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Supporting material 

 Where can I find those gorgeous slides? 

 

http://goo.gl/cTSKL 
or: 
http://blogs.fau.de/hager/tutorials/sahpc-2012/ 

 

 

 

 Is there a book or anything? 
 

 

Georg Hager and Gerhard Wellein: 
Introduction to High Performance Computing for Scientists and Engineers 

 

CRC Press, 2010 

ISBN 978-1439811924 

356 pages 

 

 Fun and facts for HPC: http://blogs.fau.de/hager/ 

SAHPC 2012 Tutorial Performance Engineering 

http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/
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Motivation 1: 

Scalability 4 the win! 
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Scalability Myth: Code scalability is the key issue 

 

 

 

Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 

SAHPC 2012 Tutorial Performance Engineering 
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Scalability Myth: Code scalability is the key issue 

SAHPC 2012 Tutorial 

Prepared for  

the highly  

parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

Changing only a the compile 

options makes this code 

scalable on an 8-core chip 

–O3 -axAVX 

Performance Engineering 
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Scalability Myth: Code scalability is the key issue 

SAHPC 2012 Tutorial 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

Single core/socket efficiency  

is key issue! 

Upper limit from simple 

performance model: 

36 GB/s & 24 Byte/update 

Performance Engineering 



Motivation 2: 

The 200x GPGPU speedup story 
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Accelerator myth: The 200x speedup story… 

SAHPC 2012 Tutorial 

Dense Matrix-Vector-Multiplication (N=4500) 

In line with a simple 

bandwidth model! 

Bad compiler 

Disable 

SIMD 

Go serial 

Change from single precision 

to double precision 

NVIDIA Tesla C2050 

 

vs. 

 

2x Intel Xeon 5650  

(6-core) 

Performance Engineering 
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Accelerator myth: The 200x speedup story… 

Sparse matrix-vector multiply 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GPGPU speedup: 1.6x,…,2.1x (no PCIe data transfer!) 

SAHPC 2012 Tutorial 

Matrix structure of test cases 

NVIDIA Tesla C2070  

performance in GF/s 

2-way Intel Xeon 5650 node  

M. Kreutzer et al., LSPP12 

DOI: 10.1109/IPDPSW.2012.211 

Performance Engineering 

http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1109/IPDPSW.2012.211
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The Performance Engineering process 

Model building 

Our definition 
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How model-building works: Physics 

SAHPC 2012 Tutorial Performance Engineering 

Newtonian mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

Fails @ small scales! 

 

 

 

 

 

 

 

 

 

 

 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  

quantum  

mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 
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Performance Engineering as a process 

The Performance Engineering (PE) process: 

 

 

 

 

 

 

 

 

 

 

The performance model is the central component – if the model fails 

to predict the measurement, you learn something! 

 

The analysis has to be done for every loop / basic block! 

Algorithm/Code analysis 

Runtime profiling 

Machine characteristics 

Microbenchmarking 

Traces/HW metrics 

Performance model Code optimization 

SAHPC 2012 Tutorial Performance Engineering 
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Multicore processor and system 

architecture 

Basics of machine characteristics 
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The x86 multicore evolution so far 
Intel Single-/Dual-/…/Octo-Cores (one-socket view) 

Sandy Bridge EP  

“Core i7”  

32nm 
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2008:  

Simultaneous  

Multi Threading (SMT) 
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There is no single driving force for chip performance! 

Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s (dp) for serial, non-SIMD code  

SAHPC 2012 Tutorial Performance Engineering 

TOP500 rank 1 (1995) 
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Today: Dual-socket Intel (Westmere) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: 

Where does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

SAHPC 2012 Tutorial Performance Engineering 
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Another flavor of “SMT”  

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 

dedicated  

L1D cache 

2 DDR3 (shared) memory 

channel > 15 GB/s 

2048 kB 

shared  

L2 cache 

8 (6) MB 

shared 

L3 cache  

SAHPC 2012 Tutorial Performance Engineering 
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Cray XE6 “Interlagos” 32-core dual socket node 

 Two 8- (integer-) core chips per 

socket @ 2.3 GHz (3.3 @ turbo) 

 Separate DDR3 memory 

interface per chip 

 ccNUMA on the socket! 

 

 Shared FP unit per pair of 

integer cores (“module”) 

 “256-bit” FP unit 

 SSE4.2, AVX, FMA4 

 

 16 kB L1 data cache per core 

 2 MB L2 cache per module 

 8 MB L3 cache per chip  

(6 MB usable) 

 
SAHPC 2012 Tutorial Performance Engineering 



Interlude: 

A glance at current accelerator technology 
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NVIDIA Kepler GK110 Block Diagram 

Architecture 

 7.1B Transistors 

 15 SMX units 

 > 1 TFLOP DP peak 

 1.5 MB L2 Cache 

 384-bit GDDR5 

 PCI Express Gen3 

 

 3:1 SP:DP performance 

 

© NVIDIA Corp. Used with permission. 

SAHPC 2012 Tutorial Performance Engineering 
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Intel Xeon Phi block diagram 

SAHPC 2012 Tutorial Performance Engineering 

Architecture 

 3B Transistors 

 60+ cores 

 512 bit SIMD 

 ≈ 1 TFLOP DP 

peak 

 0.5 MB  

L2/core 

 GDDR5 

 

 2:1 SP:DP 

performance 

 

64 byte/cy 
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Comparing accelerators 

 Intel Xeon Phi 

 60+ IA32 cores each with 512 Bit SIMD 

FMA unit  480/960 SIMD DP/SP tracks 

 

 Clock Speed: ~1000 MHz 

 Transistor count: ~3 B (22nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1 TF/s 

 Memory BW: ~250 GB/s (GDDR5) 

 

 Threads to execute: 60-240+ 

 Programming: 

Fortran/C/C++ +OpenMP + SIMD 

 

 TOP7: “Stampede” at Texas Center  

for Advanced Computing 

 NVIDIA Kepler K20 

 15 SMX units each with 192 “cores” 

 960/2880 DP/SP “cores”  

in total 

 Clock Speed: ~700 MHz 

 Transistor count: 7.1 B (28nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1.3 TF/s 

 Memory BW:  ~ 250 GB/s (GDDR5) 

 

 Threads to execute: 10.000+ 

 Programming:  

CUDA, OpenCL, (OpenACC) 

 

 TOP1: “Titan” at Oak Ridge National 

Laboratory 
TOP500 

rankings  

SAHPC 2012 Tutorial Performance Engineering 
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-10x 

2. Memory Bandwidth: 1-5x 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA K20x  

(“Kepler”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s 

Threads@STREAM <4 <16 >8000? 

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s 

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 

SAHPC 2012 Tutorial Performance Engineering 
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Parallel programming models 
on multicore multisocket nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 2.2) 

 OpenMP (current standard: 3.0) 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk+, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 2.2) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

 MPI (+OpenMP) + CUDA/OpenCL/… 

All models require 

awareness of 

topology and affinity 

issues for getting 

best performance 

out of the machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 

SAHPC 2012 Tutorial Performance Engineering 
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Data access on modern processors 

Characterization of memory hierarchies 

General performance properties of multicore processors  
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

SAHPC 2012 Tutorial Performance Engineering 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Interlude: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

SAHPC 2012 Tutorial Performance Engineering 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Interlagos core 

SAHPC 2012 Tutorial Performance Engineering 

L1D cache (16k) 

L2 cache (2M) 

L3 cache 

(6M) 

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
) 

64 GB/s (no write allocate in L1) 

10 GB/s 

(incl. write 

allocate) 

Is this the 

limit??? 

< 40 GB/s 

(incl. write allocate) 
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General remarks on the performance 

properties of multicore multisocket 

systems 
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Parallelism in modern computer systems 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 

PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / memory domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 

SAHPC 2012 Tutorial Performance Engineering 
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The parallel vector triad benchmark 

(Near-)Optimal code on (Cray) x86 machines 

Large-N version  

(nontemporal stores) 

Small-N version  

(standard stores) 

call get_walltime(S) 

!$OMP parallel private(j) 

do j=1,R 

  if(N.ge.CACHE_LIMIT) then 

!DIR$ LOOP_INFO cache_nt(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  else 

!DIR$ LOOP_INFO cache(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  endif 

  ! prevent loop interchange 

  if(A(N2).lt.0) call dummy(A,B,C,D) 

enddo 

!$OMP end parallel 

 

call get_walltime(E) 

“outer parallel”: Avoid thread team restart at 

every workshared loop 
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The parallel vector triad benchmark 

Single thread on Cray XE6 Interlagos node 

OMP overhead 

(100-2000cy here) 

and/or lower 

optimization w/ 

OpenMP active 

L1 cache L2 cache memory L3 cache 

Team restart is 

expensive! 

 use only 

outer parallel 

from now on! 
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The parallel vector triad benchmark 

Intra-chip scaling on Cray XE6 Interlagos node 

L2 

bottleneck 

Aggregate 

L2, exclusive 

L3 

sync 

overhead 

Memory BW 

saturated @ 

4 threads 

Per-module 

L2 caches 
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The parallel vector triad benchmark 

Nontemporal stores  on Cray XE6 Interlagos node 

slow L3 

NT stores 

hazardous if data 

in cache 

25% speedup for 

vector triad in 

memory via NT 

stores 
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The parallel vector triad benchmark 

Topology dependence  on Cray XE6 Interlagos node 

sync overhead nearly 

topology-independent  

@ constant thread count 

more aggregate 

L3 with more 

chips 
bandwidth 

scalability across 

memory 

interfaces 
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The parallel vector triad benchmark 

Inter-chip scaling  on Cray XE6 Interlagos node 

sync overhead grows  

with core/chip count 

(up to 8000 cy here) 
bandwidth 

scalability across 

memory 

interfaces 
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What will it look like on many-cores? 

Go figure. 

SAHPC 2012 Tutorial Performance Engineering 



Bandwidth saturation effects in cache and 

memory 

A look at different processors 
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Bandwidth limitations: Main Memory 
Scalability of shared data paths inside a NUMA domain  (V-Triad) 

1 thread cannot 

saturate bandwidth 

Saturation with 

3 threads 

Saturation with 

2 threads 

Saturation with 

4 threads 
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Bandwidth limitations: Outer-level cache 

Scalability of shared data paths in L3 cache 



Some data on  

OpenMP synchronization overhead 
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Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slide: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on AMD Interlagos  
OpenMP barrier overhead in CPU cycles 

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L2 258 3995 1503 128623 

Shared L3 698 2853 1076 128611 

Same 

socket 
879 2785 1297 128695 

Other socket 940 2740 / 4222 1284 / 1325 128718 

Intel compiler barrier very expensive on Interlagos 

     OpenMP & Cray compiler 

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L3 2272 27916 5981 151939 

Socket 3783 49947 7479 163561 

Node 7663 167646 9526 178892 
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Thread synchronization overhead on Intel CPUs  
pthreads vs. OpenMP vs. Spin loop 

2 Threads Q9550 (shared L2) i7 920 (shared L3) 

pthreads_barrier_wait 23739 6511 

omp barrier gcc 4.3.3 22603 7333 

omp barrier icc 11.0 399 469 

Spin loop 231 270 

pthreads  OS kernel call 

                                                                         Syncing SMT threads is expensive 

Spin loop does fine for shared cache sync 

                                                                         OpenMP & Intel compiler  

Nehalem 2 Threads Shared SMT threads shared L3 different socket 

pthreads_barrier_wait 23352 4796 49237 

omp barrier (icc 11.0) 2761 479 1206 

Spin loop 17388 267 787 

90min 



Understanding MPI communication in 

multicore environments 

Intra-node vs. inter-node MPI 

MPI Cartesian topologies and rank-subdomain 

mapping 
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Intranode MPI 

 Common misconception: Intranode MPI is infinitely fast compared 

to internode 

 

 Reality 

 Intranode latency is much smaller than internode 

 Intranode asymptotic bandwidth is surprisingly comparable to internode 

 Difference in saturation behavior 

 

 Other issues 

 Mapping between ranks, subdomains and cores with Cartesian MPI 

topologies 

 Overlapping intranode with internode communication 
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MPI and Multicores 

Clusters: Unidirectional internode Ping-Pong bandwidth 

QDR/GBit ~ 30X 

SAHPC 2012 Tutorial Performance Engineering 
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MPI and Multicores 

Clusters: Unidirectional intranode Ping-Pong bandwidth 

Mapping problem for most efficient communication paths!?  

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 
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C 
C 

C 

Memory Memory 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

P 
C 
C 

C 

Cross-Socket (CS) 

Intra-Socket (IS) 

Single point-to-

point BW similar 

to internode 

Some BW 

scalability for 

multi-intranode 

connections 
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“Best possible” MPI: 

Minimizing cross-node communication 

■ Example: Stencil solver with halo exchange 

 

 

 

 

 

 

 

 

■ Goal: Reduce inter-node halo traffic 

■ Subdomains exchange halo with neighbors 

■ Populate a node's ranks with “maximum neighboring” subdomains 

■ This minimizes a node's communication surface 

 

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this? 
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MPI rank-subdomain mapping in Cartesian topologies: 

A 3D stencil solver and the growing number of cores per node 

“Common” MPI 

library behavior 
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~ 1.5x 

4 ppn SDR-IB 

MPI rank-subdomain mapping: 

3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB 

8 ppn QDR-IB 

32 MPI processes 
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Summary on MPI multicore issues 

 Intranode MPI 

 May not be as fast as you think… 

 Becomes more important as core counts increase 

 May not be handled optimally by your MPI library 

 

 

 Rank-core mapping may be crucial for best performance 

 Reduce inter-node traffic 

 Most MPIs do not recognize this 

 Some (e.g., Cray) can give you hints toward optimal placement 
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Conclusions from the data access properties 

 Affinity matters! 

 Almost all performance properties depend on the position of 

 Data 

 Threads/processes 

 Consequences 

 Know the topology of your machine 

 Know where your threads are running 

 Know where your data is 

 

 

 Bandwidth bottlenecks are ubiquitous 

 Bad scaling is not always a bad thing 

 Do you exhaust your bottlenecks? 

 

 Synchronization overhead may be an issue 

 … and also depends on affinity! 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Sparse matrix-vector multiply (sMVM) 

 Key ingredient in some matrix diagonalization algorithms 

 Lanczos, Davidson, Jacobi-Davidson 

 

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries 

 “Sparse”: Nnz ~ Nr  

 

= + • Nr 

General case: 

some indirect 

addressing 

required! 
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… 

CRS matrix storage scheme 

column index 

ro
w

 i
n

d
e
x

 

1 2 3 4 … 

1 

2 

3 

4 

… 

val[] 

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[] 

1 5 15 19 8 12 … row_ptr[] 

 val[] stores all the nonzeros 

(length Nnz) 

 col_idx[] stores the column 

index of each nonzero (length Nnz) 

 row_ptr[] stores the starting 

index of each new row in val[] 

(length: Nr) 
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Case study: Sparse matrix-vector multiply 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 MPI parallelization possible and well-studied 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Bandwidth-bound parallel algorithms: 
Sparse MVM 

 Data storage format is crucial for performance properties 

 Most useful general format: Compressed Row Storage (CRS) 

 SpMVM is easily parallelizable in shared and distributed memory 

 

 For large problems, spMVM is 

inevitably memory-bound 

 Intra-LD saturation effect 

on modern multicores 

 

 

 

 

 MPI-parallel spMVM is often  

communication-bound 

 See later part for what we 

can do about this… 

SAHPC 2012 Tutorial Performance Engineering 



70 SAHPC 2012 Tutorial Performance Engineering 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across NUMA 

domains 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 

Parallelization 

overhead 

dominates 
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Conclusions from the spMVM benchmarks 

 If the problem is “large”, bandwidth saturation on the socket is 

a reality 

  There are “spare cores” 

 Very common performance pattern 

 What to do with spare cores? 

 Use them for other tasks, such as MPI  

communication 

 Let them idle  saves energy with minor  

loss in time to solution 

 Can we predict the saturated performance? 

 Bandwidth-based performance modeling! 

 What is the significance of the indirect access?  

Can it be modeled? 

 Can we predict the saturation point? 

 … and why is this important? 
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See later 

for 

answers! 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Basic performance modeling and  

“motivated optimizations” 

The Roofline Model 

Case study: The Jacobi smoother 

 

 



The Roofline Model 
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The Roofline Model – A tool for more insight 

1. Determine the applicable peak performance of a loop, assuming 

that data comes from L1 cache 

2. Determine the computational intensity (flops per byte 

transferred) over the slowest data path utilized  

3. Determine the applicable peak bandwidth of the slowest data 

path utilized 

Example: do i=1,N; s=s+a(i); enddo 

in DP on hypothetical 3 GHz CPU, 4-way SIMD, N large 

 

ADD peak  (half of full peak) 

 

4-cycle latency per ADD if not unrolled 

 

Computational intensity [Flops/byte] 

Expected  

performance 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

SAHPC 2012 Tutorial Performance Engineering 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture 

Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 4 cy (ADD) 

measurement 

Maximum memory 

bandwidth 10 GB/s 

Memory-bound @ large N! 

Pmax = 1.25 GF/s 

3-12 GF/s 

1.25 GF/s 
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Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 See next slide… 
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Complexities of in-core execution 

Multiple bottlenecks:  

 

 L1 Icache bandwidth 

 Decode/retirement 

throughput 

 Port contention  

(direct or indirect) 

 Arithmetic pipeline stalls 

(dependencies) 

 Overall pipeline stalls 

(branching) 

 L1 Dcache bandwidth 

(LD/ST throughput) 

 Scalar vs. SIMD execution 

 … 

 

 Register pressure 

 Alignment issues 
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The roofline model in practice: Code balance  

 Code balance (BC) quantifies  

the requirements of the code 

 Reciprocal of comp. intensity 

 

 bS = achievable bandwidth over the slowest data path 

 E.g., measured by suitable microbenchmark (STREAM, …) 

 

 

 Lightspeed for absolute performance: 

(Pmax : “applicable” peak performance) 

 

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

 

bS/Bc = 1.7 GF/s (1.2 % of peak performance) 

][ operations arithmetic

][ (LD/ST) transfer data

flops

words
BC 













C

S

B

b
PP ,min max
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Newton’s 

Second Law 

of 

performance 

modeling 
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Balance metric (a.k.a. the “roofline model”) 

 The balance metric formalism is based on some (crucial) 

assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 
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Case study:  

A 3D Jacobi smoother 

The basics in two dimensions 

Performance analysis and modeling 
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A Jacobi smoother 

 Laplace equation in 2D: 

 

 Solve with Dirichlet boundary conditions using Jacobi iteration 

scheme: 

Naive balance (incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F 

Reuse when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 

SAHPC 2012 Tutorial Performance Engineering 

∆𝚽 = 𝟎 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and re-used 3 times 

from cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

 

 

If cache is too small to hold one row: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
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2D  3D 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/update) 

 

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update) 

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update) 
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do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                           + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                           + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 
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3D Jacobi solver 
Performance of vanilla code on one Interlagos chip (8 cores) 

SAHPC 2012 Tutorial Performance Engineering 

cache memory 

2 layers of source array 

drop out of L2 cache 

Problem size: N3 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 

 Optimization == reducing the code balance by code 

transformations 

 See below 
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Data access optimizations  
  

Case study: Optimizing a Jacobi solver 

Case study: Erratic RHS access for sparse MVM 



Case study:  

3D Jacobi solver  

Spatial blocking for improved cache re-use 
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Remember the 3D Jacobi solver on Interlagos? 
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2 layers of source array 

drop out of L2 cache 

 

 avoid through spatial 

blocking! 
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Jacobi iteration (2D): No spatial Blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial Blocking 

 divide system into blocks 

 update block after block 

 same performance as if three complete rows of the systems fit 

into cache 
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Jacobi iteration (2D): Spatial Blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 
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Jacobi iteration (3D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking sizes large enough to fulfill “layer condition”  

 Cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement (see 

later) 

 

  do ioffset=1,imax,iblock 

    do joffset=1,jmax,jblock 

      do k=1,kmax 

        do j=joffset, min(jmax,joffset+jblock-1) 

          do i=ioffset, min(imax,ioffset+iblock-1) 

          phi(i,j,k,t1) = ( phi(i-1,j,k,t0)+phi(i+1,j,k,t0) 

                    + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0) )/6.d0 

        enddo 

      enddo 

    enddo 

  enddo  

loop over i-blocks 

loop over j-blocks 
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3D Jacobi solver (problem size 4003) 
Blocking different loop levels (8 cores Interlagos) 

SAHPC 2012 Tutorial Performance Engineering 

OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 

SAHPC 2012 Tutorial Performance Engineering 

blocking 
NT 

stores 

expected 

boost: 

50% 

16 B/update perf. model 



Case study:  

Erratic RHS access in sparse MVM 

“Modeling” indirect access    
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision w/ CRS: 

 

 

 

 

 

 DP CRS code balance 

  quantifies extra traffic 

for loading RHS more than 

once 

 Naive performance = bS/BCRS 

 Determine   by measuring performance and actual memory bandwidth 

 

 

8 8 8 4 8 

8 

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case 

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th, 

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint:  arXiv:1101.0091 
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http://arxiv.org/abs/1101.0091


102 

  is determined by the sparsity pattern and the cache 

 Analysis for HMeP matrix on Nehalem EP socket 

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s 

spMVM performance if  = 0 

 Measured spMVM performance = 2.25 Gflop/s 

 Solve 2.25 Gflop/s = bS/BCRS  for   ≈ 2.5 

 

 37.5 extra bytes per row  

 RHS is loaded 6 times from memory 

 about 33% of BW goes into RHS 

 

 

 

 Conclusion: Even if the roofline/bandwidth model does not work 

100%, we can still learn something from the deviations 

 Optimization? Perhaps you can reorganize the matrix  

SAHPC 2012 Tutorial Performance Engineering 
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Input to the roofline model 

… on the example of spMVM with HMeP matrix 

Code analysis: 

1 ADD, 1 MULT, 

(2.5+2/Nnzr) LOADs, 

1/Nnzr STOREs +  

Throughput: 1 ADD, 1 MULT 

+ 1 LD + 1ST/cy 

Maximum memory 

bandwidth 20 GB/s 

Memory-bound! 

 = 2.5 

Measured memory BW 

for spMVM 18.1 GB/s 
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Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 Data transfer and in-core time overlap 100% 

 In-core execution is sometimes hard to 

model 

 

 Saturation effects in multicore  

chips are not explained 

 ECM model gives more insight 

 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 

SAHPC 2012 Tutorial Performance Engineering 

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring 

performance and power properties of modern multicore chips 

via simple machine models. Submitted. Preprint: 

arXiv:1208.2908 

http://arxiv.org/abs/1208.2908
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Conclusions from the case studies 

 There is no substitute for knowing what’s going on between your 

code and the hardware 

 

 Make sense of performance behavior through sensible application 

of performance models 

 However, there is no “golden formula” to do it all for you automagically 

 If the model does not work properly, you learn something new 

 

 Model inputs: 

 Code analysis/inspection 

 Hardware counter data 

 Microbenachmark analysis 

 Architectural features 

 

 Simple models work best; do not try to make it more complex than 

necessary 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Boosting core efficiency: 

Simultaneous multithreading (SMT) 

Principles and performance impact 

SMT vs. independent instruction streams 

Facts and fiction 
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SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 

S
ta

n
d

a
rd

 c
o

re
 

2
-w

a
y
 S

M
T
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SMT impact 

 SMT is primarily suited for increasing processor throughput 

 With multiple threads/processes running concurrently 

 Scientific codes tend to utilize chip resources quite well 

 Standard optimizations (loop fusion, blocking, …)  

 High data and instruction-level parallelism 

 Exceptions do exist 

 

 SMT is an important topology issue 

 SMT threads share almost all core 

resources 

 Pipelines, caches, data paths 

 Affinity matters! 

 If SMT is not needed 

 pin threads to physical cores 

 or switch it off via BIOS etc. 
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SMT impact 

 SMT adds another layer of topology  

(inside the physical core) 

 Caveat: SMT threads share all caches! 

 Possible benefit: Better pipeline throughput 

 Filling otherwise unused pipelines 

 Filling pipeline bubbles with other thread’s executing instructions: 

 

 

 

 

 

 

 

 Beware: Executing it all in a single thread  

(if possible) may reach the same goal  

without SMT: 

 

Thread 0: 
do i=1,N 

  a(i) = a(i-1)*c 

enddo  

Dependency  pipeline 

stalls until previous MULT 

is over 

Westmere EP  

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 

MI 

Memory 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

 

Thread 1: 
do i=1,N 

  b(i) = func(i)*d 

enddo  

Unrelated work in other 

thread can fill the pipeline 

bubbles 

do i=1,N 

  a(i) = a(i-1)*c 

  b(i) = func(i)*d  

enddo  
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a(2)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

a(2)*c 

a(7)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

Thread 1: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

Fill bubbles via: 
 SMT 

 Multiple streams 

M
U

L
T
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ip

e
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Simultaneous recursive updates with SMT  

SAHPC 2012 Tutorial Performance Engineering 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

5 independent updates on a single thread do the same job! 

B(2)*s 

A(2)*s 

E(1)*s 

D(1)*s 

C(1)*s 

Thread 0: 
do i=1,N 

 A(i)=A(i-1)*s 

 B(i)=B(i-1)*s 

 C(i)=C(i-1)*s 

 D(i)=D(i-1)*s 

 E(i)=E(i-1)*s 

enddo  

M
U

L
T

 p
ip

e
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Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

Pure update benchmark can be vectorized  2 F / cycle (store limited) 

Recursive update: 
 

 SMT can fill pipeline 

bubles 

 

 A single thread can 

do so as well 

 

 Bandwidth does not 

increase through 

SMT 

 

 SMT can not 

replace SIMD! 
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SMT myths: Facts and fiction (1) 

 Myth: “If the code is compute-bound, then the functional units 

should be saturated and SMT should show no improvement.” 

 

 

 

 Truth 

1. A compute-bound loop does not  

necessarily saturate the pipelines;  

dependencies can cause a lot of bubbles,  

which may be filled by SMT threads. 

 

2. If a pipeline is already full, SMT will not improve its 

utilization 
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B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  
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U

L
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ip
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SMT myths: Facts and fiction (2) 

 Myth: “If the code is memory-bound, SMT should help because it 

can fill the bubbles left by waiting for data from memory.” 

 Truth:  

1. If the maximum memory bandwidth is already reached, SMT will not 

help since the relevant  

resource (bandwidth)  

is exhausted. 

 

2. If the relevant  

bottleneck is not  

exhausted, SMT may  

help since it can fill  

bubbles in the LOAD  

pipeline. 

 

This applies also to other 

“relevant bottlenecks!” 
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SMT myths: Facts and fiction (3) 

 Myth: “SMT can help bridge the latency to 

memory (more outstanding references).” 

 

 Truth:  
Outstanding references may or may not be 

bound to SMT threads; they may be a resource 

of the memory interface and shared by all 

threads. The benefit of SMT with memory-bound 

code is usually due to better utilization of the 

pipelines so that less time gets “wasted” in the 

cache hierarchy. 

 

 

See also the “ECM Performance Model” 

later on. 
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SMT: When it may help, and when not 

 

Functional parallelization 

FP-only parallel loop code  

Frequent thread synchronization 

Code sensitive to cache size 

Strongly memory-bound code 

Independent pipeline-unfriendly instruction streams  



Beyond the chip boundary: 

Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

ccNUMA locality and erratic access 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  
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ccNUMA locality tool numactl: 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 

 
numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                               # all <nodes> 

 

 Examples: 

 
env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 

 

 

 

 But what is the default without numactl? 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 std::vector in C++ is initialized serially by default 

  STL allocators provide an elegant solution 
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Coding for Data Locality: 

Placement of static arrays or arrays of objects 

 Speaking of C++: Don't forget that constructors tend to touch the 

data members of an object. Example: 

 

 class D { 
  double d; 

public: 

  D(double _d=0.0) throw() : d(_d) {} 

  inline D operator+(const D& o) throw() { 

    return D(d+o.d); 

  } 

  inline D operator*(const D& o) throw() { 

    return D(d*o.d); 

  } 

... 

}; 

→ placement problem with  
     D* array = new D[1000000]; 
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Coding for Data Locality: 

Parallel first touch for arrays of objects 

 Solution: Provide overloaded D::operator new[] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Placement of objects is then done automatically by the C++ runtime via 

“placement new” 

void* D::operator new[](size_t n) { 

  char *p = new char[n];    // allocate 

 

  size_t i,j; 

#pragma omp parallel for private(j) schedule(...) 

  for(i=0; i<n; i += sizeof(D)) 

    for(j=0; j<sizeof(D); ++j) 

      p[i+j] = 0; 

  return p; 

} 

 

void D::operator delete[](void* p) throw() { 

  delete [] static_cast<char*>p; 

} 

parallel first 

touch 
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Coding for Data Locality: 
NUMA allocator for parallel first touch in std::vector<> 

template <class T> class NUMA_Allocator { 

public: 

  T* allocate(size_type numObjects, const void   

              *localityHint=0) { 

    size_type ofs,len = numObjects * sizeof(T); 

    void *m = malloc(len); 

    char *p = static_cast<char*>(m); 

    int i,pages = len >> PAGE_BITS; 

#pragma omp parallel for schedule(static) private(ofs) 

    for(i=0; i<pages; ++i) { 

      ofs = static_cast<size_t>(i) << PAGE_BITS; 

      p[ofs]=0; 

    } 

    return static_cast<pointer>(m); 

  } 

... 

}; Application: 
vector<double,NUMA_Allocator<double> > x(10000000) 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Try running with  numactl --interleave ...  

 If performance goes up  ccNUMA problem! 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Nehalem (Core i7): 

 
env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out 
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Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Nehalem EP node: 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    |   core 6    |   core 7    | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 | 

|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09  | 

|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      |      0      |      0      | 

|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07  |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      |      0      |      0      | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

RDTSC timing: 0.827196 s 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 | 

|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 | 

| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    | 

|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

Uncore events only 

counted once per socket 

Half of read BW comes 

from other socket! 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 
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ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
C 

P2 
C 

C C 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

installed in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 

(Cray only) 
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ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 
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ccNUMA conclusions 

 ccNUMA is present on all standard cluster architectures 

 

 With pure MPI (and proper affinity control) you should be fine 

 However, watch out for buffer cache  

 

 With threading, you may be fine with one process per ccNUMA 

domain 

 

 Thread groups spanning more than one domain may cause 

problems 

 Employ first touch placement (“Golden Rule”) 

 Experiment with round-robin placement 

 

 If access patterns are totally erratic, round-robin may be your only 

choice 

 But there are advanced solutions (“locality queues”) 
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Case study: Asynchronous MPI 

communication in sparse MVM 

 
What to do with spare cores 
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Distributed-memory parallelization of spMVM 
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Distributed-memory parallelization of spMVM 

 Variant 1: “Vector mode” without overlap 

 

 

 Standard concept 

for “hybrid MPI+OpenMP” 

 Multithreaded computation 

(all threads) 

 

 Communication only  

outside of computation 

 

 

 Benefit of threaded MPI process only due to message aggregation 

and (probably) better load balancing 

 

 

SAHPC 2012 Tutorial Performance Engineering 

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on 

Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, 
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Distributed-memory parallelization of spMVM 

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”) 

 

 

 Relies on MPI to support 

async nonblocking PtP 

 Multithreaded computation 

(all threads) 

 

 Still simple programming 

 Drawback: Result vector 

is written twice to memory 

 modified performance 

model 
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Distributed-memory parallelization of spMVM 

 Variant 3: “Task mode” with dedicated communication thread 

 Explicit overlap, more complex to implement 

 One thread missing in 

team of compute threads 

 But that doesn’t hurt here… 

 Using tasking seems simpler 

but may require some  

work on NUMA locality 

 Drawbacks 

 Result vector is written  

twice to memory 

 No simple OpenMP 

worksharing (manual, 

tasking) 
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Performance results for the HMeP matrix 

 Dominated by communication (and some load imbalance for large #procs) 

 Single-node Cray performance cannot be maintained beyond a few nodes 

 Task mode pays off esp. with one process (12 threads) per node 

 Task mode overlap (over-)compensates additional LHS traffic 
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Performance results for the sAMG matrix 

 Much less communication-bound 

 XE6 outperforms Westmere cluster, can maintain good node performance 

 Hardly any discernible difference as to # of threads per process 

 If pure MPI is good enough, don’t bother going hybrid! 
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Conclusions from hybrid spMVM results 

 Do not rely on asynchronous MPI progress 

 Sparse MVM leaves resources (cores) free for use by 

communication threads 

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not 

good enough if communication is a real problem 

 “Task mode” hybrid can truly hide communication and 

overcompensate penalty from additional memory traffic in spMVM 

 Comm thread can share a core with comp thread via SMT and still 

be asynchronous 

 If pure MPI scales ok and maintains its node performance  

according to the node-level performance model, don’t bother 

going hybrid 

 

 Extension to multi-GPGPU is possible 

 See references 
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A simple power model for the Sandy 

Bridge processor 

Assumptions 

Validation using simple benchmarks 

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power 

properties of modern multicore chips via simple machine models. Submitted. 

Preprint: arXiv:1208.2908 

http://arxiv.org/abs/1208.2908
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A model for multicore chip power 

 Goal: Establish model for chip power and program energy 

consumption with respect to 

 Clock speed 

 Number of cores used 

 Single-thread program performance 

 

 Choose different characteristic benchmark applications to 

measure a chip’s power behavior 

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable 

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable 

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip 

 AVX variant 

 Scalar variant 

 

 Measure characteristics of those apps and establish a power 

model 
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App scaling behavior (DGEMM omitted) 
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Sandy Bridge EP (8-core) processor: 
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Chip power and performance vs. clock speed   

on full socket & single core 

Sandy Bridge EP (8-core) processor: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all cores used 

single core 

ignored 
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Chip power and cycles per instruction (CPI) vs. # of cores 

Sandy Bridge EP (8-core) processor: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ignored 

CPI and power correlated, but 

not proportional 
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A simple power model for multicore chips 

Assumptions: 

 

1. Power is a quadratic polynomial in the clock frequency 

2. Dynamic power is linear in the number of active cores t 

3. Performance is linear in the number of cores until it hits a 

bottleneck ( ECM model) 

4. Performance is linear in the clock frequency unless it hits a 

bottleneck 

5. Energy to solution is power dissipation divided by performance 

 

Model: 

 

 

 

                                                           where  𝒇 = 𝟏 + ∆𝝂 𝒇𝟎 
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Model predictions 

1. If there is no saturation, use all available cores to minimize E 

 

 

 

Minimum E here 
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Model predictions 

2. There is an optimal frequency fopt at which E is minimal in the 

non-saturated case, with 

 

𝒇𝐨𝐩𝐭 = 
𝑾𝟎

𝑾𝟐𝒕
 ,   hence it depends on the baseline power 

 

 “Clock race to idle” if baseline accommodates whole system! 

 May have to look at other metrics, e.g., 𝑪 = 𝑬/𝑷 
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Model predictions 

3. If there is saturation, E is minimal at the saturation point 

 

 

 

Minimum E here 
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Model predictions 

4. If there is saturation, absolute minimum E is reached if the 

saturation point is at the number of available cores  

 

 

 

 

Slower clock  

 more cores to saturation  

 smaller E 
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Model predictions 

5. Making code execute faster on the core saves energy since 

 The time to solution is smaller if the code scales (“Code race to idle”) 

 We can use fewer cores to reach saturation if there is a bottleneck 

 

 

 

Better code 

 earlier saturation  

 smaller E @ saturation 
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Model validation with the benchmark apps 

2 

3 

1 

5 
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Conclusions from the power model 

 Simple assumptions lead to surprising conclusions 

 

 Performance saturation plays a key role  

 

 “Clock race to idle” can be proven quantitatively 

 

 “Code race to idle” (optimization saves energy) is a trivial result 

 Better: “Optimization makes better use of the energy budget” 

 

 

 Possible extensions to the power model 

 Allow for per-core frequency setting (coming with Intel Haswell) 

 Accommodate load imbalance & sync overhead 
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 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 

 

 

 

 

 
 

SAHPC 2012 Tutorial Performance Engineering 



162 

What I have left out 

 LIKWID: Lightweight multicore peformance tools 

 http://code.google.com/p/likwid 

 

 Multicore-specific properties of MPI communication 

 

 Sparse MVM on multiple GPGPUs: Performance modeling for 

viability analysis 

 See references 

 

 Exploting shared caches for temporal blocking of stencil codes 

 

 Execution-Cache-Memory (ECM) model 

 Predictive model for multicore scaling 

 Goes well with the power model 

 

 … and much more  
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Tutorial conclusion 

 Multicore architecture == multiple complexities 

 Affinity matters  pinning/binding is essential 

 Bandwidth bottlenecks  inefficiency is often made on the chip level 

 Topology dependence of performance features  know your hardware! 

 Put cores to good use 

 Bandwidth bottlenecks  surplus cores  functional parallelism!? 

 Shared caches  fast communication/synchronization  better 

implementations/algorithms? 

 Leave surplus cores idle to save energy 

 

 Simple modeling techniques help us 

 … understand the limits of our code on the given hardware 

 … identify optimization opportunities and hence save energy 

 … learn more, especially when they do not work! 
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Quiz 

double precision, dimension(100000000) :: a,b 

  

do i=1,N 

  s=s+a(i)*b(i) 

enddo 
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Code: 

GPGPU:     2880 cores,   Ppeak= 1.3 Tflop/s,  bS=160 Gbyte/s 

Optimal 

performance? 
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THANK YOU. 
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Probing node topology 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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Likwid Lightweight Performance Tools 

 Lightweight  command line tools for Linux 

 Help to face the challenges without getting in the way 

 Focus on X86 architecture 

 

 Philosophy: 

 Simple 

 Efficient 

 Portable 

 Extensible 

 

 

 

 

Open source project (GPL v2): 

http://code.google.com/p/likwid/ 

 
Performance Engineering 

http://code.google.com/p/likwid/
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likwid-topology – Topology information 

 Based on cpuid information 

 Functionality: 

 Measured clock frequency  

 Thread topology 

 Cache topology 

 Cache parameters (-c command line switch) 

 ASCII art output (-g command line switch) 

 Currently supported (more under development): 

 Intel Core 2 (45nm + 65 nm) 

 Intel Nehalem + Westmere (Sandy Bridge in beta phase) 

 AMD K10 (Quadcore and Hexacore) 

 AMD K8 

 Linux OS 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 
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------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 
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************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

122min 



Enforcing thread/process-core affinity 

under the Linux OS 

Standard tools and OS affinity facilities under 

program control 

 

likwid-pin 
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Motivation: STREAM benchmark on 12-core Intel Westmere 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

alternating sockets) 

There are several reasons for caring about 

affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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Generic thread/process-core affinity under Linux 
Overview 

 taskset [OPTIONS] [MASK | -c LIST ] \                      

                      [PID | command [args]...] 

 

 taskset binds processes/threads to a set of CPUs. Examples: 
 
taskset 0x0006 ./a.out 

taskset –c 4 33187 

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work 

 

 Processes/threads can still move within the set! 

 Alternative: let process/thread bind itself by executing syscall 
#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int len,  

                   unsigned long *mask); 

 

 Disadvantage: which CPUs should you bind to on a non-exclusive 
machine? 

 

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA 
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Generic thread/process-core affinity under Linux 

 Complementary tool: numactl 

 
Example: numactl --physcpubind=0,1,2,3 command [args] 

Bind process to specified physical core numbers 

 
Example: numactl --cpunodebind=1 command [args] 

Bind process to specified ccNUMA node(s) 

 

 Many more options (e.g., interleave memory across nodes) 

  see section on ccNUMA optimization 

 

 Diagnostic command (see earlier): 
numactl --hardware 

 

 Again, this is not suitable for a shared machine 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity(), PLPA (see below)  hwloc 
Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 Intel compilers > V9.1 (KMP_AFFINITY environment variable) 

 PGI, Pathscale, GNU 

 SGI Altix dplace (works with logical CPU numbers!) 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 

If combined with OpenMP,  

issues may arise 
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Likwid-pin 
Overview 

 Part of the LIKWID tool suite:  http://code.google.com/p/likwid 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Detects OpenMP implementation automatically 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 

 

 Usage examples: 

 Physical numbering: 

likwid-pin -c 0,2,4-6  ./myApp parameters  

 

 Logical numbering (4 cores on socket 0) with “skip mask” specified: 

likwid-pin -s 3 -c S0:0-3 ./myApp parameters 

http://code.google.com/p/likwid
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Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Likwid-pin 
Using logical core numbering 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 

SAHPC 2012 Tutorial Performance Engineering 

Chipset 

Memory 

Default if –c is not 

specified! 
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likwid-mpirun 

MPI  startup and Hybrid pinning 

 How do you manage affinity with MPI or hybrid MPI/threading? 

 In the long run a unified standard is needed 

 Till then, likwid-mpirun provides a portable/flexible solution 

 The examples here are for Intel MPI/OpenMP programs, but are 

also applicable to other threading models 

 

 

 

Pure MPI: 

$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out 

 

Hybrid: 

$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out 
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likwid-mpirun  

1 MPI process per node 

likwid-mpirun –np 2 -pin N:0-11  ./a.out 
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Intel MPI+compiler: 
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out   

Performance Engineering 
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likwid-mpirun 

1 MPI process per socket 

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out 
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Intel MPI+compiler:  
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \ 

     –env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out 

Performance Engineering 
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likwid-mpirun 

Integration of likwid-perfctr 

SAHPC 2012 Tutorial 

 likwid-mpirun can  optionally set up  likwid-perfctr for you 

$ likwid-mpirun –np 16 –nperdomain S:2 –perf FLOPS_DP \    

   -marker –mpi intelmpi  ./a.out 

 

 likwid-mpirun  generates an  intermediate perl script which is called  

by the native MPI start mechanism 

 According the MPI rank the script pins the process and threads 

 

 If you use perfctr after the run for each process a file in the format 
Perf-<hostname>-<rank>.txt 

 

Its output which contains the perfctr results. 

 

 In the future analysis scripts will be added which generate reports 

of the raw data (e.g. as html pages) 

Performance Engineering 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 Operating modes: 

 Wrapper 

 Stethoscope 

 Timeline 

 Marker API 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 
Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 
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likwid-perfctr 

Identify load imbalance… 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

 Waiting / “Spinning” in barrier generates a high instruction count  

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

SAHPC 2012 Tutorial Performance Engineering 
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likwid-perfctr 

… and load-balanced codes 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but 

better performance 

env OMP_NUM_THREADS=6 likwid-perfctr –t intel –C S0:0-5 –g FLOPS_DP ./a.out 
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 likwid-perfctr counts events on cores; it has no notion of what 

kind of code is running (if any) 

 

This enables to listen on what currently happens without any 

overhead: 

 

likwid-perfctr -c N:0-11 -g FLOPS_DP  -s 10 

 

 It can be used as cluster/server monitoring tool 

 

 A frequent use is to measure a certain part of a long running 

parallel application from outside 

SAHPC 2012 Tutorial 

likwid-perfctr 

Stethoscope mode 
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likwid-perfctr 

Timeline mode 

 likwid-perfctr supports time resolved measurements of full node: 

  likwid-perfctr –c N:0-11 -g MEM –d 50ms  > out.txt 
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likwid-perfctr 

Marker API 

 To measure only parts of an application a marker API is available. 

 The API only turns counters on/off. The configuration of the 

counters is still done by likwid-perfctr application. 

 Multiple named regions can be measured 

 Results on multiple calls are accumulated 

 Inclusive and overlapping Regions are allowed 

SAHPC 2012 Tutorial 

likwid_markerInit();  // must be called from serial region 

 

likwid_markerStartRegion(“Compute”); 

. . . 

likwid_markerStopRegion(“Compute”); 

 

 

likwid_markerStartRegion(“postprocess”); 

. . . 

likwid_markerStopRegion(“postprocess”); 

 

 

likwid_markerClose();  // must be called from serial region 

 

Performance Engineering 
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likwid-perfctr 

Group files 

SHORT PSTI 

EVENTSET 

FIXC0 INSTR_RETIRED_ANY 

FIXC1 CPU_CLK_UNHALTED_CORE 

FIXC2 CPU_CLK_UNHALTED_REF 

PMC0  FP_COMP_OPS_EXE_SSE_FP_PACKED 

PMC1  FP_COMP_OPS_EXE_SSE_FP_SCALAR 

PMC2  FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION 

PMC3  FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION 

UPMC0  UNC_QMC_NORMAL_READS_ANY 

UPMC1  UNC_QMC_WRITES_FULL_ANY 

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS 

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS  

METRICS 

Runtime [s] FIXC1*inverseClock 

CPI  FIXC1/FIXC0 

Clock [MHz]  1.E-06*(FIXC1/FIXC2)/inverseClock 

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time 

Packed MUOPS/s   1.0E-06*PMC0/time 

Scalar MUOPS/s 1.0E-06*PMC1/time 

SP MUOPS/s 1.0E-06*PMC2/time 

DP MUOPS/s 1.0E-06*PMC3/time 

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time; 

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time; 

LONG 

Formula: 

DP MFlops/s =  (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 +  FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime. 
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 Groups are architecture-specific 

 They are defined in simple text files 

 Code is generated on recompile of 

likwid 

 likwid-perfctr  -a outputs  list of groups 

 For every group an extensive 

documentation is available 

Performance Engineering 130min 
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Measuring  energy consumption 

likwid-powermeter  and  likwid-perfctr -g ENERGY 

 Implements Intel RAPL interface (Sandy Bridge) 

 RAPL = “Running average power limit” 
------------------------------------------------------------- 

CPU name:       Intel Core SandyBridge processor  

CPU clock:      3.49 GHz  

------------------------------------------------------------- 

Base clock:     3500.00 MHz  

Minimal clock:  1600.00 MHz  

Turbo Boost Steps: 

C1 3900.00 MHz  

C2 3800.00 MHz  

C3 3700.00 MHz  

C4 3600.00 MHz  

------------------------------------------------------------- 

Thermal Spec Power: 95 Watts  

Minimum  Power: 20 Watts  

Maximum  Power: 95 Watts  

Maximum  Time Window: 0.15625 micro sec  

------------------------------------------------------------- 
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Example: 
A medical image reconstruction code on Sandy Bridge 

SAHPC 2012 Tutorial Performance Engineering 

Test case Runtime [s] Power [W] Energy [J] 

8 cores, plain C 90.43 90 8110 

8 cores, SSE 29.63 93 2750 

8 cores (SMT), SSE 22.61 102 2300 

8 cores (SMT), AVX 18.42 111 2040 

Sandy Bridge EP (8 cores, 2.7 GHz base freq.) 
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