
Performance Engineering

on Multi- and Manycores

Georg Hager, Gerhard Wellein

HPC Services, Erlangen Regional Computing Center (RRZE)

Tutorial @ SAHPC 2012

December 1-3, 2012

KAUST, Thuwal

Saudi Arabia

2

Supporting material

 Where can I find those gorgeous slides?

http://goo.gl/cTSKL
or:
http://blogs.fau.de/hager/tutorials/sahpc-2012/

 Is there a book or anything?

Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers

CRC Press, 2010

ISBN 978-1439811924

356 pages

 Fun and facts for HPC: http://blogs.fau.de/hager/

SAHPC 2012 Tutorial Performance Engineering

http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/

3

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

4

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Motivation 1:

Scalability 4 the win!

6

Scalability Myth: Code scalability is the key issue

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

SAHPC 2012 Tutorial Performance Engineering

7

Scalability Myth: Code scalability is the key issue

SAHPC 2012 Tutorial

Prepared for

the highly

parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

Changing only a the compile

options makes this code

scalable on an 8-core chip

–O3 -axAVX

Performance Engineering

8

Scalability Myth: Code scalability is the key issue

SAHPC 2012 Tutorial

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

Single core/socket efficiency

is key issue!

Upper limit from simple

performance model:

36 GB/s & 24 Byte/update

Performance Engineering

Motivation 2:

The 200x GPGPU speedup story

10

Accelerator myth: The 200x speedup story…

SAHPC 2012 Tutorial

Dense Matrix-Vector-Multiplication (N=4500)

In line with a simple

bandwidth model!

Bad compiler

Disable

SIMD

Go serial

Change from single precision

to double precision

NVIDIA Tesla C2050

vs.

2x Intel Xeon 5650

(6-core)

Performance Engineering

11

Accelerator myth: The 200x speedup story…

Sparse matrix-vector multiply

 GPGPU speedup: 1.6x,…,2.1x (no PCIe data transfer!)

SAHPC 2012 Tutorial

Matrix structure of test cases

NVIDIA Tesla C2070

performance in GF/s

2-way Intel Xeon 5650 node

M. Kreutzer et al., LSPP12

DOI: 10.1109/IPDPSW.2012.211

Performance Engineering

http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1109/IPDPSW.2012.211

12

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

The Performance Engineering process

Model building

Our definition

14

How model-building works: Physics

SAHPC 2012 Tutorial Performance Engineering

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

15

Performance Engineering as a process

The Performance Engineering (PE) process:

The performance model is the central component – if the model fails

to predict the measurement, you learn something!

The analysis has to be done for every loop / basic block!

Algorithm/Code analysis

Runtime profiling

Machine characteristics

Microbenchmarking

Traces/HW metrics

Performance model Code optimization

SAHPC 2012 Tutorial Performance Engineering

16

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Multicore processor and system

architecture

Basics of machine characteristics

18

The x86 multicore evolution so far
Intel Single-/Dual-/…/Octo-Cores (one-socket view)

Sandy Bridge EP

“Core i7”

32nm

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2012: Wider SIMD units

AVX: 256 Bit

P
C

P
C

C

P
C

P
C

C

W
o

o
d

c
re

s
t

“
C

o
re

2
 D

u
o
”

6
5

n
m

H
a

rp
e
rt

o
w

n

“C
o
re

2
 Q

u
a
d

”
4

5
n

m

Memory

Chipset

P
C

P
C

C

Memory

Chipset

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

2006: True dual-core

P

C
C

Memory

Chipset

Memory

Chipset

P

C
C

P

C
C

2005: “Fake” dual-core

Nehalem EP

“Core i7”

45nm

Westmere EP

 “Core i7”

32nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2008:

Simultaneous

Multi Threading (SMT)

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

C
C

C
C

C
C

C
C

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2010:

6-core chip

SAHPC 2012 Tutorial Performance Engineering

O
th

e
r

s
o

c
k
e
t

19

There is no single driving force for chip performance!

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code

SAHPC 2012 Tutorial Performance Engineering

TOP500 rank 1 (1995)

20

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures:

Where does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

SAHPC 2012 Tutorial Performance Engineering

21

Another flavor of “SMT”

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB

dedicated

L1D cache

2 DDR3 (shared) memory

channel > 15 GB/s

2048 kB

shared

L2 cache

8 (6) MB

shared

L3 cache

SAHPC 2012 Tutorial Performance Engineering

22

Cray XE6 “Interlagos” 32-core dual socket node

 Two 8- (integer-) core chips per

socket @ 2.3 GHz (3.3 @ turbo)

 Separate DDR3 memory

interface per chip

 ccNUMA on the socket!

 Shared FP unit per pair of

integer cores (“module”)

 “256-bit” FP unit

 SSE4.2, AVX, FMA4

 16 kB L1 data cache per core

 2 MB L2 cache per module

 8 MB L3 cache per chip

(6 MB usable)

SAHPC 2012 Tutorial Performance Engineering

Interlude:

A glance at current accelerator technology

24

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 SMX units

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

SAHPC 2012 Tutorial Performance Engineering

25

Intel Xeon Phi block diagram

SAHPC 2012 Tutorial Performance Engineering

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP

peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

26

Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit 480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center

for Advanced Computing

 NVIDIA Kepler K20

 15 SMX units each with 192 “cores”

 960/2880 DP/SP “cores”

in total

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10.000+

 Programming:

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National

Laboratory
TOP500

rankings

SAHPC 2012 Tutorial Performance Engineering

27

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

SAHPC 2012 Tutorial Performance Engineering

28 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models
on multicore multisocket nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 2.2)

 OpenMP (current standard: 3.0)

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 2.2)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

All models require

awareness of

topology and affinity

issues for getting

best performance

out of the machine!

29 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

30 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

31

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

SAHPC 2012 Tutorial Performance Engineering

32

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Data access on modern processors

Characterization of memory hierarchies

General performance properties of multicore processors

34

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

SAHPC 2012 Tutorial Performance Engineering

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

35

Interlude: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

SAHPC 2012 Tutorial Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

36 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

37

A(:)=B(:)+C(:)*D(:) on one Interlagos core

SAHPC 2012 Tutorial Performance Engineering

L1D cache (16k)

L2 cache (2M)

L3 cache

(6M)

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
)

64 GB/s (no write allocate in L1)

10 GB/s

(incl. write

allocate)

Is this the

limit???

< 40 GB/s

(incl. write allocate)

38

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

General remarks on the performance

properties of multicore multisocket

systems

40

Parallelism in modern computer systems

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2

PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / memory domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

SAHPC 2012 Tutorial Performance Engineering

41 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

(Near-)Optimal code on (Cray) x86 machines

Large-N version

(nontemporal stores)

Small-N version

(standard stores)

call get_walltime(S)

!$OMP parallel private(j)

do j=1,R

 if(N.ge.CACHE_LIMIT) then

!DIR$ LOOP_INFO cache_nt(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 else

!DIR$ LOOP_INFO cache(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 endif

 ! prevent loop interchange

 if(A(N2).lt.0) call dummy(A,B,C,D)

enddo

!$OMP end parallel

call get_walltime(E)

“outer parallel”: Avoid thread team restart at

every workshared loop

42 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Single thread on Cray XE6 Interlagos node

OMP overhead

(100-2000cy here)

and/or lower

optimization w/

OpenMP active

L1 cache L2 cache memory L3 cache

Team restart is

expensive!

 use only

outer parallel

from now on!

43 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Intra-chip scaling on Cray XE6 Interlagos node

L2

bottleneck

Aggregate

L2, exclusive

L3

sync

overhead

Memory BW

saturated @

4 threads

Per-module

L2 caches

44 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Nontemporal stores on Cray XE6 Interlagos node

slow L3

NT stores

hazardous if data

in cache

25% speedup for

vector triad in

memory via NT

stores

45 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Topology dependence on Cray XE6 Interlagos node

sync overhead nearly

topology-independent

@ constant thread count

more aggregate

L3 with more

chips
bandwidth

scalability across

memory

interfaces

46 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Inter-chip scaling on Cray XE6 Interlagos node

sync overhead grows

with core/chip count

(up to 8000 cy here)
bandwidth

scalability across

memory

interfaces

47

What will it look like on many-cores?

Go figure.

SAHPC 2012 Tutorial Performance Engineering

Bandwidth saturation effects in cache and

memory

A look at different processors

49 SAHPC 2012 Tutorial Performance Engineering

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

50 SAHPC 2012 Tutorial Performance Engineering

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

Some data on

OpenMP synchronization overhead

52 SAHPC 2012 Tutorial Performance Engineering

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

53 SAHPC 2012 Tutorial Performance Engineering

Thread synchronization overhead on AMD Interlagos
OpenMP barrier overhead in CPU cycles

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L2 258 3995 1503 128623

Shared L3 698 2853 1076 128611

Same

socket
879 2785 1297 128695

Other socket 940 2740 / 4222 1284 / 1325 128718

Intel compiler barrier very expensive on Interlagos

 OpenMP & Cray compiler

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L3 2272 27916 5981 151939

Socket 3783 49947 7479 163561

Node 7663 167646 9526 178892

54 SAHPC 2012 Tutorial Performance Engineering

Thread synchronization overhead on Intel CPUs
pthreads vs. OpenMP vs. Spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)

pthreads_barrier_wait 23739 6511

omp barrier gcc 4.3.3 22603 7333

omp barrier icc 11.0 399 469

Spin loop 231 270

pthreads OS kernel call

 Syncing SMT threads is expensive

Spin loop does fine for shared cache sync

 OpenMP & Intel compiler

Nehalem 2 Threads Shared SMT threads shared L3 different socket

pthreads_barrier_wait 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

Spin loop 17388 267 787

90min

Understanding MPI communication in

multicore environments

Intra-node vs. inter-node MPI

MPI Cartesian topologies and rank-subdomain

mapping

56

Intranode MPI

 Common misconception: Intranode MPI is infinitely fast compared

to internode

 Reality

 Intranode latency is much smaller than internode

 Intranode asymptotic bandwidth is surprisingly comparable to internode

 Difference in saturation behavior

 Other issues

 Mapping between ranks, subdomains and cores with Cartesian MPI

topologies

 Overlapping intranode with internode communication

SAHPC 2012 Tutorial Performance Engineering

57

MPI and Multicores

Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X

SAHPC 2012 Tutorial Performance Engineering

58

MPI and Multicores

Clusters: Unidirectional intranode Ping-Pong bandwidth

Mapping problem for most efficient communication paths!?

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Memory Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Cross-Socket (CS)

Intra-Socket (IS)

Single point-to-

point BW similar

to internode

Some BW

scalability for

multi-intranode

connections

SAHPC 2012 Tutorial Performance Engineering

59

“Best possible” MPI:

Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic

■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains

■ This minimizes a node's communication surface

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this?

SAHPC 2012 Tutorial Performance Engineering

60

MPI rank-subdomain mapping in Cartesian topologies:

A 3D stencil solver and the growing number of cores per node

“Common” MPI

library behavior

N
e

h
a

le
m

 E
P

 2
-s

o
c

k
e

t

Is
ta

n
b

u
l
2

-s
o

c
k

e
t

S
h

a
n

g
h

a
i
4
-s

o
c

k
e

t

M
a

g
n

y
 C

o
u

rs

2

-s
o

c
k

e
t

Nehalem EX

4-socket

Magny Cours

4-socket

W
o

o
d

c
re

s
t

 2
-s

o
c

k
e

t

S
u

n
 N

ia
g

a
ra

 2

SAHPC 2012 Tutorial Performance Engineering

61

~ 1.5x

4 ppn SDR-IB

MPI rank-subdomain mapping:

3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

8 ppn QDR-IB

32 MPI processes

SAHPC 2012 Tutorial Performance Engineering

62

Summary on MPI multicore issues

 Intranode MPI

 May not be as fast as you think…

 Becomes more important as core counts increase

 May not be handled optimally by your MPI library

 Rank-core mapping may be crucial for best performance

 Reduce inter-node traffic

 Most MPIs do not recognize this

 Some (e.g., Cray) can give you hints toward optimal placement

SAHPC 2012 Tutorial Performance Engineering

63

Conclusions from the data access properties

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know the topology of your machine

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Bad scaling is not always a bad thing

 Do you exhaust your bottlenecks?

 Synchronization overhead may be an issue

 … and also depends on affinity!

SAHPC 2012 Tutorial Performance Engineering

64

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Case study:

OpenMP-parallel sparse matrix-vector

multiplication

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

66

Sparse matrix-vector multiply (sMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:

some indirect

addressing

required!

SAHPC 2012 Tutorial Performance Engineering

67

…

CRS matrix storage scheme

column index

ro
w

 i
n

d
e
x

1 2 3 4 …

1

2

3

4

…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros

(length Nnz)

 col_idx[] stores the column

index of each nonzero (length Nnz)

 row_ptr[] stores the starting

index of each new row in val[]

(length: Nr)

SAHPC 2012 Tutorial Performance Engineering

68 SAHPC 2012 Tutorial Performance Engineering

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 MPI parallelization possible and well-studied

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

69

Bandwidth-bound parallel algorithms:
Sparse MVM

 Data storage format is crucial for performance properties

 Most useful general format: Compressed Row Storage (CRS)

 SpMVM is easily parallelizable in shared and distributed memory

 For large problems, spMVM is

inevitably memory-bound

 Intra-LD saturation effect

on modern multicores

 MPI-parallel spMVM is often

communication-bound

 See later part for what we

can do about this…

SAHPC 2012 Tutorial Performance Engineering

70 SAHPC 2012 Tutorial Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across NUMA

domains

71 SAHPC 2012 Tutorial Performance Engineering

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

72 SAHPC 2012 Tutorial Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck

Parallelization

overhead

dominates

73

Conclusions from the spMVM benchmarks

 If the problem is “large”, bandwidth saturation on the socket is

a reality

 There are “spare cores”

 Very common performance pattern

 What to do with spare cores?

 Use them for other tasks, such as MPI

communication

 Let them idle saves energy with minor

loss in time to solution

 Can we predict the saturated performance?

 Bandwidth-based performance modeling!

 What is the significance of the indirect access?

Can it be modeled?

 Can we predict the saturation point?

 … and why is this important?

SAHPC 2012 Tutorial Performance Engineering

See later

for

answers!

74

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Basic performance modeling and

“motivated optimizations”

The Roofline Model

Case study: The Jacobi smoother

The Roofline Model

77

The Roofline Model – A tool for more insight

1. Determine the applicable peak performance of a loop, assuming

that data comes from L1 cache

2. Determine the computational intensity (flops per byte

transferred) over the slowest data path utilized

3. Determine the applicable peak bandwidth of the slowest data

path utilized

Example: do i=1,N; s=s+a(i); enddo

in DP on hypothetical 3 GHz CPU, 4-way SIMD, N large

ADD peak (half of full peak)

4-cycle latency per ADD if not unrolled

Computational intensity [Flops/byte]

Expected

performance

SAHPC 2012 Tutorial Performance Engineering

78

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

SAHPC 2012 Tutorial Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architecture

Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 4 cy (ADD)

measurement

Maximum memory

bandwidth 10 GB/s

Memory-bound @ large N!

Pmax = 1.25 GF/s

3-12 GF/s

1.25 GF/s

79

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 See next slide…

SAHPC 2012 Tutorial Performance Engineering

80

Complexities of in-core execution

Multiple bottlenecks:

 L1 Icache bandwidth

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

 SAHPC 2012 Tutorial Performance Engineering

81

The roofline model in practice: Code balance

 Code balance (BC) quantifies

the requirements of the code

 Reciprocal of comp. intensity

 bS = achievable bandwidth over the slowest data path

 E.g., measured by suitable microbenchmark (STREAM, …)

 Lightspeed for absolute performance:

(Pmax : “applicable” peak performance)

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

bS/Bc = 1.7 GF/s (1.2 % of peak performance)

][operations arithmetic

][(LD/ST) transfer data

flops

words
BC

C

S

B

b
PP ,min max

SAHPC 2012 Tutorial Performance Engineering

Newton’s

Second Law

of

performance

modeling

82

Balance metric (a.k.a. the “roofline model”)

 The balance metric formalism is based on some (crucial)

assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

SAHPC 2012 Tutorial Performance Engineering

Case study:

A 3D Jacobi smoother

The basics in two dimensions

Performance analysis and modeling

84

A Jacobi smoother

 Laplace equation in 2D:

 Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:

Naive balance (incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Reuse when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

SAHPC 2012 Tutorial Performance Engineering

∆𝚽 = 𝟎

85

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and re-used 3 times

from cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is too small to hold one row:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

SAHPC 2012 Tutorial Performance Engineering

86

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

SAHPC 2012 Tutorial Performance Engineering

wall

maxmaxmax]/[
T

kiit
sLUPsP

87

2D 3D

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/update)

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update)

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update)

SAHPC 2012 Tutorial Performance Engineering

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

88

3D Jacobi solver
Performance of vanilla code on one Interlagos chip (8 cores)

SAHPC 2012 Tutorial Performance Engineering

cache memory

2 layers of source array

drop out of L2 cache

Problem size: N3

89

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Optimization == reducing the code balance by code

transformations

 See below

SAHPC 2012 Tutorial Performance Engineering

Data access optimizations

Case study: Optimizing a Jacobi solver

Case study: Erratic RHS access for sparse MVM

Case study:

3D Jacobi solver

Spatial blocking for improved cache re-use

92

Remember the 3D Jacobi solver on Interlagos?

SAHPC 2012 Tutorial Performance Engineering

2 layers of source array

drop out of L2 cache

 avoid through spatial

blocking!

93 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): No spatial Blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

94 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

95 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): Spatial Blocking

 divide system into blocks

 update block after block

 same performance as if three complete rows of the systems fit

into cache

96 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): Spatial Blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

97 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (3D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking sizes large enough to fulfill “layer condition”

 Cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement (see

later)

 do ioffset=1,imax,iblock

 do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0)

 + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))/6.d0

 enddo

 enddo

 enddo

 enddo

loop over i-blocks

loop over j-blocks

98

3D Jacobi solver (problem size 4003)
Blocking different loop levels (8 cores Interlagos)

SAHPC 2012 Tutorial Performance Engineering

OpenMP parallelization?

Optimal block size?

k-loop blocking?

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size

99

3D Jacobi solver
Spatial blocking + nontemporal stores

SAHPC 2012 Tutorial Performance Engineering

blocking
NT

stores

expected

boost:

50%

16 B/update perf. model

Case study:

Erratic RHS access in sparse MVM

“Modeling” indirect access

101

Example: SpMVM node performance model

 Sparse MVM in

double precision w/ CRS:

 DP CRS code balance

 quantifies extra traffic

for loading RHS more than

once

 Naive performance = bS/BCRS

 Determine by measuring performance and actual memory bandwidth

8 8 8 4 8

8

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th,

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint: arXiv:1101.0091

SAHPC 2012 Tutorial Performance Engineering

http://dx.doi.org/10.1109/IPDPS.2011.332
http://arxiv.org/abs/1101.0091

102

 is determined by the sparsity pattern and the cache

 Analysis for HMeP matrix on Nehalem EP socket

 BW used by spMVM kernel = 18.1 GB/s should get ≈ 2.66 Gflop/s

spMVM performance if = 0

 Measured spMVM performance = 2.25 Gflop/s

 Solve 2.25 Gflop/s = bS/BCRS for ≈ 2.5

 37.5 extra bytes per row

 RHS is loaded 6 times from memory

 about 33% of BW goes into RHS

 Conclusion: Even if the roofline/bandwidth model does not work

100%, we can still learn something from the deviations

 Optimization? Perhaps you can reorganize the matrix

SAHPC 2012 Tutorial Performance Engineering

103

Input to the roofline model

… on the example of spMVM with HMeP matrix

Code analysis:

1 ADD, 1 MULT,

(2.5+2/Nnzr) LOADs,

1/Nnzr STOREs +

Throughput: 1 ADD, 1 MULT

+ 1 LD + 1ST/cy

Maximum memory

bandwidth 20 GB/s

Memory-bound!

 = 2.5

Measured memory BW

for spMVM 18.1 GB/s

SAHPC 2012 Tutorial Performance Engineering

104

Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled pure data streaming assumed

 Data transfer and in-core time overlap 100%

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

 ECM model gives more insight

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

SAHPC 2012 Tutorial Performance Engineering

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring

performance and power properties of modern multicore chips

via simple machine models. Submitted. Preprint:

arXiv:1208.2908

http://arxiv.org/abs/1208.2908

105

Conclusions from the case studies

 There is no substitute for knowing what’s going on between your

code and the hardware

 Make sense of performance behavior through sensible application

of performance models

 However, there is no “golden formula” to do it all for you automagically

 If the model does not work properly, you learn something new

 Model inputs:

 Code analysis/inspection

 Hardware counter data

 Microbenachmark analysis

 Architectural features

 Simple models work best; do not try to make it more complex than

necessary

SAHPC 2012 Tutorial Performance Engineering

106

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Boosting core efficiency:

Simultaneous multithreading (SMT)

Principles and performance impact

SMT vs. independent instruction streams

Facts and fiction

108 SAHPC 2012 Tutorial Performance Engineering

SMT Makes a single physical core appear as two or more

“logical” cores multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

109 SAHPC 2012 Tutorial Performance Engineering

SMT impact

 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently

 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)

 High data and instruction-level parallelism

 Exceptions do exist

 SMT is an important topology issue

 SMT threads share almost all core

resources

 Pipelines, caches, data paths

 Affinity matters!

 If SMT is not needed

 pin threads to physical cores

 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T

h
re

a
d

 1

T
h

re
a

d
 2

110 SAHPC 2012 Tutorial Performance Engineering

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may reach the same goal

without SMT:

Thread 0:
do i=1,N

 a(i) = a(i-1)*c

enddo

Dependency pipeline

stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

 b(i) = func(i)*d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

 a(i) = a(i-1)*c

 b(i) = func(i)*d

enddo

111

a(2)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

Thread 1:
do i=1,N

a(i)=a(i-1)*c

enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

Fill bubbles via:
 SMT

 Multiple streams

M
U

L
T

 p
ip

e

112

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N

 A(i)=A(i-1)*s

 B(i)=B(i-1)*s

 C(i)=C(i-1)*s

 D(i)=D(i-1)*s

 E(i)=E(i-1)*s

enddo

M
U

L
T

 p
ip

e

113

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

Pure update benchmark can be vectorized 2 F / cycle (store limited)

Recursive update:

 SMT can fill pipeline

bubles

 A single thread can

do so as well

 Bandwidth does not

increase through

SMT

 SMT can not

replace SIMD!

114

SMT myths: Facts and fiction (1)

 Myth: “If the code is compute-bound, then the functional units

should be saturated and SMT should show no improvement.”

 Truth

1. A compute-bound loop does not

necessarily saturate the pipelines;

dependencies can cause a lot of bubbles,

which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its

utilization

SAHPC 2012 Tutorial Performance Engineering

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

M
U

L
T

 p
ip

e

115

SMT myths: Facts and fiction (2)

 Myth: “If the code is memory-bound, SMT should help because it

can fill the bubbles left by waiting for data from memory.”

 Truth:

1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant

resource (bandwidth)

is exhausted.

2. If the relevant

bottleneck is not

exhausted, SMT may

help since it can fill

bubbles in the LOAD

pipeline.

This applies also to other

“relevant bottlenecks!”

SAHPC 2012 Tutorial Performance Engineering

116

SMT myths: Facts and fiction (3)

 Myth: “SMT can help bridge the latency to

memory (more outstanding references).”

 Truth:
Outstanding references may or may not be

bound to SMT threads; they may be a resource

of the memory interface and shared by all

threads. The benefit of SMT with memory-bound

code is usually due to better utilization of the

pipelines so that less time gets “wasted” in the

cache hierarchy.

See also the “ECM Performance Model”

later on.

SAHPC 2012 Tutorial Performance Engineering

117 SAHPC 2012 Tutorial Performance Engineering

SMT: When it may help, and when not

Functional parallelization

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Strongly memory-bound code

Independent pipeline-unfriendly instruction streams

Beyond the chip boundary:

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

ccNUMA locality and erratic access

119 SAHPC 2012 Tutorial Performance Engineering

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

120

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain 4x4 combinations

 STREAM triad benchmark using nontemporal stores

SAHPC 2012 Tutorial Performance Engineering

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

121 SAHPC 2012 Tutorial Performance Engineering

ccNUMA locality tool numactl:

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

122 SAHPC 2012 Tutorial Performance Engineering

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

123 SAHPC 2012 Tutorial Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

124 SAHPC 2012 Tutorial Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

125 SAHPC 2012 Tutorial Performance Engineering

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 std::vector in C++ is initialized serially by default

 STL allocators provide an elegant solution

126 SAHPC 2012 Tutorial Performance Engineering

Coding for Data Locality:

Placement of static arrays or arrays of objects

 Speaking of C++: Don't forget that constructors tend to touch the

data members of an object. Example:

 class D {
 double d;

public:

 D(double _d=0.0) throw() : d(_d) {}

 inline D operator+(const D& o) throw() {

 return D(d+o.d);

 }

 inline D operator*(const D& o) throw() {

 return D(d*o.d);

 }

...

};

→ placement problem with
 D* array = new D[1000000];

127 SAHPC 2012 Tutorial Performance Engineering

Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via

“placement new”

void* D::operator new[](size_t n) {

 char *p = new char[n]; // allocate

 size_t i,j;

#pragma omp parallel for private(j) schedule(...)

 for(i=0; i<n; i += sizeof(D))

 for(j=0; j<sizeof(D); ++j)

 p[i+j] = 0;

 return p;

}

void D::operator delete[](void* p) throw() {

 delete [] static_cast<char*>p;

}

parallel first

touch

128 SAHPC 2012 Tutorial Performance Engineering

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

 T* allocate(size_type numObjects, const void

 *localityHint=0) {

 size_type ofs,len = numObjects * sizeof(T);

 void *m = malloc(len);

 char *p = static_cast<char*>(m);

 int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

 for(i=0; i<pages; ++i) {

 ofs = static_cast<size_t>(i) << PAGE_BITS;

 p[ofs]=0;

 }

 return static_cast<pointer>(m);

 }

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)

129 SAHPC 2012 Tutorial Performance Engineering

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Try running with numactl --interleave ...

 If performance goes up ccNUMA problem!

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out

130 SAHPC 2012 Tutorial Performance Engineering

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 |

| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09 |

| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0 | 0 | 0 |

| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0 | 0 | 0 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

RDTSC timing: 0.827196 s

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Runtime [s] | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |

| CPI | 3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 | 3.60521 | 3.59613 | 3.60184 |

| Memory bandwidth [MBytes/s] | 10610.8 | 0 | 0 | 0 | 10513.4 | 0 | 0 | 0 |

| Remote Read BW [MBytes/s] | 5296 | 0 | 0 | 0 | 5269.43 | 0 | 0 | 0 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only

counted once per socket

Half of read BW comes

from other socket!

131 SAHPC 2012 Tutorial Performance Engineering

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

132 SAHPC 2012 Tutorial Performance Engineering

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

 non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

133 SAHPC 2012 Tutorial Performance Engineering

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

installed in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

(Cray only)

134 SAHPC 2012 Tutorial Performance Engineering

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

135 SAHPC 2012 Tutorial Performance Engineering

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

136

The curse and blessing of interleaved placement:

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

SAHPC 2012 Tutorial Performance Engineering

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a
n

d
w

id
th

 [
M

b
y
te

/s
]

137

ccNUMA conclusions

 ccNUMA is present on all standard cluster architectures

 With pure MPI (and proper affinity control) you should be fine

 However, watch out for buffer cache

 With threading, you may be fine with one process per ccNUMA

domain

 Thread groups spanning more than one domain may cause

problems

 Employ first touch placement (“Golden Rule”)

 Experiment with round-robin placement

 If access patterns are totally erratic, round-robin may be your only

choice

 But there are advanced solutions (“locality queues”)

SAHPC 2012 Tutorial Performance Engineering

138

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Case study: Asynchronous MPI

communication in sparse MVM

What to do with spare cores

140

Distributed-memory parallelization of spMVM

SAHPC 2012 Tutorial Performance Engineering

=

P0

P3

P2

P1

Nonlocal

RHS

elements

for P0

Local operation –

no communication

required

141

Distributed-memory parallelization of spMVM

 Variant 1: “Vector mode” without overlap

 Standard concept

for “hybrid MPI+OpenMP”

 Multithreaded computation

(all threads)

 Communication only

outside of computation

 Benefit of threaded MPI process only due to message aggregation

and (probably) better load balancing

SAHPC 2012 Tutorial Performance Engineering

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf

142

Distributed-memory parallelization of spMVM

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”)

 Relies on MPI to support

async nonblocking PtP

 Multithreaded computation

(all threads)

 Still simple programming

 Drawback: Result vector

is written twice to memory

 modified performance

model

SAHPC 2012 Tutorial Performance Engineering

143

Distributed-memory parallelization of spMVM

 Variant 3: “Task mode” with dedicated communication thread

 Explicit overlap, more complex to implement

 One thread missing in

team of compute threads

 But that doesn’t hurt here…

 Using tasking seems simpler

but may require some

work on NUMA locality

 Drawbacks

 Result vector is written

twice to memory

 No simple OpenMP

worksharing (manual,

tasking)

SAHPC 2012 Tutorial Performance Engineering

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid

Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

http://dx.doi.org/10.1177/1094342003017001005

144

Performance results for the HMeP matrix

 Dominated by communication (and some load imbalance for large #procs)

 Single-node Cray performance cannot be maintained beyond a few nodes

 Task mode pays off esp. with one process (12 threads) per node

 Task mode overlap (over-)compensates additional LHS traffic

SAHPC 2012 Tutorial Performance Engineering

Task mode uses

virtual core for

communication

@ 1 process/core

50% efficiency

w/ respect to

best 1-node

performance

145

Performance results for the sAMG matrix

 Much less communication-bound

 XE6 outperforms Westmere cluster, can maintain good node performance

 Hardly any discernible difference as to # of threads per process

 If pure MPI is good enough, don’t bother going hybrid!

SAHPC 2012 Tutorial Performance Engineering

146

Conclusions from hybrid spMVM results

 Do not rely on asynchronous MPI progress

 Sparse MVM leaves resources (cores) free for use by

communication threads

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not

good enough if communication is a real problem

 “Task mode” hybrid can truly hide communication and

overcompensate penalty from additional memory traffic in spMVM

 Comm thread can share a core with comp thread via SMT and still

be asynchronous

 If pure MPI scales ok and maintains its node performance

according to the node-level performance model, don’t bother

going hybrid

 Extension to multi-GPGPU is possible

 See references

SAHPC 2012 Tutorial Performance Engineering

147

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

A simple power model for the Sandy

Bridge processor

Assumptions

Validation using simple benchmarks

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power

properties of modern multicore chips via simple machine models. Submitted.

Preprint: arXiv:1208.2908

http://arxiv.org/abs/1208.2908

149

A model for multicore chip power

 Goal: Establish model for chip power and program energy

consumption with respect to

 Clock speed

 Number of cores used

 Single-thread program performance

 Choose different characteristic benchmark applications to

measure a chip’s power behavior

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip

 AVX variant

 Scalar variant

 Measure characteristics of those apps and establish a power

model

SAHPC 2012 Tutorial Performance Engineering

150

App scaling behavior (DGEMM omitted)

SAHPC 2012 Tutorial Performance Engineering

Sandy Bridge EP (8-core) processor:

151

Chip power and performance vs. clock speed

on full socket & single core

Sandy Bridge EP (8-core) processor:

all cores used

single core

ignored

SAHPC 2012 Tutorial Performance Engineering

152

Chip power and cycles per instruction (CPI) vs. # of cores

Sandy Bridge EP (8-core) processor:

ignored

CPI and power correlated, but

not proportional

SAHPC 2012 Tutorial Performance Engineering

153

A simple power model for multicore chips

Assumptions:

1. Power is a quadratic polynomial in the clock frequency

2. Dynamic power is linear in the number of active cores t

3. Performance is linear in the number of cores until it hits a

bottleneck (ECM model)

4. Performance is linear in the clock frequency unless it hits a

bottleneck

5. Energy to solution is power dissipation divided by performance

Model:

 where 𝒇 = 𝟏 + ∆𝝂 𝒇𝟎

SAHPC 2012 Tutorial Performance Engineering

154

Model predictions

1. If there is no saturation, use all available cores to minimize E

Minimum E here

SAHPC 2012 Tutorial Performance Engineering

155

Model predictions

2. There is an optimal frequency fopt at which E is minimal in the

non-saturated case, with

𝒇𝐨𝐩𝐭 =
𝑾𝟎

𝑾𝟐𝒕
 , hence it depends on the baseline power

 “Clock race to idle” if baseline accommodates whole system!

 May have to look at other metrics, e.g., 𝑪 = 𝑬/𝑷

SAHPC 2012 Tutorial Performance Engineering

156

Model predictions

3. If there is saturation, E is minimal at the saturation point

Minimum E here

SAHPC 2012 Tutorial Performance Engineering

157

Model predictions

4. If there is saturation, absolute minimum E is reached if the

saturation point is at the number of available cores

Slower clock

 more cores to saturation

 smaller E

SAHPC 2012 Tutorial Performance Engineering

158

Model predictions

5. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck

Better code

 earlier saturation

 smaller E @ saturation

SAHPC 2012 Tutorial Performance Engineering

159

Model validation with the benchmark apps

2

3

1

5

SAHPC 2012 Tutorial Performance Engineering

160

Conclusions from the power model

 Simple assumptions lead to surprising conclusions

 Performance saturation plays a key role

 “Clock race to idle” can be proven quantitatively

 “Code race to idle” (optimization saves energy) is a trivial result

 Better: “Optimization makes better use of the energy budget”

 Possible extensions to the power model

 Allow for per-core frequency setting (coming with Intel Haswell)

 Accommodate load imbalance & sync overhead

 SAHPC 2012 Tutorial Performance Engineering

161

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

162

What I have left out

 LIKWID: Lightweight multicore peformance tools

 http://code.google.com/p/likwid

 Multicore-specific properties of MPI communication

 Sparse MVM on multiple GPGPUs: Performance modeling for

viability analysis

 See references

 Exploting shared caches for temporal blocking of stencil codes

 Execution-Cache-Memory (ECM) model

 Predictive model for multicore scaling

 Goes well with the power model

 … and much more

SAHPC 2012 Tutorial Performance Engineering

http://code.google.com/p/likwid

163

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters pinning/binding is essential

 Bandwidth bottlenecks inefficiency is often made on the chip level

 Topology dependence of performance features know your hardware!

 Put cores to good use

 Bandwidth bottlenecks surplus cores functional parallelism!?

 Shared caches fast communication/synchronization better

implementations/algorithms?

 Leave surplus cores idle to save energy

 Simple modeling techniques help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities and hence save energy

 … learn more, especially when they do not work!

SAHPC 2012 Tutorial Performance Engineering

164

Quiz

double precision, dimension(100000000) :: a,b

do i=1,N

 s=s+a(i)*b(i)

enddo

SAHPC 2012 Tutorial Performance Engineering

Code:

GPGPU: 2880 cores, Ppeak= 1.3 Tflop/s, bS=160 Gbyte/s

Optimal

performance?

165

THANK YOU.

SAHPC 2012 Tutorial Performance Engineering

Jan Treibig

Johannes Habich

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

Faisal Shahzad

Gerald Schubert

OMI4papps

HQS@HPC II

hpcADD

SKALB

166 SAHPC 2012 Tutorial Performance Engineering

Author Biographies

 Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance

systems since 1995, and is now a senior research scientist in the HPC

group at Erlangen Regional Computing Center (RRZE). Recent research

includes architecture-specific optimization for current microprocessors,

performance modeling on processor and system levels, and the efficient use

of hybrid parallel systems. See his blog at http://blogs.fau.de/hager for

current activities, publications, and talks.

 Gerhard Wellein holds a PhD in solid state physics from the University of

Bayreuth and is a professor at the Department for Computer Science at the

University of Erlangen. He leads the HPC group at Erlangen Regional

Computing Center (RRZE) and has more than ten years of experience in

teaching HPC techniques to students and scientists from computational

science and engineering programs. His research interests include solving

large sparse eigenvalue problems, novel parallelization approaches,

performance modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

167

References

Book:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power

properties of modern multicore chips via simple machine models. Submitted. Preprint:

arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on

modern multicore processors: Best practices for performance engineering. Workshop on

Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012,

Rhodes Island, Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse

Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable

Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for

medical image reconstruction on recent standard multicore processors. International

Journal of High Performance Computing Applications, (published online before print).

DOI: 10.1177/1094342012442424

SAHPC 2012 Tutorial Performance Engineering

http://www.crcpress.com/product/isbn/9781439811924
http://www.crcpress.com/product/isbn/9781439811924
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424

168

References

Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC

2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel

Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop

on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.

DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector

multiplication with explicit communication overlap on current multicore-based systems.

Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for

iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).

DOI 10.1016/j.jocs.2011.01.010

 SAHPC 2012 Tutorial Performance Engineering

http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010

169

References

Papers continued:

 K. Iglberger, G. Hager, J. Treibig, and U. Rüde: Expression Templates Revisited: A

Performance Analysis of Current ET Methodologies. SIAM Journal on Scientific

Computing 34(2), C42-C69 (2012). DOI: 10.1137/110830125, Preprint: arXiv:1104.1729

 K. Iglberger, G. Hager, J. Treibig, and U. Rüde: High Performance Smart Expression Template

Math Libraries. 2nd International Workshop on New Algorithms and Programming Models for

the Manycore Era (APMM 2012) at HPCS 2012, July 2-6, 2012, Madrid, Spain. DOI:

10.1109/HPCSim.2012.6266939

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization

strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA. Advances in

Engineering Software and Computers & Structures 42 (5), 266–272 (2011). DOI:

10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance

prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.

DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In: Proceedings of

the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel

Programming Models on Hybrid Architectures. International Journal of High Performance

Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

SAHPC 2012 Tutorial Performance Engineering

http://blogs.fau.de/hager/files/2012/05/ET-SISC-Iglberger2012.pdf
http://blogs.fau.de/hager/files/2012/05/ET-SISC-Iglberger2012.pdf
http://dx.doi.org/10.1137/110830125
http://arxiv.org/abs/1104.1729
http://hpcs2012.cisedu.info/2-conference/workshops/workshop-07-apmm
http://hpcs2012.cisedu.info/
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

Backup material

Probing node topology

 Standard tools

 likwid-topology

172 SAHPC 2012 Tutorial Performance Engineering

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

173 SAHPC 2012 Tutorial

Likwid Lightweight Performance Tools

 Lightweight command line tools for Linux

 Help to face the challenges without getting in the way

 Focus on X86 architecture

 Philosophy:

 Simple

 Efficient

 Portable

 Extensible

Open source project (GPL v2):

http://code.google.com/p/likwid/

Performance Engineering

http://code.google.com/p/likwid/

174 SAHPC 2012 Tutorial Performance Engineering

likwid-topology – Topology information

 Based on cpuid information

 Functionality:

 Measured clock frequency

 Thread topology

 Cache topology

 Cache parameters (-c command line switch)

 ASCII art output (-g command line switch)

 Currently supported (more under development):

 Intel Core 2 (45nm + 65 nm)

 Intel Nehalem + Westmere (Sandy Bridge in beta phase)

 AMD K10 (Quadcore and Hexacore)

 AMD K8

 Linux OS

175 SAHPC 2012 Tutorial Performance Engineering

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

176

Output of likwid-topology continued

SAHPC 2012 Tutorial Performance Engineering

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

177

Output of likwid-topology continued

SAHPC 2012 Tutorial Performance Engineering

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

122min

Enforcing thread/process-core affinity

under the Linux OS

Standard tools and OS affinity facilities under

program control

likwid-pin

179 SAHPC 2012 Tutorial Performance Engineering

Motivation: STREAM benchmark on 12-core Intel Westmere

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

alternating sockets)

There are several reasons for caring about

affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

180 SAHPC 2012 Tutorial Performance Engineering

Generic thread/process-core affinity under Linux
Overview

 taskset [OPTIONS] [MASK | -c LIST] \

 [PID | command [args]...]

 taskset binds processes/threads to a set of CPUs. Examples:

taskset 0x0006 ./a.out

taskset –c 4 33187

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work

 Processes/threads can still move within the set!

 Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int len,

 unsigned long *mask);

 Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

181 SAHPC 2012 Tutorial Performance Engineering

Generic thread/process-core affinity under Linux

 Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]

Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]

Bind process to specified ccNUMA node(s)

 Many more options (e.g., interleave memory across nodes)

 see section on ccNUMA optimization

 Diagnostic command (see earlier):
numactl --hardware

 Again, this is not suitable for a shared machine

182 SAHPC 2012 Tutorial Performance Engineering

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 Intel compilers > V9.1 (KMP_AFFINITY environment variable)

 PGI, Pathscale, GNU

 SGI Altix dplace (works with logical CPU numbers!)

 Generic Linux: taskset, numactl, likwid-pin (see below)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

If combined with OpenMP,

issues may arise

183 SAHPC 2012 Tutorial Performance Engineering

Likwid-pin
Overview

 Part of the LIKWID tool suite: http://code.google.com/p/likwid

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Detects OpenMP implementation automatically

 Based on combination of wrapper tool together with overloaded pthread

library binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Usage examples:

 Physical numbering:

likwid-pin -c 0,2,4-6 ./myApp parameters

 Logical numbering (4 cores on socket 0) with “skip mask” specified:

likwid-pin -s 3 -c S0:0-3 ./myApp parameters

http://code.google.com/p/likwid

184 SAHPC 2012 Tutorial Performance Engineering

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

185 SAHPC 2012 Tutorial Performance Engineering

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

186

Likwid-pin
Using logical core numbering

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

SAHPC 2012 Tutorial Performance Engineering

Chipset

Memory

Default if –c is not

specified!

187

likwid-mpirun

MPI startup and Hybrid pinning

 How do you manage affinity with MPI or hybrid MPI/threading?

 In the long run a unified standard is needed

 Till then, likwid-mpirun provides a portable/flexible solution

 The examples here are for Intel MPI/OpenMP programs, but are

also applicable to other threading models

Pure MPI:

$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out

Hybrid:

$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out

SAHPC 2012 Tutorial Performance Engineering

188

likwid-mpirun

1 MPI process per node

likwid-mpirun –np 2 -pin N:0-11 ./a.out

SAHPC 2012 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out

Performance Engineering

189

likwid-mpirun

1 MPI process per socket

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

SAHPC 2012 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

 –env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

Performance Engineering

190

likwid-mpirun

Integration of likwid-perfctr

SAHPC 2012 Tutorial

 likwid-mpirun can optionally set up likwid-perfctr for you

$ likwid-mpirun –np 16 –nperdomain S:2 –perf FLOPS_DP \

 -marker –mpi intelmpi ./a.out

 likwid-mpirun generates an intermediate perl script which is called

by the native MPI start mechanism

 According the MPI rank the script pins the process and threads

 If you use perfctr after the run for each process a file in the format
Perf-<hostname>-<rank>.txt

Its output which contains the perfctr results.

 In the future analysis scripts will be added which generate reports

of the raw data (e.g. as html pages)

Performance Engineering

Best practices for using

hardware performance

metrics

likwid-perfctr

192 SAHPC 2012 Tutorial Performance Engineering

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 Operating modes:

 Wrapper

 Stethoscope

 Timeline

 Marker API

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

193 SAHPC 2012 Tutorial Performance Engineering

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

194

likwid-perfctr
Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

SAHPC 2012 Tutorial Performance Engineering

195

likwid-perfctr

Identify load imbalance…

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

SAHPC 2012 Tutorial Performance Engineering

196

likwid-perfctr

… and load-balanced codes

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but

better performance

env OMP_NUM_THREADS=6 likwid-perfctr –t intel –C S0:0-5 –g FLOPS_DP ./a.out

SAHPC 2012 Tutorial Performance Engineering

197

 likwid-perfctr counts events on cores; it has no notion of what

kind of code is running (if any)

This enables to listen on what currently happens without any

overhead:

likwid-perfctr -c N:0-11 -g FLOPS_DP -s 10

 It can be used as cluster/server monitoring tool

 A frequent use is to measure a certain part of a long running

parallel application from outside

SAHPC 2012 Tutorial

likwid-perfctr

Stethoscope mode

Performance Engineering

198

likwid-perfctr

Timeline mode

 likwid-perfctr supports time resolved measurements of full node:

 likwid-perfctr –c N:0-11 -g MEM –d 50ms > out.txt

SAHPC 2012 Tutorial Performance Engineering

199

likwid-perfctr

Marker API

 To measure only parts of an application a marker API is available.

 The API only turns counters on/off. The configuration of the

counters is still done by likwid-perfctr application.

 Multiple named regions can be measured

 Results on multiple calls are accumulated

 Inclusive and overlapping Regions are allowed

SAHPC 2012 Tutorial

likwid_markerInit(); // must be called from serial region

likwid_markerStartRegion(“Compute”);

. . .

likwid_markerStopRegion(“Compute”);

likwid_markerStartRegion(“postprocess”);

. . .

likwid_markerStopRegion(“postprocess”);

likwid_markerClose(); // must be called from serial region

Performance Engineering

200

likwid-perfctr

Group files

SHORT PSTI

EVENTSET

FIXC0 INSTR_RETIRED_ANY

FIXC1 CPU_CLK_UNHALTED_CORE

FIXC2 CPU_CLK_UNHALTED_REF

PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED

PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION

PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION

UPMC0 UNC_QMC_NORMAL_READS_ANY

UPMC1 UNC_QMC_WRITES_FULL_ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS

METRICS

Runtime [s] FIXC1*inverseClock

CPI FIXC1/FIXC0

Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time

Packed MUOPS/s 1.0E-06*PMC0/time

Scalar MUOPS/s 1.0E-06*PMC1/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

SAHPC 2012 Tutorial

 Groups are architecture-specific

 They are defined in simple text files

 Code is generated on recompile of

likwid

 likwid-perfctr -a outputs list of groups

 For every group an extensive

documentation is available

Performance Engineering 130min

Measuring energy consumption

with LIKWID

202

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor

CPU clock: 3.49 GHz

Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz

Turbo Boost Steps:

C1 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts

Minimum Power: 20 Watts

Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

SAHPC 2012 Tutorial Performance Engineering

203

Example:
A medical image reconstruction code on Sandy Bridge

SAHPC 2012 Tutorial Performance Engineering

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
a
s
te

r c
o

d
e

 le

s
s

 e
n

e
rg

y

