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Supporting material 

 Where can I find those gorgeous slides? 

 

http://goo.gl/cTSKL 
or: 
http://blogs.fau.de/hager/tutorials/sahpc-2012/ 

 

 

 

 Is there a book or anything? 
 

 

Georg Hager and Gerhard Wellein: 
Introduction to High Performance Computing for Scientists and Engineers 

 

CRC Press, 2010 

ISBN 978-1439811924 

356 pages 

 

 Fun and facts for HPC: http://blogs.fau.de/hager/ 

SAHPC 2012 Tutorial Performance Engineering 

http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/


3 

The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 

 

 

 

 

 
 

SAHPC 2012 Tutorial Performance Engineering 



4 

The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 

 

 

 

 

 
 

SAHPC 2012 Tutorial Performance Engineering 



Motivation 1: 

Scalability 4 the win! 
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Scalability Myth: Code scalability is the key issue 

 

 

 

Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 

SAHPC 2012 Tutorial Performance Engineering 
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Scalability Myth: Code scalability is the key issue 

SAHPC 2012 Tutorial 

Prepared for  

the highly  

parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

Changing only a the compile 

options makes this code 

scalable on an 8-core chip 

–O3 -axAVX 

Performance Engineering 
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Scalability Myth: Code scalability is the key issue 

SAHPC 2012 Tutorial 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

Single core/socket efficiency  

is key issue! 

Upper limit from simple 

performance model: 

36 GB/s & 24 Byte/update 

Performance Engineering 



Motivation 2: 

The 200x GPGPU speedup story 
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Accelerator myth: The 200x speedup story… 

SAHPC 2012 Tutorial 

Dense Matrix-Vector-Multiplication (N=4500) 

In line with a simple 

bandwidth model! 

Bad compiler 

Disable 

SIMD 

Go serial 

Change from single precision 

to double precision 

NVIDIA Tesla C2050 

 

vs. 

 

2x Intel Xeon 5650  

(6-core) 

Performance Engineering 
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Accelerator myth: The 200x speedup story… 

Sparse matrix-vector multiply 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GPGPU speedup: 1.6x,…,2.1x (no PCIe data transfer!) 

SAHPC 2012 Tutorial 

Matrix structure of test cases 

NVIDIA Tesla C2070  

performance in GF/s 

2-way Intel Xeon 5650 node  

M. Kreutzer et al., LSPP12 

DOI: 10.1109/IPDPSW.2012.211 

Performance Engineering 

http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1109/IPDPSW.2012.211
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The Performance Engineering process 

Model building 

Our definition 
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How model-building works: Physics 

SAHPC 2012 Tutorial Performance Engineering 

Newtonian mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

Fails @ small scales! 

 

 

 

 

 

 

 

 

 

 

 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  

quantum  

mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 
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Performance Engineering as a process 

The Performance Engineering (PE) process: 

 

 

 

 

 

 

 

 

 

 

The performance model is the central component – if the model fails 

to predict the measurement, you learn something! 

 

The analysis has to be done for every loop / basic block! 

Algorithm/Code analysis 

Runtime profiling 

Machine characteristics 

Microbenchmarking 

Traces/HW metrics 

Performance model Code optimization 

SAHPC 2012 Tutorial Performance Engineering 
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Multicore processor and system 

architecture 

Basics of machine characteristics 
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The x86 multicore evolution so far 
Intel Single-/Dual-/…/Octo-Cores (one-socket view) 

Sandy Bridge EP  

“Core i7”  

32nm 
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2008:  

Simultaneous  

Multi Threading (SMT) 
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There is no single driving force for chip performance! 

Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s (dp) for serial, non-SIMD code  

SAHPC 2012 Tutorial Performance Engineering 

TOP500 rank 1 (1995) 
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Today: Dual-socket Intel (Westmere) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: 

Where does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

SAHPC 2012 Tutorial Performance Engineering 
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Another flavor of “SMT”  

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 

dedicated  

L1D cache 

2 DDR3 (shared) memory 

channel > 15 GB/s 

2048 kB 

shared  

L2 cache 

8 (6) MB 

shared 

L3 cache  

SAHPC 2012 Tutorial Performance Engineering 
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Cray XE6 “Interlagos” 32-core dual socket node 

 Two 8- (integer-) core chips per 

socket @ 2.3 GHz (3.3 @ turbo) 

 Separate DDR3 memory 

interface per chip 

 ccNUMA on the socket! 

 

 Shared FP unit per pair of 

integer cores (“module”) 

 “256-bit” FP unit 

 SSE4.2, AVX, FMA4 

 

 16 kB L1 data cache per core 

 2 MB L2 cache per module 

 8 MB L3 cache per chip  

(6 MB usable) 

 
SAHPC 2012 Tutorial Performance Engineering 



Interlude: 

A glance at current accelerator technology 
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NVIDIA Kepler GK110 Block Diagram 

Architecture 

 7.1B Transistors 

 15 SMX units 

 > 1 TFLOP DP peak 

 1.5 MB L2 Cache 

 384-bit GDDR5 

 PCI Express Gen3 

 

 3:1 SP:DP performance 

 

© NVIDIA Corp. Used with permission. 

SAHPC 2012 Tutorial Performance Engineering 



25 

Intel Xeon Phi block diagram 

SAHPC 2012 Tutorial Performance Engineering 

Architecture 

 3B Transistors 

 60+ cores 

 512 bit SIMD 

 ≈ 1 TFLOP DP 

peak 

 0.5 MB  

L2/core 

 GDDR5 

 

 2:1 SP:DP 

performance 

 

64 byte/cy 
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Comparing accelerators 

 Intel Xeon Phi 

 60+ IA32 cores each with 512 Bit SIMD 

FMA unit  480/960 SIMD DP/SP tracks 

 

 Clock Speed: ~1000 MHz 

 Transistor count: ~3 B (22nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1 TF/s 

 Memory BW: ~250 GB/s (GDDR5) 

 

 Threads to execute: 60-240+ 

 Programming: 

Fortran/C/C++ +OpenMP + SIMD 

 

 TOP7: “Stampede” at Texas Center  

for Advanced Computing 

 NVIDIA Kepler K20 

 15 SMX units each with 192 “cores” 

 960/2880 DP/SP “cores”  

in total 

 Clock Speed: ~700 MHz 

 Transistor count: 7.1 B (28nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1.3 TF/s 

 Memory BW:  ~ 250 GB/s (GDDR5) 

 

 Threads to execute: 10.000+ 

 Programming:  

CUDA, OpenCL, (OpenACC) 

 

 TOP1: “Titan” at Oak Ridge National 

Laboratory 
TOP500 

rankings  

SAHPC 2012 Tutorial Performance Engineering 
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-10x 

2. Memory Bandwidth: 1-5x 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA K20x  

(“Kepler”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s 

Threads@STREAM <4 <16 >8000? 

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s 

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 

SAHPC 2012 Tutorial Performance Engineering 
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Parallel programming models 
on multicore multisocket nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 2.2) 

 OpenMP (current standard: 3.0) 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk+, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 2.2) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

 MPI (+OpenMP) + CUDA/OpenCL/… 

All models require 

awareness of 

topology and affinity 

issues for getting 

best performance 

out of the machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 

SAHPC 2012 Tutorial Performance Engineering 
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Data access on modern processors 

Characterization of memory hierarchies 

General performance properties of multicore processors  
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

SAHPC 2012 Tutorial Performance Engineering 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Interlude: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

SAHPC 2012 Tutorial Performance Engineering 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Interlagos core 

SAHPC 2012 Tutorial Performance Engineering 

L1D cache (16k) 

L2 cache (2M) 

L3 cache 

(6M) 

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
) 

64 GB/s (no write allocate in L1) 

10 GB/s 

(incl. write 

allocate) 

Is this the 

limit??? 

< 40 GB/s 

(incl. write allocate) 
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General remarks on the performance 

properties of multicore multisocket 

systems 
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Parallelism in modern computer systems 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 

PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / memory domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 

SAHPC 2012 Tutorial Performance Engineering 
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The parallel vector triad benchmark 

(Near-)Optimal code on (Cray) x86 machines 

Large-N version  

(nontemporal stores) 

Small-N version  

(standard stores) 

call get_walltime(S) 

!$OMP parallel private(j) 

do j=1,R 

  if(N.ge.CACHE_LIMIT) then 

!DIR$ LOOP_INFO cache_nt(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  else 

!DIR$ LOOP_INFO cache(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  endif 

  ! prevent loop interchange 

  if(A(N2).lt.0) call dummy(A,B,C,D) 

enddo 

!$OMP end parallel 

 

call get_walltime(E) 

“outer parallel”: Avoid thread team restart at 

every workshared loop 
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The parallel vector triad benchmark 

Single thread on Cray XE6 Interlagos node 

OMP overhead 

(100-2000cy here) 

and/or lower 

optimization w/ 

OpenMP active 

L1 cache L2 cache memory L3 cache 

Team restart is 

expensive! 

 use only 

outer parallel 

from now on! 



43 SAHPC 2012 Tutorial Performance Engineering 

The parallel vector triad benchmark 

Intra-chip scaling on Cray XE6 Interlagos node 

L2 

bottleneck 

Aggregate 

L2, exclusive 

L3 

sync 

overhead 

Memory BW 

saturated @ 

4 threads 

Per-module 

L2 caches 
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The parallel vector triad benchmark 

Nontemporal stores  on Cray XE6 Interlagos node 

slow L3 

NT stores 

hazardous if data 

in cache 

25% speedup for 

vector triad in 

memory via NT 

stores 
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The parallel vector triad benchmark 

Topology dependence  on Cray XE6 Interlagos node 

sync overhead nearly 

topology-independent  

@ constant thread count 

more aggregate 

L3 with more 

chips 
bandwidth 

scalability across 

memory 

interfaces 



46 SAHPC 2012 Tutorial Performance Engineering 

The parallel vector triad benchmark 

Inter-chip scaling  on Cray XE6 Interlagos node 

sync overhead grows  

with core/chip count 

(up to 8000 cy here) 
bandwidth 

scalability across 

memory 

interfaces 



47 

What will it look like on many-cores? 

Go figure. 
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Bandwidth saturation effects in cache and 

memory 

A look at different processors 
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Bandwidth limitations: Main Memory 
Scalability of shared data paths inside a NUMA domain  (V-Triad) 

1 thread cannot 

saturate bandwidth 

Saturation with 

3 threads 

Saturation with 

2 threads 

Saturation with 

4 threads 
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Bandwidth limitations: Outer-level cache 

Scalability of shared data paths in L3 cache 
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Conclusions from the data access properties 

 Affinity matters! 

 Almost all performance properties depend on the position of 

 Data 

 Threads/processes 

 Consequences 

 Know the topology of your machine 

 Know where your threads are running 

 Know where your data is 

 

 

 Bandwidth bottlenecks are ubiquitous 

 Bad scaling is not always a bad thing 

 Do you exhaust your bottlenecks? 

 

 Synchronization overhead may be an issue 

 … and also depends on affinity! 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Sparse matrix-vector multiply (sMVM) 

 Key ingredient in some matrix diagonalization algorithms 

 Lanczos, Davidson, Jacobi-Davidson 

 

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries 

 “Sparse”: Nnz ~ Nr  

 

= + • Nr 

General case: 

some indirect 

addressing 

required! 
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… 

CRS matrix storage scheme 

column index 

ro
w

 i
n

d
e
x

 

1 2 3 4 … 

1 

2 

3 

4 

… 

val[] 

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[] 

1 5 15 19 8 12 … row_ptr[] 

 val[] stores all the nonzeros 

(length Nnz) 

 col_idx[] stores the column 

index of each nonzero (length Nnz) 

 row_ptr[] stores the starting 

index of each new row in val[] 

(length: Nr) 
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Case study: Sparse matrix-vector multiply 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 MPI parallelization possible and well-studied 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across NUMA 

domains 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 

Parallelization 

overhead 

dominates 



73 

Conclusions from the spMVM benchmarks 

 If the problem is “large”, bandwidth saturation on the socket is 

a reality 

  There are “spare cores” 

 Very common performance pattern 

 What to do with spare cores? 

 Use them for other tasks, such as MPI  

communication 

 Let them idle  saves energy with minor  

loss in time to solution 

 Can we predict the saturated performance? 

 Bandwidth-based performance modeling! 

 What is the significance of the indirect access?  

Can it be modeled? 

 Can we predict the saturation point? 

 … and why is this important? 
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See later 

for 

answers! 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Basic performance modeling and  

“motivated optimizations” 

The Roofline Model 

Case study: The Jacobi smoother 

 

 



The Roofline Model 
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The Roofline Model – A tool for more insight 

1. Determine the applicable peak performance of a loop, assuming 

that data comes from L1 cache 

2. Determine the computational intensity (flops per byte 

transferred) over the slowest data path utilized  

3. Determine the applicable peak bandwidth of the slowest data 

path utilized 

Example: do i=1,N; s=s+a(i); enddo 

in DP on hypothetical 3 GHz CPU, 4-way SIMD, N large 

 

ADD peak  (half of full peak) 

 

4-cycle latency per ADD if not unrolled 

 

Computational intensity [Flops/byte] 

Expected  

performance 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

SAHPC 2012 Tutorial Performance Engineering 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture 

Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 4 cy (ADD) 

measurement 

Maximum memory 

bandwidth 10 GB/s 

Memory-bound @ large N! 

Pmax = 1.25 GF/s 

3-12 GF/s 

1.25 GF/s 
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Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 See next slide… 
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Complexities of in-core execution 

Multiple bottlenecks:  

 

 L1 Icache bandwidth 

 Decode/retirement 

throughput 

 Port contention  

(direct or indirect) 

 Arithmetic pipeline stalls 

(dependencies) 

 Overall pipeline stalls 

(branching) 

 L1 Dcache bandwidth 

(LD/ST throughput) 

 Scalar vs. SIMD execution 

 … 

 

 Register pressure 

 Alignment issues 
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The roofline model in practice: Code balance  

 Code balance (BC) quantifies  

the requirements of the code 

 Reciprocal of comp. intensity 

 

 bS = achievable bandwidth over the slowest data path 

 E.g., measured by suitable microbenchmark (STREAM, …) 

 

 

 Lightspeed for absolute performance: 

(Pmax : “applicable” peak performance) 

 

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

 

bS/Bc = 1.7 GF/s (1.2 % of peak performance) 

][ operations arithmetic

][ (LD/ST) transfer data

flops

words
BC 













C

S

B

b
PP ,min max
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Newton’s 

Second Law 

of 

performance 

modeling 
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Balance metric (a.k.a. the “roofline model”) 

 The balance metric formalism is based on some (crucial) 

assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 
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Case study:  

A 3D Jacobi smoother 

The basics in two dimensions 

Performance analysis and modeling 
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A Jacobi smoother 

 Laplace equation in 2D: 

 

 Solve with Dirichlet boundary conditions using Jacobi iteration 

scheme: 

Naive balance (incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F 

Reuse when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 

SAHPC 2012 Tutorial Performance Engineering 

∆𝚽 = 𝟎 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and re-used 3 times 

from cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

 

 

If cache is too small to hold one row: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 

SAHPC 2012 Tutorial Performance Engineering 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
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wall

maxmaxmax]/[
T

kiit
sLUPsP



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2D  3D 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/update) 

 

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update) 

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update) 

SAHPC 2012 Tutorial Performance Engineering 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                           + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                           + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 
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3D Jacobi solver 
Performance of vanilla code on one Interlagos chip (8 cores) 

SAHPC 2012 Tutorial Performance Engineering 

cache memory 

2 layers of source array 

drop out of L2 cache 

Problem size: N3 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 

 Optimization == reducing the code balance by code 

transformations 

 See below 
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Data access optimizations  
  

Case study: Optimizing a Jacobi solver 

Case study: Erratic RHS access for sparse MVM 



Case study:  

3D Jacobi solver  

Spatial blocking for improved cache re-use 
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Remember the 3D Jacobi solver on Interlagos? 

 

SAHPC 2012 Tutorial Performance Engineering 

2 layers of source array 

drop out of L2 cache 

 

 avoid through spatial 

blocking! 
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Jacobi iteration (2D): No spatial Blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial Blocking 

 divide system into blocks 

 update block after block 

 same performance as if three complete rows of the systems fit 

into cache 
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Jacobi iteration (2D): Spatial Blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 



97 SAHPC 2012 Tutorial Performance Engineering 

Jacobi iteration (3D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking sizes large enough to fulfill “layer condition”  

 Cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement (see 

later) 

 

  do ioffset=1,imax,iblock 

    do joffset=1,jmax,jblock 

      do k=1,kmax 

        do j=joffset, min(jmax,joffset+jblock-1) 

          do i=ioffset, min(imax,ioffset+iblock-1) 

          phi(i,j,k,t1) = ( phi(i-1,j,k,t0)+phi(i+1,j,k,t0) 

                    + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0) )/6.d0 

        enddo 

      enddo 

    enddo 

  enddo  

loop over i-blocks 

loop over j-blocks 
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3D Jacobi solver (problem size 4003) 
Blocking different loop levels (8 cores Interlagos) 

SAHPC 2012 Tutorial Performance Engineering 

OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 

SAHPC 2012 Tutorial Performance Engineering 

blocking 
NT 

stores 

expected 

boost: 

50% 

16 B/update perf. model 



Case study:  

Erratic RHS access in sparse MVM 

“Modeling” indirect access    
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision w/ CRS: 

 

 

 

 

 

 DP CRS code balance 

  quantifies extra traffic 

for loading RHS more than 

once 

 Naive performance = bS/BCRS 

 Determine   by measuring performance and actual memory bandwidth 

 

 

8 8 8 4 8 

8 

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case 

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th, 

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint:  arXiv:1101.0091 
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  is determined by the sparsity pattern and the cache 

 Analysis for HMeP matrix on Nehalem EP socket 

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s 

spMVM performance if  = 0 

 Measured spMVM performance = 2.25 Gflop/s 

 Solve 2.25 Gflop/s = bS/BCRS  for   ≈ 2.5 

 

 37.5 extra bytes per row  

 RHS is loaded 6 times from memory 

 about 33% of BW goes into RHS 

 

 

 

 Conclusion: Even if the roofline/bandwidth model does not work 

100%, we can still learn something from the deviations 

 Optimization? Perhaps you can reorganize the matrix  
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Input to the roofline model 

… on the example of spMVM with HMeP matrix 

Code analysis: 

1 ADD, 1 MULT, 

(2.5+2/Nnzr) LOADs, 

1/Nnzr STOREs +  

Throughput: 1 ADD, 1 MULT 

+ 1 LD + 1ST/cy 

Maximum memory 

bandwidth 20 GB/s 

Memory-bound! 

 = 2.5 

Measured memory BW 

for spMVM 18.1 GB/s 

SAHPC 2012 Tutorial Performance Engineering 



104 

Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 Data transfer and in-core time overlap 100% 

 In-core execution is sometimes hard to 

model 

 

 Saturation effects in multicore  

chips are not explained 

 ECM model gives more insight 

 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 

SAHPC 2012 Tutorial Performance Engineering 

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring 

performance and power properties of modern multicore chips 

via simple machine models. Submitted. Preprint: 

arXiv:1208.2908 

http://arxiv.org/abs/1208.2908
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Conclusions from the case studies 

 There is no substitute for knowing what’s going on between your 

code and the hardware 

 

 Make sense of performance behavior through sensible application 

of performance models 

 However, there is no “golden formula” to do it all for you automagically 

 If the model does not work properly, you learn something new 

 

 Model inputs: 

 Code analysis/inspection 

 Hardware counter data 

 Microbenachmark analysis 

 Architectural features 

 

 Simple models work best; do not try to make it more complex than 

necessary 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Boosting core efficiency: 

Simultaneous multithreading (SMT) 

Principles and performance impact 

SMT vs. independent instruction streams 

Facts and fiction 
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SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 

S
ta

n
d

a
rd

 c
o

re
 

2
-w

a
y
 S

M
T
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SMT impact 

 SMT is primarily suited for increasing processor throughput 

 With multiple threads/processes running concurrently 

 Scientific codes tend to utilize chip resources quite well 

 Standard optimizations (loop fusion, blocking, …)  

 High data and instruction-level parallelism 

 Exceptions do exist 

 

 SMT is an important topology issue 

 SMT threads share almost all core 

resources 

 Pipelines, caches, data paths 

 Affinity matters! 

 If SMT is not needed 

 pin threads to physical cores 

 or switch it off via BIOS etc. 
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SMT impact 

 SMT adds another layer of topology  

(inside the physical core) 

 Caveat: SMT threads share all caches! 

 Possible benefit: Better pipeline throughput 

 Filling otherwise unused pipelines 

 Filling pipeline bubbles with other thread’s executing instructions: 

 

 

 

 

 

 

 

 Beware: Executing it all in a single thread  

(if possible) may reach the same goal  

without SMT: 

 

Thread 0: 
do i=1,N 

  a(i) = a(i-1)*c 

enddo  

Dependency  pipeline 

stalls until previous MULT 

is over 

Westmere EP  

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 

MI 

Memory 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

P 
T0 

T1 

 

Thread 1: 
do i=1,N 

  b(i) = func(i)*d 

enddo  

Unrelated work in other 

thread can fill the pipeline 

bubbles 

do i=1,N 

  a(i) = a(i-1)*c 

  b(i) = func(i)*d  

enddo  
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a(2)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

a(2)*c 

a(7)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

Thread 1: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Simultaneous recursive updates with SMT  

SAHPC 2012 Tutorial Performance Engineering 

 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

Fill bubbles via: 
 SMT 

 Multiple streams 

M
U

L
T

 p
ip

e
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Simultaneous recursive updates with SMT  

SAHPC 2012 Tutorial Performance Engineering 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

5 independent updates on a single thread do the same job! 

B(2)*s 

A(2)*s 

E(1)*s 

D(1)*s 

C(1)*s 

Thread 0: 
do i=1,N 

 A(i)=A(i-1)*s 

 B(i)=B(i-1)*s 

 C(i)=C(i-1)*s 

 D(i)=D(i-1)*s 

 E(i)=E(i-1)*s 

enddo  
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Simultaneous recursive updates with SMT  

SAHPC 2012 Tutorial Performance Engineering 

 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

Pure update benchmark can be vectorized  2 F / cycle (store limited) 

Recursive update: 
 

 SMT can fill pipeline 

bubles 

 

 A single thread can 

do so as well 

 

 Bandwidth does not 

increase through 

SMT 

 

 SMT can not 

replace SIMD! 
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SMT myths: Facts and fiction (1) 

 Myth: “If the code is compute-bound, then the functional units 

should be saturated and SMT should show no improvement.” 

 

 

 

 Truth 

1. A compute-bound loop does not  

necessarily saturate the pipelines;  

dependencies can cause a lot of bubbles,  

which may be filled by SMT threads. 

 

2. If a pipeline is already full, SMT will not improve its 

utilization 

 

 

 

SAHPC 2012 Tutorial Performance Engineering 

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  
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SMT myths: Facts and fiction (2) 

 Myth: “If the code is memory-bound, SMT should help because it 

can fill the bubbles left by waiting for data from memory.” 

 Truth:  

1. If the maximum memory bandwidth is already reached, SMT will not 

help since the relevant  

resource (bandwidth)  

is exhausted. 

 

2. If the relevant  

bottleneck is not  

exhausted, SMT may  

help since it can fill  

bubbles in the LOAD  

pipeline. 

 

This applies also to other 

“relevant bottlenecks!” 
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SMT myths: Facts and fiction (3) 

 Myth: “SMT can help bridge the latency to 

memory (more outstanding references).” 

 

 Truth:  
Outstanding references may or may not be 

bound to SMT threads; they may be a resource 

of the memory interface and shared by all 

threads. The benefit of SMT with memory-bound 

code is usually due to better utilization of the 

pipelines so that less time gets “wasted” in the 

cache hierarchy. 

 

 

See also the “ECM Performance Model” 

later on. 
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SMT: When it may help, and when not 

 

Functional parallelization 

FP-only parallel loop code  

Frequent thread synchronization 

Code sensitive to cache size 

Strongly memory-bound code 

Independent pipeline-unfriendly instruction streams  



Beyond the chip boundary: 

Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

ccNUMA locality and erratic access 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 



120 

Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  
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ccNUMA locality tool numactl: 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 

 
numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                               # all <nodes> 

 

 Examples: 

 
env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 

 

 

 

 But what is the default without numactl? 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 std::vector in C++ is initialized serially by default 

  STL allocators provide an elegant solution 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Try running with  numactl --interleave ...  

 If performance goes up  ccNUMA problem! 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Nehalem (Core i7): 

 
env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out 
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Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Nehalem EP node: 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    |   core 6    |   core 7    | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 | 

|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09  | 

|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      |      0      |      0      | 

|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07  |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      |      0      |      0      | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

RDTSC timing: 0.827196 s 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 | 

|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 | 

| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    | 

|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

Uncore events only 

counted once per socket 

Half of read BW comes 

from other socket! 
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ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 
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ccNUMA conclusions 

 ccNUMA is present on all standard cluster architectures 

 

 With pure MPI (and proper affinity control) you should be fine 

 However, watch out for buffer cache  

 

 With threading, you may be fine with one process per ccNUMA 

domain 

 

 Thread groups spanning more than one domain may cause 

problems 

 Employ first touch placement (“Golden Rule”) 

 Experiment with round-robin placement 

 

 If access patterns are totally erratic, round-robin may be your only 

choice 

 But there are advanced solutions (“locality queues”) 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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Case study: Asynchronous MPI 

communication in sparse MVM 

 
What to do with spare cores 
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Distributed-memory parallelization of spMVM 
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elements 
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Local operation – 

no communication 

required 
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Distributed-memory parallelization of spMVM 

 Variant 1: “Vector mode” without overlap 

 

 

 Standard concept 

for “hybrid MPI+OpenMP” 

 Multithreaded computation 

(all threads) 

 

 Communication only  

outside of computation 

 

 

 Benefit of threaded MPI process only due to message aggregation 

and (probably) better load balancing 
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G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on 

Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, 

May 4-7, 2009. PDF 

http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
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Distributed-memory parallelization of spMVM 

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”) 

 

 

 Relies on MPI to support 

async nonblocking PtP 

 Multithreaded computation 

(all threads) 

 

 Still simple programming 

 Drawback: Result vector 

is written twice to memory 

 modified performance 

model 

 

 

 

SAHPC 2012 Tutorial Performance Engineering 



143 

Distributed-memory parallelization of spMVM 

 Variant 3: “Task mode” with dedicated communication thread 

 Explicit overlap, more complex to implement 

 One thread missing in 

team of compute threads 

 But that doesn’t hurt here… 

 Using tasking seems simpler 

but may require some  

work on NUMA locality 

 Drawbacks 

 Result vector is written  

twice to memory 

 No simple OpenMP 

worksharing (manual, 

tasking) 
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Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003. 

DOI:10.1177/1094342003017001005 

http://dx.doi.org/10.1177/1094342003017001005
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Performance results for the HMeP matrix 

 Dominated by communication (and some load imbalance for large #procs) 

 Single-node Cray performance cannot be maintained beyond a few nodes 

 Task mode pays off esp. with one process (12 threads) per node 

 Task mode overlap (over-)compensates additional LHS traffic 
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Conclusions from hybrid spMVM results 

 Do not rely on asynchronous MPI progress 

 Sparse MVM leaves resources (cores) free for use by 

communication threads 

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not 

good enough if communication is a real problem 

 “Task mode” hybrid can truly hide communication and 

overcompensate penalty from additional memory traffic in spMVM 

 Comm thread can share a core with comp thread via SMT and still 

be asynchronous 

 If pure MPI scales ok and maintains its node performance  

according to the node-level performance model, don’t bother 

going hybrid 

 

 Extension to multi-GPGPU is possible 

 See references 
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The Plan 

 Motivation 

 Performance Engineering 

 Performance modeling 

 The Performance Engineering 

process 

 Modern architectures 

 Multicore 

 Accelerators 

 Programming models 

 Data access  

 Performance properties of 

multicore systems 

 Saturation 

 Scalability 

 Synchronization 

 Case study: OpenMP-parallel 

sparse MVM 

 

 Basic performance modeling: 

Roofline 

 Theory 

 Case study: 3D Jacobi solver and 

guided optimizations 

 Modeling erratic access 

 Some more architecture 

 Simultaneous multithreading (SMT) 

 ccNUMA 

 Putting cores to good use 

 Asynchronous communication in 

spMVM 

 A simple power model for multicore 

 Power-efficient code execution 

 

 Conclusions 
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A simple power model for the Sandy 

Bridge processor 

Assumptions 

Validation using simple benchmarks 

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power 

properties of modern multicore chips via simple machine models. Submitted. 

Preprint: arXiv:1208.2908 

http://arxiv.org/abs/1208.2908
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A model for multicore chip power 

 Goal: Establish model for chip power and program energy 

consumption with respect to 

 Clock speed 

 Number of cores used 

 Single-thread program performance 

 

 Choose different characteristic benchmark applications to 

measure a chip’s power behavior 

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable 

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable 

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip 

 AVX variant 

 Scalar variant 

 

 Measure characteristics of those apps and establish a power 

model 
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A simple power model for multicore chips 

Assumptions: 

 

1. Power is a quadratic polynomial in the clock frequency 

2. Dynamic power is linear in the number of active cores t 

3. Performance is linear in the number of cores until it hits a 

bottleneck ( ECM model) 

4. Performance is linear in the clock frequency unless it hits a 

bottleneck 

5. Energy to solution is power dissipation divided by performance 

 

Model: 

 

 

 

                                                           where  𝒇 = 𝟏 + ∆𝝂 𝒇𝟎 
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Model predictions 

1. If there is no saturation, use all available cores to minimize E 

 

 

 

Minimum E here 
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Model predictions 

2. There is an optimal frequency fopt at which E is minimal in the 

non-saturated case, with 

 

𝒇𝐨𝐩𝐭 = 
𝑾𝟎

𝑾𝟐𝒕
 ,   hence it depends on the baseline power 

 

 “Clock race to idle” if baseline accommodates whole system! 

 May have to look at other metrics, e.g., 𝑪 = 𝑬/𝑷 
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Model predictions 

3. If there is saturation, E is minimal at the saturation point 

 

 

 

Minimum E here 
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Model predictions 

4. If there is saturation, absolute minimum E is reached if the 

saturation point is at the number of available cores  

 

 

 

 

Slower clock  

 more cores to saturation  

 smaller E 
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Model predictions 

5. Making code execute faster on the core saves energy since 

 The time to solution is smaller if the code scales (“Code race to idle”) 

 We can use fewer cores to reach saturation if there is a bottleneck 

 

 

 

Better code 

 earlier saturation  

 smaller E @ saturation 
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Model validation with the benchmark apps 

2 

3 

1 

5 
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Conclusions from the power model 

 Simple assumptions lead to surprising conclusions 

 

 Performance saturation plays a key role  

 

 “Clock race to idle” can be proven quantitatively 

 

 “Code race to idle” (optimization saves energy) is a trivial result 

 Better: “Optimization makes better use of the energy budget” 

 

 

 Possible extensions to the power model 

 Allow for per-core frequency setting (coming with Intel Haswell) 

 Accommodate load imbalance & sync overhead 
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 Modeling erratic access 
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 Asynchronous communication in 
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What I have left out 

 LIKWID: Lightweight multicore peformance tools 

 http://code.google.com/p/likwid 

 

 Multicore-specific properties of MPI communication 

 

 Sparse MVM on multiple GPGPUs: Performance modeling for 

viability analysis 

 See references 

 

 Exploting shared caches for temporal blocking of stencil codes 

 

 Execution-Cache-Memory (ECM) model 

 Predictive model for multicore scaling 

 Goes well with the power model 

 

 … and much more  
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Tutorial conclusion 

 Multicore architecture == multiple complexities 

 Affinity matters  pinning/binding is essential 

 Bandwidth bottlenecks  inefficiency is often made on the chip level 

 Topology dependence of performance features  know your hardware! 

 Put cores to good use 

 Bandwidth bottlenecks  surplus cores  functional parallelism!? 

 Shared caches  fast communication/synchronization  better 

implementations/algorithms? 

 Leave surplus cores idle to save energy 

 

 Simple modeling techniques help us 

 … understand the limits of our code on the given hardware 

 … identify optimization opportunities and hence save energy 

 … learn more, especially when they do not work! 
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Quiz 

double precision, dimension(100000000) :: a,b 

  

do i=1,N 

  s=s+a(i)*b(i) 

enddo 

 

SAHPC 2012 Tutorial Performance Engineering 

Code: 

GPGPU:     2880 cores,   Ppeak= 1.3 Tflop/s,  bS=160 Gbyte/s 

Optimal 

performance? 
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THANK YOU. 
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Jan Treibig 

Johannes Habich 

Moritz Kreutzer 

Markus Wittmann 

Thomas Zeiser 

Michael Meier 

Faisal Shahzad 

Gerald Schubert 

 

OMI4papps 

HQS@HPC II  
 

hpcADD 

SKALB 
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