
benchmarks nor in the LBM implementation, since the data written
to the target array will be evicted to memory anyway and is only
required in the next update sweep. On x86 architectures, “non-
temporal stores” can be used to bypass the cache hierarchy. Howe-
ver, those instructions have limitations that make them difficult to
employ in the Lattice Boltzmann code [14] and were therefore not
used in this work.

Table 2 summarizes the benchmark results, comparing the versi-
ons with 2 and 2·19 streams on both architectures. Whenever the
number of processes was smaller than the number of available co-
res, a “scatter” strategy was used to distribute the processes across
the resources, leading to an optimal use of bandwidth. Note that the
24-process version on the Lima node uses the SMT (a.k.a. Hyper-
Threading) feature of the Intel Westmere processor. The bandwidth
was calculated using the formula B = 3·N

runtime for two streams and
according to B = 3·19·N

runtime for 2·19 streams.
A general result of the low-level bandwidth measurements is that

a large number of concurrent data streams reduces the available
memory bandwidth by a measurable amount, especially when only
half of the available cores are used on the Cray node. This justifies

#Streams
Process

#Processes
Node

XE6, BW
Node [GB/s]

Lima, BW
Node [GB/s]

2 2 18.5 29.6

2 ·19 2 8.4 16.1

2 12 51.9 40.1

2 ·19 12 39.3 38.3

2 24 54.1 41.1

2 ·19 24 51.9 38.9

Table 2: Memory bandwidth of the copy benchmarks (listings 4
and 5)

if (this_image () == 1) then
sync all ! images 1 and 2 ready
recv (:)[2] = send (:)[1]
sync all ! recv [1] and recv [2] filled

end if
if (this_image () == 2) then

sync all ! images 1 and 2 ready
recv (:)[1] = send (:)[2]
sync all ! recv [1] and recv [2] filled

end if

Listing 6: CAF ringshift using push strategy. The outer loop and
the timing code are omitted.

the decision to employ a dedicated 2·19-stream benchmark kernel
for getting the baseline memory bandwidth of a node.

3.2.2 Communication
A “ringshift” benchmark was used to model the communicati-

on characteristics of the Lattice Boltzmann implementation. The
correctness of the results was validated by comparing them to the
results of the Intel MPI Benchmarks [15].

The LBM requires, like other stencil codes, the exchange of
boundary slices of multidimensional arrays between processes (see
section 2). When the boundary slices can be accessed with unit
stride, the expected communication time is predicted by the per-
formance of the ringshift benchmark. Communication with strides
greater than one does not occur for all the domain decomposition
techniques and can therefore be avoided (at the cost of a higher
communication volume though).

The bandwidths were measured for inter-node as well as intra-
node situations. In case of inter-node measurements, there were
always two distinct nodes taking part in the communication.

Listing 6 shows a simplified version of the benchmark code in
CAF using a “push” strategy, i.e., remote transfers are writes to the
distant image. The actual code takes care that no spurious intra-
cache copy effects occur if the communicating processes reside on
the same node (this corresponds to the -off_cache option in the Intel
MPI Benchmarks [13]), and contains an outer loop that makes sure
that the runtime is large enough for accurate measurements.

We assume a simple model for the message transfer time that has
the latency L and the asymptotic bandwidth B as parameters:

T = L+
2 ·N

B
Here N is the message length in bytes. L and B were determined by
solving the following minimization problem:

L,B = argmin
L,B

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


1/T1 N1/T1

1/T2 N2/T2
...

...

 ·
(

L

2/B

)
−


1

1
...


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

The results show that while the model is suitable for two com-
munication partners, it is only approximate for larger numbers. As
a general result, Cray CAF is about as fast as MPI (figure 3). Inter-
node CAF has a higher bandwidth for small numbers of processes,
but the latency is worse than for MPI. Figure 4 reveals that the
communication bandwidth for the Intel CAF implementation is ex-
tremely low; further tests suggested that all message transfers occur
element-wise, and hence communication is always strictly latency-
dominated (see below).

The ringshift benchmarks use the process affinity described in
section 3.1. On Lima with MPI and on the XE6 with MPI and CAF
the intra-node ringshift saturates at about half of the main memory
bandwidth with 24 processes per node. The inter-node benchmarks
already saturate the network with one process per node.

One might expect “pull” communication (i.e., remote transfers
are reads from the distant image) to be slower than push communi-
cation because of the inherent synchronization between the com-
munication partners; the initiator of the “pull” has to wait until
the other image has sent the data. In contrast, push communica-
tion might be implemented in a non-blocking way by using buffe-
ring, thus decreasing the bandwidth. Measurements of the ringshift
benchmark using pull communication showed that the performan-
ce characteristics of push and pull differed neither on the XE6 with
Cray CAF nor on the Intel cluster with Intel CAF.

Figure 5 compares contiguous and element-wise ping-pong (i.e.,
unidirectional) communication for the two environments. The ping-
pong benchmark was modified such that contiguous copy state-
ments like dst(:)[2] = src(:)[1] were converted into loops that
perform element-wise copy operations. No synchronization state-
ments were inserted into the inner copy loop. The inner loop was
obfuscated to make it difficult for the compiler to convert the loop
into one contiguous copy statement at compile time.

If acceptable performance was still obtained in such a situation,
this would mean that either the compiler does not perform commu-
nication instantaneously or that the network hardware aggregates
multiple successive data transfers. As measurements for both com-
pilers showed bad performance, none of this takes place. The XE6
inter-node communication bandwidth drops by a factor of 3000,
while the intra-node bandwidth drops by a factor of 30. As expec-
ted, the Intel CAF results do not change, which substantiates our
conjecture that contiguous communication is not supported.

To check whether it is possible to overlap computation and com-
munication with the available compilers, the ringshift benchmark
was modified as shown in listings 7 and 8.

The benchmark was run for all possible combinations of comm and
comp, except for comm = comp = false. Since the chosen computational
kernel does not require any memory bandwidth, the process pla-
cement does not influence the results if comm = false. A message
size of 4 MB was chosen, and the runtime of the do_calculation()

subroutine was set such that it takes roughly the same time as the
(bidirectional) transmission of a 4 MB message.

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

5G

10G

15G

20G

25G

30G

35G

40G

B
an

dw
id

th
[B

/s
]

2 ranks, inter node, L: 2.2µs, BW: 8.0GB/s
2 ranks, intra node, L: 1.0µs, BW: 4.9GB/s
4 ranks, inter node, L: 2.6µs, BW: 7.8GB/s
4 ranks, intra node, L: 1.0µs, BW: 6.8GB/s
24 ranks, inter node, L: 5.9µs, BW: 7.6GB/s
24 ranks, intra node, L: 14.6µs, BW: 17.9GB/s

(a) MPI, ringshift

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

5G

10G

15G

20G

25G

30G

35G

40G

B
an

dw
id

th
[B

/s
]

2 ranks, inter node, L: 9.4µs, BW: 9.8GB/s
2 ranks, intra node, L: 7.1µs, BW: 6.0GB/s
4 ranks, inter node, L: 11.8µs, BW: 8.8GB/s
4 ranks, intra node, L: 8.8µs, BW: 12.0GB/s
24 ranks, inter node, L: 16.1µs, BW: 8.7GB/s
24 ranks, intra node, L: 39.5µs, BW: 20.8GB/s

(b) CAF, push ringshift

Figure 3: Results for the ringshift benchmark with Cray Fortran on
the Cray XE6

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

5G

10G

15G

20G

25G

30G

35G

40G

B
an

dw
id

th
[B

/s
]

2 ranks, inter node, L: 6.1µs, BW: 5.7GB/s
2 ranks, intra node, L: 2.1µs, BW: 4.1GB/s
4 ranks, inter node, L: 13.0µs, BW: 5.7GB/s
4 ranks, intra node, L: 2.7µs, BW: 7.4GB/s
24 ranks, inter node, L: 15.3µs, BW: 5.8GB/s
24 ranks, intra node, L: 7.9µs, BW: 11.2GB/s

(a) MPI, ringshift

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

20M

40M

60M

80M

100M

120M

140M

160M

B
an

dw
id

th
[B

/s
]

2 ranks, inter node, L: 4.5µs, BW: 2.0MB/s
2 ranks, intra node, L: 2.0µs, BW: 5.3MB/s
4 ranks, inter node, L: 11.0µs, BW: 3.1MB/s
4 ranks, intra node, L: 2.7µs, BW: 11.1MB/s
24 ranks, inter node, L: 16.5µs, BW: 13.0MB/s
24 ranks, intra node, L: 6.5µs, BW: 49.0MB/s

(b) CAF, push ringshift

Figure 4: Results for the ringshift benchmark with Intel Fortran on
Lima

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

2G

4G

6G

8G

10G

B
an

dw
id

th
[B

/s
]

inter node, L: 17.6µs, BW: 6.4GB/s
intra node, inter socket, L: 14.0µs, BW: 3.4GB/s
intra node, intra socket, L: 14.0µs, BW: 3.6GB/s

(a) XE6, contiguous

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

20M

40M

60M

80M

100M

120M

140M
B

an
dw

id
th

[B
/s

]

inter node, L: 23.1µs, BW: 2.1MB/s
intra node, inter socket, L: 13.0µs, BW: 76.3MB/s
intra node, intra socket, L: 12.9µs, BW: 79.4MB/s

(b) XE6, element-wise

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

500K

1M

1.5M

2M

B
an

dw
id

th
[B

/s
]

inter node, L: 3.1µs, BW: 927KB/s
intra node, inter socket, L: 0.6µs, BW: 1.4MB/s
intra node, intra socket

(c) Lima, ifort, contiguous

1 10 100 1K 10K 100K 1M 10M 100M
Message size [Bytes]

0

500K

1M

1.5M

2M

B
an

dw
id

th
[B

/s
]

inter node, L: 2.9µs, BW: 910KB/s
intra node, inter socket, L: 0.2µs, BW: 1.3MB/s
intra node, intra socket

(d) Lima, ifort, element-wise

Figure 5: Explicitly contiguous vs. element-wise ping-pong com-
munication

sync all
if (comm) array (:,2)[modulo(this_image (), &

& num_images ())+1] = array (:,1)
if (comp) call do_calculation ()
sync all

Listing 7: “Push-style” ringshift benchmark with overlapping com-
putation. The “sync all’ is a global synchronization and requires all
images to complete all operations before execution can proceed.

sync all
if (comm) array (:,2) = array (:,1) &

& [modulo(this_image ()-2, num_images ())+1]
if (comp) call do_calculation ()
sync all

Listing 8: “Pull-style” ringshift benchmark with overlapping com-
putation

The results are as listed in table 3: Communication and computa-
tion overlap neither for push nor for pull communication, no matter
if the processes are on the same node or not. Comparing the re-
sults when the time is measured inside or outside the code segment
that is surrounded by sync all statements further reveals that the
communication is performed instantaneously and is not scheduled
and shifted to the next synchronization statement. Only the results
on the XE6 are shown here because Intel CAF showed exactly the
same behaviour.

The results for element-wise and overlapping communication
suggest that it would not make sense to design a CAF implementati-
on of the LBM algorithm that does not use ghost cells but accesses
remote data directly. The performance of such a code would be
strongly latency-bound.

3.3 Performance Model
For the considerations already shown for the ringshift in figure 2

and for the LBM method in figures 6b and 6c, the selection of the
nodes has a big influence on the communication times of the LBM
on the XE6. Therefore the performance model created here can
only be applied strictly to fully non-blocking fat tree networks. In
case of a torus network, the predicted communication overhead can
only be a rough estimate.

Figure 6a is used to estimate the number of neighbours of a node.
This means that the following assumptions are made.

Push/pull Comm.
enabled

Comp.
enabled

Inter/Intra
Node

Comm.
BW [GB/s]

Runtime
[µs]

don’t care no yes don’t care 1278

push yes no inter 9.6 806

push yes yes inter 3.8 2080

push yes no intra 6.2 1254

push yes yes intra 3.0 2553

pull yes no inter 9.8 805

pull yes yes inter 3.6 2163

pull yes no intra 6.2 1273

pull yes yes intra 3.0 2551

Table 3: Test results for overlap of communication and computa-
tion on the Cray XE6. If overlap takes place, the effective band-
widths for the cases with and without computation should be simi-
lar.

• There exist exactly two process subdomains inside a node
that share exactly one face with another process subdomain
inside that node (ranks 0 and 23 in figure 6a).

• All other subdomains share exactly two faces with other pro-
cess subdomains inside that node (ranks 1,...,22 in figure 6a).

This means that the subdomains on all processes inside a node
are lined up along one coordinate direction (with the exception of
boundary effects). While this is not optimal from the perspective
of communication overhead, it is how MPI (and CAF) implemen-
tations usually map ranks to Cartesian topologies.

Together with the additional assumption that

• at least one node is fully surrounded by other nodes,

the two previous assumptions require that such a fully surrounded
node communicates with 6 · p− 2 · (p− 2)− 1 · 2 = 4 · p+ 2 inter-
node neighbours if p is the number of processes per node (compare
also to figure 6a). Also, inside each node, 2 · (p− 1) intra node
communications take place. The following additional assumptions
are made.

• The LBM kernel is memory bound, thus a simple bandwidth
model [13] will suffice to predict the node-level performance.
The saturation properties also make it mandatory to report
scaled performance with respect to the number of nodes or
sockets (as opposed to cores).

• The network is bidirectional with a bandwidth of Be/2 in
each direction and is fully non-blocking.

• The subdomain of every process is a box of the same size,
meaning each process stores the same number of cells N3

and that each array dimension is of the same size N.

• All nodes contain the same number of processes.

• Double precision numbers are used.

To summarize, let

P be the total number of processes
p be the number of processes per node

Le/a be the inter/intra node communication latency, measured

with the ringshift benchmark in section 3.2.2,
Be/a be the inter/intra node communication bandwidth, measured

with the ringshift benchmark in section 3.2.2,
M be the memory bandwidth, measured with the copy

benchmark with 19 streams in section 3.2.1, and
N be the number of lattice cells in each

dimension of the subdomain stored by a process.

Then, the time required for one time step is composed of intra- and
inter-node communication overhead and the time for the fluid cell
updates:

Tstep = T inter
comm +T intra

comm +Tcalc

= 3 ·Le +
5 ·8 Bytes ·N2

(Be/2)/(4 · p+2)

+3 ·La +
5 ·8 Bytes ·N2

(Ba/2)/(2 · (p−1))

+
3 ·19 ·8 Bytes ·N3

M

Rank 0 1 23

(a) Algorithmic
neighbours of one
compute node

node 1

ranks
0-23

node 2

ranks
24-47

node 3

ranks
48-71

node 6

ranks
72-95

node 5

ranks
96-119

node 4

ranks
120-143

(b) Optimal node placement
for the LBM with a 2D do-
main decomposition on a to-
rus network

node 1

ranks
0-23

node 2

ranks
24-47

node 3

ranks
48-71

node 6

ranks
72-95

node 5

ranks
96-119

node 4

ranks
120-143

(c) Suboptimal node placement for the LBM with a 2D domain de-
composition on a torus network

Figure 6: Parallel LBM implementation

The performance S, i.e., the number of lattice site updates per
second, is

S[LUPS/s] = P · N3

Tstep

4. APPLICATION BENCHMARKS AND VA-
LIDATION OF PERFORMANCE MODEL

The analysis of the performance of the LBM implementations
starts with determining the number of processes required per node
to saturate the memory system. The optimal “node filling” factor
is then used in the subsequent scaling runs. We compare CAF and
MPI, using the Cray compiler on the XE6 and the Intel compiler
on the Westmere Cluster. The measured performance is compared
to the prediction generated by the performance model from secti-
on 3.3.

4.1 Optimal Single Node Performance Evalua-
tion

To find out how many processes are required per node to satura-
te the memory system, figure 7 shows the LUPS/s achieved by one
compute node for different numbers of processes per node. Each
process was assigned a compute domain of 400 MB, no matter how
many processes were running on each node. Intra-node MPI com-
munication was taking place, but the communication time was sub-
tracted from the total runtime before the performance metric was
calculated.

The Lima cluster has only 12 physical cores per node and 12
virtual hyperthreaded cores, in contrast to the XE6 with 24 physical
cores. However, both the Lima and the XE6 need 24 processes on
each node (i.e., fully populated NUMA domains) to saturate the
memory system. This picture may change if some effort is invested
in SIMD vectorization, but this option was not investigated here
(see [14] for a more in-depth analysis).

4.2 Strong Scaling
This section shows which domain partitioning approaches are

best suited for strong scaling runs of each of the three different im-
plementations (MPI, MPI-like buffered CAF and unbuffered CAF).

The symbol (x,x,1) in the legends of figures 8 and 9 corresponds to
a 2D domain decomposition along the first (and fast) axis and the
second fastest axis of the Fortran array, while (x,x,x) corresponds to
a 3D domain decomposition. All “x” have the same size, meaning
the decomposition is done equally along each axis.

The problem domain contains 3503 lattice cells, which makes
2 · 8 · 19 · 3503 Bytes ≈ 13GB in total. A 1D domain position was
tested but resulted in very poor performance due to a very unfa-
vourable fraction of required computation to communication, as
expected.

Figures 8 (for Cray XE6) and 9 (for Lima) show strong scaling
runs on up to 63 nodes. In order to increase the sampling rate, the
domain size was increased in each dimension up to the next number
divisible by the number of ranks in that dimension. If the resulting
computational volume was more than 10% larger than the original
computational volume, the benchmark was not run.

On the XE6 with MPI, the best 2D domain decomposition, the
(1,x,x) decomposition, and the 3D decomposition are equally fast.
The 2D decompositions that cut along the fast axis are slower, and
equally slow.

The buffered, MPI-like CAF implementation shows nearly the
same performance characteristics as the MPI version and both im-
plementations are equally fast on up to about 30 nodes. The CAF
performance is slightly worse than MPI for larger node counts.
30 nodes corresponds to a message size of 5·8Bytes·3502/

√
24 ·30

≈ 180kB for the buffered CAF implementation, which is, accor-
ding to results of the ringshift benchmark from section 3.2.2, still
a message size large enough to hide CAF’s higher latency. No fur-
ther investigations were made to find the reason for the differences
in predicted and measured performance for Cray CAF.

The unbuffered CAF implementation performs worse than MPI
and buffered CAF when a true 3D domain decomposition is used,
and even worse if the unfavourable 2D decompositions (x,x,1) and
(x,1,x) are used. The (1,x,x) decomposition is about as fast as for
the buffered CAF version.

As mentioned before, the performance model can only provide
a rough estimate for the communcation time on the XE6 due to its
torus network. The model works best for (1,x,x) decomposition
and MPI, as shown in figure 8a. In particular, it can track the va-
riations due to communication topology between, e.g., 20 and 27
nodes. On the other hand, the model is mediocre for the (x,x,x)
decomposition; it is well known that the bandwidth performance
model for the LBM update step (and stencil codes in general) does
not encompass variations due to inner loop length [13]. In general,
single-node performance drops when the inner loop becomes small.
This explains the larger deviation from the model in the (x,x,x) ca-
se. The deviation also becomes larger for the CAF versions (figures
8b,c), but is still inside a 10%-20% range in the optimal (1,x,x) ca-
se.

In contrast to the Cray XE6, the Intel MPI implementation per-
forms best on the (1,x,x) domain decomposition. Due to the low
CAF communication bandwidth (see section 3.2.2), the CAF par-
allelization is latency-bound on Lima and is 40 times slower than
the reference MPI implementation for large numbers of processes.
This means that the time used for manual buffering does not affect
the overall performance and buffered CAF is as fast as unbuffered
CAF.

As element-wise communication seems to take place (see secti-
on 3.2.2), only the dimensionality of the decomposition affects the
performance. Therefore, the 3D domain decomposition shows the
best performance, and all 2D domain partitioning approaches are
slower and have equal performance. The model predicts a perfor-
mance that is about twice as large as the true performance of the

1 per socket 6 per socket 12 per socket
0

20M

40M

60M

80M

100M

120M

LU
P

S
/s

Measurement
Model

(a) AMD Opteron 6172 (Cray XE6)

1 per socket 6 per socket 12 per socket
0

10M

20M

30M

40M

50M

60M

70M

80M

90M

LU
P

S
/s

Measurement
Model

(b) Intel Xeon X5650 (Lima cluster)

Figure 7: Measurements and model prediction for LBM LUPS/s per node without communication. A domain size of 110×110×110 per rank
was chosen (400 MB per rank).

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

2G

4G

6G

8G

LU
P

S
/s

Model for computation only
(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(a) MPI

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

2G

4G

6G

8G

LU
P

S
/s

Model for computation only
(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(b) CAF, MPI-like, buffered

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

2G

4G

6G

8G

LU
P

S
/s

Model for computation only
(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(c) CAF, unbuffered

Figure 8: Strong scaling performance results and effects of 2D/3D domain decomposition on the Cray XE6

LBM. This effect could also be seen in the weak scaling results
addressed by subsection 4.3, but the weak scaling results are not
discussed in detail in this paper. Due to Intel CAF’s overall poor
performance, no further investigations were conducted to find the
reason for the differences between the modelled and the true per-
formance.

4.3 Weak Scaling
A weak scaling run using a 2D domain decomposition was bench-

marked on Lima with MPI and CAF. Each process operated on a
domain of size 96× 96× 96, which corresponds to a memory re-
quirement of 6.5 GB per full compute node. Weak scaling of LBM
shows, by design, communication overhead that is solely a function
of the Cartesian topology, i.e., the per-face communication volume
and hence the effective bandwidth is always the same. Our results
reflected this property, so we are not going into detail here.

5. RELATED WORK
Lattice Boltzmann methods for numerical simulation of fluids

have been developed for more than twenty years, with growing po-
pularity in recent years. Their parallelization with MPI or hybrid
MPI and OpenMP is well understood, and extensive research has
already been done on optimized implementations, e.g. in [9, 10].

There is not much work published on implementing LBM co-
des in Coarray Fortran and comparing it with MPI. The approach
closest to our paper is described in [16], investigating different im-
plementation schemes w.r.t. data structures and concluding, simi-
larly to us, that the MPI-like buffered CAF implementation per-
forms best, though not better than MPI. In contrast to our paper,
experiments were only done using recent Cray machines, and no
performance model was developed.

Taking a broader view, a still relatively small number of publica-
tions exist on porting diverse application codes from MPI to Coar-
ray Fortran, though these case studies are not necessarily directly
comparable to LBM. In [17], the CGPOP mini-app, a conjugate
gradient method based on 2D arrays with exchange of ghost cell
layers, is implemented in CAF using various strategies, e.g. with
buffered or unbuffered, push or pull data transfer. Benchmarking
CAF against MPI on several Cray systems, the authors could not
find a performance benefit of CAF over MPI. Finite Differencing
Methods are investigated in [18], where a 5-point stencil performed
best on a Cray XE1 in the CAF MPI-style implementation, depen-
ding on the boundary lengths. For a 9-point stencil, the MPI imple-
mentation proved best. Other examples can be found in [19] where
the CENTORI fluid simulation and a sparse matrix multiplier co-
de are analyzed, or in [20], using the SBLI code (also known as

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

2G

4G

6G

8G

LU
P

S
/s

Model for computation only
(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(a) MPI

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

50M

100M

150M

200M

LU
P

S
/s

(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(b) CAF, MPI-like, buffered

0 5 10 15 20 25 30 35 40 45 50
Number of nodes

0

50M

100M

150M

200M

LU
P

S
/s

(x,x,x), model for computation and communication
(1,x,x), model for computation and communication
(x,x,x), measurement
(1,x,x), measurement
(x,x,1), measurement
(x,1,x), measurement

(c) CAF, unbuffered

Figure 9: Strong scaling performance results and effects of 2D/3D domain decomposition on the Intel Westmere cluster “Lima”

PDNS3D), a finite difference formulation of direct numerical si-
mulation of turbulence.

Summarizing, in general, authors agree that porting an MPI co-
de to CAF is fairly straightforward, especially when adopting the
MPI-like buffered style, and that the CAF programming model may
be easier to use than MPI. CAF has some restrictions limiting usa-
bility, though, such as requiring the coarray to be of equal length
on each image, making it more suitable for regular codes. For
real applications, the MPI performance seems better in most ca-
ses, though CAF can get close when the best-possible data transfer
implementation is chosen. For certain low-level benchmarks CAF
can perform better than MPI, regarding e.g. communication times
for certain message sizes. Experiments were usually conducted on
Cray systems, as they offer good hardware and software support
for the CAF programming model. [21] evaluates the Cray Gemi-
ni interconnect using low-level and NAS benchmarks. To our best
knowledge, the other research papers do not take into account Intel
compilers, and they do not develop performance models, based on
characteristics derived from low-level benchmarks, as we do in our
paper.

6. CONCLUSIONS
We have investigated the performance of contemporary Coarray

Fortran programming solutions by means of low-level benchmarks
and evaluated their suitability for use in application codes. Our app-
lication testcase is based on replacing a former MPI parallelization
of an existing prototype 3D Lattice Boltzmann code by a paralle-
lization with coarrays. The performance of the Lattice Boltzmann
MPI implementation was compared to a CAF version incorporating
the manual buffering taken from the original MPI version and to a
simpler, pure CAF implementation without manual buffering. We
evaluated coarrays with the Cray Compiler on a Cray XE6 and the
Intel Fortran Compiler on an Infiniband Intel Westmere Cluster.

For the task of parallelizing our prototype 3D Lattice Boltzmann
code, CAF turned out to be slightly easier to program than MPI,
but the Cray Compiler was the only compiler that was sufficiently
stable and generated communication code that was efficient enough
to be considered an alternative to the MPI parallelization. On the
node level we checked the quality of the generated code by compa-
ring with a bandwidth-based performance model, which revealed
that on both systems the LBM implementation uses almost the full

available memory bandwidth if all cores are utilized (including vir-
tual cores on the Intel Westmere processor).

Low-level communication benchmarks revealed that the Cray
CAF compiler was slower than MPI for small messages due to a
higher communication latency, but was faster than MPI for large
messages. In practical applications, the very large message sizes
where CAF is faster than MPI is only seen when each process’
subproblem is so large that the runtime is clearly dominated by
computation. The current Intel Compiler was not able to produ-
ce competitive communication code. Up to now, its executables
show effective bandwidths that are three orders of magnitude be-
low native MPI due to element-wise data transfers. For application
developers this means that productive use of CAF applications is
currently limited to Cray hardware unless they have communica-
tion requirements that are so low that the Intel compiler becomes
an option. However, in terms of correctness and features, the Intel
CAF implementation is currently the only alternative to Cray CAF
that we know of.

On the Cray XE6, the optimal kind of domain decomposition
for parallelizing the Lattice Boltzmann algorithm using unbuffered
coarray communication was found to be a 2D domain decompositi-
on along the slowest and the second-slowest array dimension. The
domain decomposition could also be replaced by a 3D domain de-
composition if manual buffering was used to collect the data before
communication. Those findings certainly hold also for other stencil
codes operating on regular grids. Via a comprehensive performance
model, using the measured ring-shift communication performance,
the communication topology, and the bandwidth-based node-level
model as inputs, we were able to predict the qualitative scaling be-
havior of the CAF and MPI implementations on the Cray system.

Finally, we have confirmed the expected result that achieving
performance levels similar to a well-optimized MPI code requi-
res the CAF programming style to closely match the MPI style.
Expecting the compiler to sort out optimal strategies for message
aggregation and buffering is too optimistic, at least with currently
existing implementations.

Acknowledgements
The work presented in this paper was partly conducted at the Exa-
scale Computing Research Center, with support provided by CEA,
GENCI, Intel, and UVSQ. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the aut-
hor(s) and do not necessarily reflect the views of the CEA, GENCI,
Intel or UVSQ. The work was also supported by KONWIHR, the
Competence Network for Scientific High Performance Computing
in Bavaria, within the OMI4papps project. We are indebted to the
Swiss National Supercomputing Center (CSCS) in Manno for gran-
ting access to their Cray XE6 system.

7. REFERENCES
[1] R. W. Numrich and J. Reid. Co-Array Fortran for parallel

programming. ACM FORTRAN FORUM 17(2), (1998)
1–31.

[2] ISO. Fortran 2008 Language Draft, ISO/IEC JTC 1/SC
22/WG 5/N1826. ftp:
//ftp.nag.co.uk/sc22wg5/N1801-N1850/N1826.pdf,
2010.

[3] Q. S. W. Ltd. Shmem Programming Manual.
http://staff.psc.edu/oneal/compaq/ShmemMan.pdf,
2001.

[4] CF90 Co-array Programming Manual.
http://docs.cray.com/books/004-3908-001/

004-3908-001-manual.pdf, 1998.
[5] R. Alverson, D. Roweth and L. Kaplan. The Gemini System

Interconnect. In: 2010 IEEE 18th Annual Symposium on
High Performance Interconnects (HOTI) (ACM). ISBN
978-1-4244-8547-5, 83–87, (2010).

[6] C. S. Baw, R. D. Chamberlain, M. A. Franklin and M. G.
Wrighton. The Gemini Interconnect: Data Path
Measurements and Performance Analysis. In: Proceedings of
the The 6th International Conference on Parallel
Interconnects, PI ’99 (IEEE Computer Society, Washington,
DC, USA). ISBN 0-7695-0440-X, 21–30, (1999). http:
//portal.acm.org/citation.cfm?id=826032.826711

[7] T. Zeiser, G. Hager and G. Wellein. Benchmark Analysis and
Application Results for Lattice Boltzmann Simulations on
NEC SX Vector and Intel Nehalem Systems. Parallel
Processing Letters , (2009) 491–511.

[8] C. Feichtinger, S. Donath, H. Köstler, J. Götz and U. Rüde.
WaLBerla: HPC software design for computational
engineering simulations. Journal of Computational Science
2(2), (2011) 105–112. ISSN 18777503.
http://dx.doi.org/10.1016/j.jocs.2011.01.004

[9] S. Donath. On Optimized Implementations of the Lattice
Boltzmann Method on Contemporary High Performance
Architectures. Master’s thesis at the University of
Erlangen-Nuremberg, 2004.

[10] G. Wellein, T. Zeiser, G. Hager and S. Donath. On the single
processor performance of simple lattice Boltzmann kernels.
Computers & Fluids 35(8-9), (2006) 910–919. ISSN
0045-7930. Proceedings of the First International
Conference for Mesoscopic Methods in Engineering and
Science. http://www.sciencedirect.com/science/
article/pii/S0045793005001532

[11] Palu, CSCS Website. http://user.cscs.ch/hardware/
palu_cray_xe6/index.html.

[12] Lima, RRZE Website. http://www.rrze.uni-erlangen.
de/dienste/arbeiten-rechnen/hpc/systeme/

lima-cluster.shtml.
[13] G. Hager and G. Wellein. Introduction to High Performance

Computing for Scientists and Engineers (CRC Press, Inc.,
Boca Raton, FL, USA), 1st ed., 2010. ISBN
978-1439811924.

[14] M. Wittmann, T. Zeiser, G. Hager and G. Wellein.
Comparison of Different Propagation Steps for Lattice
Boltzmann Methods. Computers & Mathematics with
Applications (Proc. ICMMES 2011) .
http://dx.doi.org/10.1016/j.camwa.2012.05.002

[15] Intel MPI Benchmarks. http://software.intel.com/
en-us/articles/intel-mpi-benchmarks/.

[16] M. Hasert, H. Klimach and S. Roller. CAF versus MPI -
applicability of coarray fortran to a flow solver. In:
Proceedings of the 18th European MPI Users’ Group
conference on Recent advances in the message passing
interface, EuroMPI’11 (Springer-Verlag, Berlin, Heidelberg).
ISBN 978-3-642-24448-3, 228–236, (2011). http:
//dl.acm.org/citation.cfm?id=2042476.2042502

[17] A. Stone, J. M. Dennis and M. Strout. Evaluating Co-Array
Fortran with the CGPOP Miniapp. In: Fifth Partitioned
Global Address Space Conference (Galveston, TX), (2011).

[18] R. Barrett. Co-Array Fortran Experiences with Finite
Differencing Methods. In: Cray User Group 2006. (2006).

[19] A. Myers. Coarray Fortran in CENTORI and a Sparse
Matrix Multiplier Code. Master’s thesis, University of
Edinburgh, 2008.

[20] J. V. Ashby and J. K. Reid. Migrating a Scientific
Application from MPI to Coarrays. Tech. rep., STFC, 2008.

[21] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner and
N. Wichmann. A preliminary evaluation of the hardware
acceleration of the cray gemini interconnect for PGAS
languages and comparison with MPI. In: Proceedings of the
second international workshop on Performance modeling,
benchmarking and simulation of high performance
computing systems, PMBS ’11 (ACM, New York, NY, USA).
ISBN 978-1-4503-1102-1, 13–14, (2011).
http://doi.acm.org/10.1145/2088457.2088467

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1826.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1826.pdf
http://staff.psc.edu/oneal/compaq/ShmemMan.pdf
http://docs.cray.com/books/004-3908-001/004-3908-001-manual.pdf
http://docs.cray.com/books/004-3908-001/004-3908-001-manual.pdf
http://portal.acm.org/citation.cfm?id=826032.826711
http://portal.acm.org/citation.cfm?id=826032.826711
http://dx.doi.org/10.1016/j.jocs.2011.01.004
http://www.sciencedirect.com/science/article/pii/S0045793005001532
http://www.sciencedirect.com/science/article/pii/S0045793005001532
http://user.cscs.ch/hardware/palu_cray_xe6/index.html
http://user.cscs.ch/hardware/palu_cray_xe6/index.html
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/systeme/lima-cluster.shtml
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/systeme/lima-cluster.shtml
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/systeme/lima-cluster.shtml
http://dx.doi.org/10.1016/j.camwa.2012.05.002
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://dl.acm.org/citation.cfm?id=2042476.2042502
http://dl.acm.org/citation.cfm?id=2042476.2042502
http://doi.acm.org/10.1145/2088457.2088467

	Introduction
	Implementation of the Lattice Boltzmann Solver
	MPI Implementation
	MPI-like, Buffered Coarray Fortran Implementation
	Unbuffered Coarray Fortran Implementation

	Low-level Benchmarks and Performance Model
	Experimental Set-up
	Low-level Benchmarks
	Memory Bandwidth
	Communication

	Performance Model

	Application Benchmarks and Validation of Performance Model
	Optimal Single Node Performance Evaluation
	Strong Scaling
	Weak Scaling

	Related Work
	Conclusions
	References

