
Performance Engineering

on Multi- and Manycores

Georg Hager, Gerhard Wellein

HPC Services, Erlangen Regional Computing Center (RRZE)

Tutorial @ SAHPC 2012

December 1-3, 2012

KAUST, Thuwal

Saudi Arabia

2

Supporting material

 Where can I find those gorgeous slides?

http://goo.gl/cTSKL
or:
http://blogs.fau.de/hager/tutorials/sahpc-2012/

 Is there a book or anything?

Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers

CRC Press, 2010

ISBN 978-1439811924

356 pages

 Fun and facts for HPC: http://blogs.fau.de/hager/

SAHPC 2012 Tutorial Performance Engineering

http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://goo.gl/cTSKL
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/tutorials/sahpc-2012/
http://blogs.fau.de/hager/

3

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

4

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Motivation 1:

Scalability 4 the win!

6

Scalability Myth: Code scalability is the key issue

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

SAHPC 2012 Tutorial Performance Engineering

7

Scalability Myth: Code scalability is the key issue

SAHPC 2012 Tutorial

Prepared for

the highly

parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

Changing only a the compile

options makes this code

scalable on an 8-core chip

–O3 -axAVX

Performance Engineering

8

Scalability Myth: Code scalability is the key issue

SAHPC 2012 Tutorial

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

Single core/socket efficiency

is key issue!

Upper limit from simple

performance model:

36 GB/s & 24 Byte/update

Performance Engineering

Motivation 2:

The 200x GPGPU speedup story

10

Accelerator myth: The 200x speedup story…

SAHPC 2012 Tutorial

Dense Matrix-Vector-Multiplication (N=4500)

In line with a simple

bandwidth model!

Bad compiler

Disable

SIMD

Go serial

Change from single precision

to double precision

NVIDIA Tesla C2050

vs.

2x Intel Xeon 5650

(6-core)

Performance Engineering

11

Accelerator myth: The 200x speedup story…

Sparse matrix-vector multiply

 GPGPU speedup: 1.6x,…,2.1x (no PCIe data transfer!)

SAHPC 2012 Tutorial

Matrix structure of test cases

NVIDIA Tesla C2070

performance in GF/s

2-way Intel Xeon 5650 node

M. Kreutzer et al., LSPP12

DOI: 10.1109/IPDPSW.2012.211

Performance Engineering

http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1109/IPDPSW.2012.211

12

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

The Performance Engineering process

Model building

Our definition

14

How model-building works: Physics

SAHPC 2012 Tutorial Performance Engineering

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

15

Performance Engineering as a process

The Performance Engineering (PE) process:

The performance model is the central component – if the model fails

to predict the measurement, you learn something!

The analysis has to be done for every loop / basic block!

Algorithm/Code analysis

Runtime profiling

Machine characteristics

Microbenchmarking

Traces/HW metrics

Performance model Code optimization

SAHPC 2012 Tutorial Performance Engineering

16

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Multicore processor and system

architecture

Basics of machine characteristics

18

The x86 multicore evolution so far
Intel Single-/Dual-/…/Octo-Cores (one-socket view)

Sandy Bridge EP

“Core i7”

32nm

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2012: Wider SIMD units

AVX: 256 Bit

P
C

P
C

C

P
C

P
C

C

W
o

o
d

c
re

s
t

“
C

o
re

2
 D

u
o
”

6
5

n
m

H
a

rp
e
rt

o
w

n

“C
o
re

2
 Q

u
a
d

”
4

5
n

m

Memory

Chipset

P
C

P
C

C

Memory

Chipset

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

2006: True dual-core

P

C
C

Memory

Chipset

Memory

Chipset

P

C
C

P

C
C

2005: “Fake” dual-core

Nehalem EP

“Core i7”

45nm

Westmere EP

 “Core i7”

32nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2008:

Simultaneous

Multi Threading (SMT)

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

C
C

C
C

C
C

C
C

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2010:

6-core chip

SAHPC 2012 Tutorial Performance Engineering

O
th

e
r

s
o

c
k
e
t

19

There is no single driving force for chip performance!

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code

SAHPC 2012 Tutorial Performance Engineering

TOP500 rank 1 (1995)

20

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures:

Where does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

SAHPC 2012 Tutorial Performance Engineering

21

Another flavor of “SMT”

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB

dedicated

L1D cache

2 DDR3 (shared) memory

channel > 15 GB/s

2048 kB

shared

L2 cache

8 (6) MB

shared

L3 cache

SAHPC 2012 Tutorial Performance Engineering

22

Cray XE6 “Interlagos” 32-core dual socket node

 Two 8- (integer-) core chips per

socket @ 2.3 GHz (3.3 @ turbo)

 Separate DDR3 memory

interface per chip

 ccNUMA on the socket!

 Shared FP unit per pair of

integer cores (“module”)

 “256-bit” FP unit

 SSE4.2, AVX, FMA4

 16 kB L1 data cache per core

 2 MB L2 cache per module

 8 MB L3 cache per chip

(6 MB usable)

SAHPC 2012 Tutorial Performance Engineering

Interlude:

A glance at current accelerator technology

24

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 SMX units

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

SAHPC 2012 Tutorial Performance Engineering

25

Intel Xeon Phi block diagram

SAHPC 2012 Tutorial Performance Engineering

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP

peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

26

Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit  480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center

for Advanced Computing

 NVIDIA Kepler K20

 15 SMX units each with 192 “cores”

 960/2880 DP/SP “cores”

in total

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10.000+

 Programming:

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National

Laboratory
TOP500

rankings

SAHPC 2012 Tutorial Performance Engineering

27

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

SAHPC 2012 Tutorial Performance Engineering

28 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models
on multicore multisocket nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 2.2)

 OpenMP (current standard: 3.0)

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 2.2)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

All models require

awareness of

topology and affinity

issues for getting

best performance

out of the machine!

29 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

30 SAHPC 2012 Tutorial Performance Engineering

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

31

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

SAHPC 2012 Tutorial Performance Engineering

32

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Data access on modern processors

Characterization of memory hierarchies

General performance properties of multicore processors

34

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

SAHPC 2012 Tutorial Performance Engineering

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

35

Interlude: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

SAHPC 2012 Tutorial Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

36 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

37

A(:)=B(:)+C(:)*D(:) on one Interlagos core

SAHPC 2012 Tutorial Performance Engineering

L1D cache (16k)

L2 cache (2M)

L3 cache

(6M)

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
)

64 GB/s (no write allocate in L1)

10 GB/s

(incl. write

allocate)

Is this the

limit???

< 40 GB/s

(incl. write allocate)

38

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

General remarks on the performance

properties of multicore multisocket

systems

40

Parallelism in modern computer systems

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2

PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / memory domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

SAHPC 2012 Tutorial Performance Engineering

41 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

(Near-)Optimal code on (Cray) x86 machines

Large-N version

(nontemporal stores)

Small-N version

(standard stores)

call get_walltime(S)

!$OMP parallel private(j)

do j=1,R

 if(N.ge.CACHE_LIMIT) then

!DIR$ LOOP_INFO cache_nt(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 else

!DIR$ LOOP_INFO cache(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 endif

 ! prevent loop interchange

 if(A(N2).lt.0) call dummy(A,B,C,D)

enddo

!$OMP end parallel

call get_walltime(E)

“outer parallel”: Avoid thread team restart at

every workshared loop

42 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Single thread on Cray XE6 Interlagos node

OMP overhead

(100-2000cy here)

and/or lower

optimization w/

OpenMP active

L1 cache L2 cache memory L3 cache

Team restart is

expensive!

 use only

outer parallel

from now on!

43 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Intra-chip scaling on Cray XE6 Interlagos node

L2

bottleneck

Aggregate

L2, exclusive

L3

sync

overhead

Memory BW

saturated @

4 threads

Per-module

L2 caches

44 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Nontemporal stores on Cray XE6 Interlagos node

slow L3

NT stores

hazardous if data

in cache

25% speedup for

vector triad in

memory via NT

stores

45 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Topology dependence on Cray XE6 Interlagos node

sync overhead nearly

topology-independent

@ constant thread count

more aggregate

L3 with more

chips
bandwidth

scalability across

memory

interfaces

46 SAHPC 2012 Tutorial Performance Engineering

The parallel vector triad benchmark

Inter-chip scaling on Cray XE6 Interlagos node

sync overhead grows

with core/chip count

(up to 8000 cy here)
bandwidth

scalability across

memory

interfaces

47

What will it look like on many-cores?

Go figure.

SAHPC 2012 Tutorial Performance Engineering

Bandwidth saturation effects in cache and

memory

A look at different processors

49 SAHPC 2012 Tutorial Performance Engineering

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

50 SAHPC 2012 Tutorial Performance Engineering

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

63

Conclusions from the data access properties

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know the topology of your machine

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Bad scaling is not always a bad thing

 Do you exhaust your bottlenecks?

 Synchronization overhead may be an issue

 … and also depends on affinity!

SAHPC 2012 Tutorial Performance Engineering

64

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Case study:

OpenMP-parallel sparse matrix-vector

multiplication

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

66

Sparse matrix-vector multiply (sMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:

some indirect

addressing

required!

SAHPC 2012 Tutorial Performance Engineering

67

…

CRS matrix storage scheme

column index

ro
w

 i
n

d
e
x

1 2 3 4 …

1

2

3

4

…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros

(length Nnz)

 col_idx[] stores the column

index of each nonzero (length Nnz)

 row_ptr[] stores the starting

index of each new row in val[]

(length: Nr)

SAHPC 2012 Tutorial Performance Engineering

68 SAHPC 2012 Tutorial Performance Engineering

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 MPI parallelization possible and well-studied

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

70 SAHPC 2012 Tutorial Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across NUMA

domains

71 SAHPC 2012 Tutorial Performance Engineering

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

72 SAHPC 2012 Tutorial Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck

Parallelization

overhead

dominates

73

Conclusions from the spMVM benchmarks

 If the problem is “large”, bandwidth saturation on the socket is

a reality

  There are “spare cores”

 Very common performance pattern

 What to do with spare cores?

 Use them for other tasks, such as MPI

communication

 Let them idle  saves energy with minor

loss in time to solution

 Can we predict the saturated performance?

 Bandwidth-based performance modeling!

 What is the significance of the indirect access?

Can it be modeled?

 Can we predict the saturation point?

 … and why is this important?

SAHPC 2012 Tutorial Performance Engineering

See later

for

answers!

74

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Basic performance modeling and

“motivated optimizations”

The Roofline Model

Case study: The Jacobi smoother

The Roofline Model

77

The Roofline Model – A tool for more insight

1. Determine the applicable peak performance of a loop, assuming

that data comes from L1 cache

2. Determine the computational intensity (flops per byte

transferred) over the slowest data path utilized

3. Determine the applicable peak bandwidth of the slowest data

path utilized

Example: do i=1,N; s=s+a(i); enddo

in DP on hypothetical 3 GHz CPU, 4-way SIMD, N large

ADD peak (half of full peak)

4-cycle latency per ADD if not unrolled

Computational intensity [Flops/byte]

Expected

performance

SAHPC 2012 Tutorial Performance Engineering

78

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

SAHPC 2012 Tutorial Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architecture

Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 4 cy (ADD)

measurement

Maximum memory

bandwidth 10 GB/s

Memory-bound @ large N!

Pmax = 1.25 GF/s

3-12 GF/s

1.25 GF/s

79

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 See next slide…

SAHPC 2012 Tutorial Performance Engineering

80

Complexities of in-core execution

Multiple bottlenecks:

 L1 Icache bandwidth

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

 SAHPC 2012 Tutorial Performance Engineering

81

The roofline model in practice: Code balance

 Code balance (BC) quantifies

the requirements of the code

 Reciprocal of comp. intensity

 bS = achievable bandwidth over the slowest data path

 E.g., measured by suitable microbenchmark (STREAM, …)

 Lightspeed for absolute performance:

(Pmax : “applicable” peak performance)

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

bS/Bc = 1.7 GF/s (1.2 % of peak performance)

][operations arithmetic

][(LD/ST) transfer data

flops

words
BC 













C

S

B

b
PP ,min max

SAHPC 2012 Tutorial Performance Engineering

Newton’s

Second Law

of

performance

modeling

82

Balance metric (a.k.a. the “roofline model”)

 The balance metric formalism is based on some (crucial)

assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

SAHPC 2012 Tutorial Performance Engineering

Case study:

A 3D Jacobi smoother

The basics in two dimensions

Performance analysis and modeling

84

A Jacobi smoother

 Laplace equation in 2D:

 Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:

Naive balance (incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Reuse when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

SAHPC 2012 Tutorial Performance Engineering

∆𝚽 = 𝟎

85

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and re-used 3 times

from cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is too small to hold one row:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

SAHPC 2012 Tutorial Performance Engineering

86

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

SAHPC 2012 Tutorial Performance Engineering

wall

maxmaxmax]/[
T

kiit
sLUPsP




87

2D  3D

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/update)

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update)

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update)

SAHPC 2012 Tutorial Performance Engineering

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

88

3D Jacobi solver
Performance of vanilla code on one Interlagos chip (8 cores)

SAHPC 2012 Tutorial Performance Engineering

cache memory

2 layers of source array

drop out of L2 cache

Problem size: N3

89

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Optimization == reducing the code balance by code

transformations

 See below

SAHPC 2012 Tutorial Performance Engineering

Data access optimizations

Case study: Optimizing a Jacobi solver

Case study: Erratic RHS access for sparse MVM

Case study:

3D Jacobi solver

Spatial blocking for improved cache re-use

92

Remember the 3D Jacobi solver on Interlagos?

SAHPC 2012 Tutorial Performance Engineering

2 layers of source array

drop out of L2 cache

 avoid through spatial

blocking!

93 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): No spatial Blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

94 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

95 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): Spatial Blocking

 divide system into blocks

 update block after block

 same performance as if three complete rows of the systems fit

into cache

96 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (2D): Spatial Blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

97 SAHPC 2012 Tutorial Performance Engineering

Jacobi iteration (3D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking sizes large enough to fulfill “layer condition”

 Cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement (see

later)

 do ioffset=1,imax,iblock

 do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0)

 + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))/6.d0

 enddo

 enddo

 enddo

 enddo

loop over i-blocks

loop over j-blocks

98

3D Jacobi solver (problem size 4003)
Blocking different loop levels (8 cores Interlagos)

SAHPC 2012 Tutorial Performance Engineering

OpenMP parallelization?

Optimal block size?

k-loop blocking?

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size

99

3D Jacobi solver
Spatial blocking + nontemporal stores

SAHPC 2012 Tutorial Performance Engineering

blocking
NT

stores

expected

boost:

50%

16 B/update perf. model

Case study:

Erratic RHS access in sparse MVM

“Modeling” indirect access

101

Example: SpMVM node performance model

 Sparse MVM in

double precision w/ CRS:

 DP CRS code balance

  quantifies extra traffic

for loading RHS more than

once

 Naive performance = bS/BCRS

 Determine  by measuring performance and actual memory bandwidth

8 8 8 4 8

8

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th,

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint: arXiv:1101.0091

SAHPC 2012 Tutorial Performance Engineering

http://dx.doi.org/10.1109/IPDPS.2011.332
http://arxiv.org/abs/1101.0091

102

 is determined by the sparsity pattern and the cache

 Analysis for HMeP matrix on Nehalem EP socket

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s

spMVM performance if  = 0

 Measured spMVM performance = 2.25 Gflop/s

 Solve 2.25 Gflop/s = bS/BCRS for  ≈ 2.5

 37.5 extra bytes per row

 RHS is loaded 6 times from memory

 about 33% of BW goes into RHS

 Conclusion: Even if the roofline/bandwidth model does not work

100%, we can still learn something from the deviations

 Optimization? Perhaps you can reorganize the matrix

SAHPC 2012 Tutorial Performance Engineering

103

Input to the roofline model

… on the example of spMVM with HMeP matrix

Code analysis:

1 ADD, 1 MULT,

(2.5+2/Nnzr) LOADs,

1/Nnzr STOREs + 

Throughput: 1 ADD, 1 MULT

+ 1 LD + 1ST/cy

Maximum memory

bandwidth 20 GB/s

Memory-bound!

 = 2.5

Measured memory BW

for spMVM 18.1 GB/s

SAHPC 2012 Tutorial Performance Engineering

104

Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled  pure data streaming assumed

 Data transfer and in-core time overlap 100%

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

 ECM model gives more insight

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

SAHPC 2012 Tutorial Performance Engineering

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring

performance and power properties of modern multicore chips

via simple machine models. Submitted. Preprint:

arXiv:1208.2908

http://arxiv.org/abs/1208.2908

105

Conclusions from the case studies

 There is no substitute for knowing what’s going on between your

code and the hardware

 Make sense of performance behavior through sensible application

of performance models

 However, there is no “golden formula” to do it all for you automagically

 If the model does not work properly, you learn something new

 Model inputs:

 Code analysis/inspection

 Hardware counter data

 Microbenachmark analysis

 Architectural features

 Simple models work best; do not try to make it more complex than

necessary

SAHPC 2012 Tutorial Performance Engineering

106

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Boosting core efficiency:

Simultaneous multithreading (SMT)

Principles and performance impact

SMT vs. independent instruction streams

Facts and fiction

108 SAHPC 2012 Tutorial Performance Engineering

SMT Makes a single physical core appear as two or more

“logical” cores  multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

109 SAHPC 2012 Tutorial Performance Engineering

SMT impact

 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently

 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)

 High data and instruction-level parallelism

 Exceptions do exist

 SMT is an important topology issue

 SMT threads share almost all core

resources

 Pipelines, caches, data paths

 Affinity matters!

 If SMT is not needed

 pin threads to physical cores

 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T

h
re

a
d

 1

T
h

re
a

d
 2

110 SAHPC 2012 Tutorial Performance Engineering

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may reach the same goal

without SMT:

Thread 0:
do i=1,N

 a(i) = a(i-1)*c

enddo

Dependency  pipeline

stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

 b(i) = func(i)*d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

 a(i) = a(i-1)*c

 b(i) = func(i)*d

enddo

111

a(2)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

Thread 1:
do i=1,N

a(i)=a(i-1)*c

enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

Fill bubbles via:
 SMT

 Multiple streams

M
U

L
T

 p
ip

e

112

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N

 A(i)=A(i-1)*s

 B(i)=B(i-1)*s

 C(i)=C(i-1)*s

 D(i)=D(i-1)*s

 E(i)=E(i-1)*s

enddo

M
U

L
T

 p
ip

e

113

Simultaneous recursive updates with SMT

SAHPC 2012 Tutorial Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

Pure update benchmark can be vectorized  2 F / cycle (store limited)

Recursive update:

 SMT can fill pipeline

bubles

 A single thread can

do so as well

 Bandwidth does not

increase through

SMT

 SMT can not

replace SIMD!

114

SMT myths: Facts and fiction (1)

 Myth: “If the code is compute-bound, then the functional units

should be saturated and SMT should show no improvement.”

 Truth

1. A compute-bound loop does not

necessarily saturate the pipelines;

dependencies can cause a lot of bubbles,

which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its

utilization

SAHPC 2012 Tutorial Performance Engineering

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

M
U

L
T

 p
ip

e

115

SMT myths: Facts and fiction (2)

 Myth: “If the code is memory-bound, SMT should help because it

can fill the bubbles left by waiting for data from memory.”

 Truth:

1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant

resource (bandwidth)

is exhausted.

2. If the relevant

bottleneck is not

exhausted, SMT may

help since it can fill

bubbles in the LOAD

pipeline.

This applies also to other

“relevant bottlenecks!”

SAHPC 2012 Tutorial Performance Engineering

116

SMT myths: Facts and fiction (3)

 Myth: “SMT can help bridge the latency to

memory (more outstanding references).”

 Truth:
Outstanding references may or may not be

bound to SMT threads; they may be a resource

of the memory interface and shared by all

threads. The benefit of SMT with memory-bound

code is usually due to better utilization of the

pipelines so that less time gets “wasted” in the

cache hierarchy.

See also the “ECM Performance Model”

later on.

SAHPC 2012 Tutorial Performance Engineering

117 SAHPC 2012 Tutorial Performance Engineering

SMT: When it may help, and when not

Functional parallelization

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Strongly memory-bound code

Independent pipeline-unfriendly instruction streams

Beyond the chip boundary:

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

ccNUMA locality and erratic access

119 SAHPC 2012 Tutorial Performance Engineering

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

120

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain  4x4 combinations

 STREAM triad benchmark using nontemporal stores

SAHPC 2012 Tutorial Performance Engineering

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

121 SAHPC 2012 Tutorial Performance Engineering

ccNUMA locality tool numactl:

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

122 SAHPC 2012 Tutorial Performance Engineering

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

123 SAHPC 2012 Tutorial Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

124 SAHPC 2012 Tutorial Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

125 SAHPC 2012 Tutorial Performance Engineering

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 std::vector in C++ is initialized serially by default

 STL allocators provide an elegant solution

129 SAHPC 2012 Tutorial Performance Engineering

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Try running with numactl --interleave ...

 If performance goes up  ccNUMA problem!

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out

130 SAHPC 2012 Tutorial Performance Engineering

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 |

| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09 |

| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0 | 0 | 0 |

| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0 | 0 | 0 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

RDTSC timing: 0.827196 s

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Runtime [s] | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |

| CPI | 3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 | 3.60521 | 3.59613 | 3.60184 |

| Memory bandwidth [MBytes/s] | 10610.8 | 0 | 0 | 0 | 10513.4 | 0 | 0 | 0 |

| Remote Read BW [MBytes/s] | 5296 | 0 | 0 | 0 | 5269.43 | 0 | 0 | 0 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only

counted once per socket

Half of read BW comes

from other socket!

134 SAHPC 2012 Tutorial Performance Engineering

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

135 SAHPC 2012 Tutorial Performance Engineering

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

136

The curse and blessing of interleaved placement:

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

SAHPC 2012 Tutorial Performance Engineering

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a
n

d
w

id
th

 [
M

b
y
te

/s
]

137

ccNUMA conclusions

 ccNUMA is present on all standard cluster architectures

 With pure MPI (and proper affinity control) you should be fine

 However, watch out for buffer cache

 With threading, you may be fine with one process per ccNUMA

domain

 Thread groups spanning more than one domain may cause

problems

 Employ first touch placement (“Golden Rule”)

 Experiment with round-robin placement

 If access patterns are totally erratic, round-robin may be your only

choice

 But there are advanced solutions (“locality queues”)

SAHPC 2012 Tutorial Performance Engineering

138

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

Case study: Asynchronous MPI

communication in sparse MVM

What to do with spare cores

140

Distributed-memory parallelization of spMVM

SAHPC 2012 Tutorial Performance Engineering

=

P0

P3

P2

P1


Nonlocal

RHS

elements

for P0

Local operation –

no communication

required

141

Distributed-memory parallelization of spMVM

 Variant 1: “Vector mode” without overlap

 Standard concept

for “hybrid MPI+OpenMP”

 Multithreaded computation

(all threads)

 Communication only

outside of computation

 Benefit of threaded MPI process only due to message aggregation

and (probably) better load balancing

SAHPC 2012 Tutorial Performance Engineering

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf

142

Distributed-memory parallelization of spMVM

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”)

 Relies on MPI to support

async nonblocking PtP

 Multithreaded computation

(all threads)

 Still simple programming

 Drawback: Result vector

is written twice to memory

 modified performance

model

SAHPC 2012 Tutorial Performance Engineering

143

Distributed-memory parallelization of spMVM

 Variant 3: “Task mode” with dedicated communication thread

 Explicit overlap, more complex to implement

 One thread missing in

team of compute threads

 But that doesn’t hurt here…

 Using tasking seems simpler

but may require some

work on NUMA locality

 Drawbacks

 Result vector is written

twice to memory

 No simple OpenMP

worksharing (manual,

tasking)

SAHPC 2012 Tutorial Performance Engineering

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid

Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

http://dx.doi.org/10.1177/1094342003017001005

144

Performance results for the HMeP matrix

 Dominated by communication (and some load imbalance for large #procs)

 Single-node Cray performance cannot be maintained beyond a few nodes

 Task mode pays off esp. with one process (12 threads) per node

 Task mode overlap (over-)compensates additional LHS traffic

SAHPC 2012 Tutorial Performance Engineering

Task mode uses

virtual core for

communication

@ 1 process/core

50% efficiency

w/ respect to

best 1-node

performance

146

Conclusions from hybrid spMVM results

 Do not rely on asynchronous MPI progress

 Sparse MVM leaves resources (cores) free for use by

communication threads

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not

good enough if communication is a real problem

 “Task mode” hybrid can truly hide communication and

overcompensate penalty from additional memory traffic in spMVM

 Comm thread can share a core with comp thread via SMT and still

be asynchronous

 If pure MPI scales ok and maintains its node performance

according to the node-level performance model, don’t bother

going hybrid

 Extension to multi-GPGPU is possible

 See references

SAHPC 2012 Tutorial Performance Engineering

147

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

A simple power model for the Sandy

Bridge processor

Assumptions

Validation using simple benchmarks

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power

properties of modern multicore chips via simple machine models. Submitted.

Preprint: arXiv:1208.2908

http://arxiv.org/abs/1208.2908

149

A model for multicore chip power

 Goal: Establish model for chip power and program energy

consumption with respect to

 Clock speed

 Number of cores used

 Single-thread program performance

 Choose different characteristic benchmark applications to

measure a chip’s power behavior

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip

 AVX variant

 Scalar variant

 Measure characteristics of those apps and establish a power

model

SAHPC 2012 Tutorial Performance Engineering

153

A simple power model for multicore chips

Assumptions:

1. Power is a quadratic polynomial in the clock frequency

2. Dynamic power is linear in the number of active cores t

3. Performance is linear in the number of cores until it hits a

bottleneck ( ECM model)

4. Performance is linear in the clock frequency unless it hits a

bottleneck

5. Energy to solution is power dissipation divided by performance

Model:

 where 𝒇 = 𝟏 + ∆𝝂 𝒇𝟎

SAHPC 2012 Tutorial Performance Engineering

154

Model predictions

1. If there is no saturation, use all available cores to minimize E

Minimum E here

SAHPC 2012 Tutorial Performance Engineering

155

Model predictions

2. There is an optimal frequency fopt at which E is minimal in the

non-saturated case, with

𝒇𝐨𝐩𝐭 =
𝑾𝟎

𝑾𝟐𝒕
 , hence it depends on the baseline power

 “Clock race to idle” if baseline accommodates whole system!

 May have to look at other metrics, e.g., 𝑪 = 𝑬/𝑷

SAHPC 2012 Tutorial Performance Engineering

156

Model predictions

3. If there is saturation, E is minimal at the saturation point

Minimum E here

SAHPC 2012 Tutorial Performance Engineering

157

Model predictions

4. If there is saturation, absolute minimum E is reached if the

saturation point is at the number of available cores

Slower clock

 more cores to saturation

 smaller E

SAHPC 2012 Tutorial Performance Engineering

158

Model predictions

5. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck

Better code

 earlier saturation

 smaller E @ saturation

SAHPC 2012 Tutorial Performance Engineering

159

Model validation with the benchmark apps

2

3

1

5

SAHPC 2012 Tutorial Performance Engineering

160

Conclusions from the power model

 Simple assumptions lead to surprising conclusions

 Performance saturation plays a key role

 “Clock race to idle” can be proven quantitatively

 “Code race to idle” (optimization saves energy) is a trivial result

 Better: “Optimization makes better use of the energy budget”

 Possible extensions to the power model

 Allow for per-core frequency setting (coming with Intel Haswell)

 Accommodate load imbalance & sync overhead

 SAHPC 2012 Tutorial Performance Engineering

161

The Plan

 Motivation

 Performance Engineering

 Performance modeling

 The Performance Engineering

process

 Modern architectures

 Multicore

 Accelerators

 Programming models

 Data access

 Performance properties of

multicore systems

 Saturation

 Scalability

 Synchronization

 Case study: OpenMP-parallel

sparse MVM

 Basic performance modeling:

Roofline

 Theory

 Case study: 3D Jacobi solver and

guided optimizations

 Modeling erratic access

 Some more architecture

 Simultaneous multithreading (SMT)

 ccNUMA

 Putting cores to good use

 Asynchronous communication in

spMVM

 A simple power model for multicore

 Power-efficient code execution

 Conclusions

SAHPC 2012 Tutorial Performance Engineering

162

What I have left out

 LIKWID: Lightweight multicore peformance tools

 http://code.google.com/p/likwid

 Multicore-specific properties of MPI communication

 Sparse MVM on multiple GPGPUs: Performance modeling for

viability analysis

 See references

 Exploting shared caches for temporal blocking of stencil codes

 Execution-Cache-Memory (ECM) model

 Predictive model for multicore scaling

 Goes well with the power model

 … and much more 

SAHPC 2012 Tutorial Performance Engineering

http://code.google.com/p/likwid

163

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters  pinning/binding is essential

 Bandwidth bottlenecks  inefficiency is often made on the chip level

 Topology dependence of performance features  know your hardware!

 Put cores to good use

 Bandwidth bottlenecks  surplus cores  functional parallelism!?

 Shared caches  fast communication/synchronization  better

implementations/algorithms?

 Leave surplus cores idle to save energy

 Simple modeling techniques help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities and hence save energy

 … learn more, especially when they do not work!

SAHPC 2012 Tutorial Performance Engineering

164

Quiz

double precision, dimension(100000000) :: a,b

do i=1,N

 s=s+a(i)*b(i)

enddo

SAHPC 2012 Tutorial Performance Engineering

Code:

GPGPU: 2880 cores, Ppeak= 1.3 Tflop/s, bS=160 Gbyte/s

Optimal

performance?

165

THANK YOU.

SAHPC 2012 Tutorial Performance Engineering

Jan Treibig

Johannes Habich

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

Faisal Shahzad

Gerald Schubert

OMI4papps

HQS@HPC II

hpcADD

SKALB

166 SAHPC 2012 Tutorial Performance Engineering

Author Biographies

 Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance

systems since 1995, and is now a senior research scientist in the HPC

group at Erlangen Regional Computing Center (RRZE). Recent research

includes architecture-specific optimization for current microprocessors,

performance modeling on processor and system levels, and the efficient use

of hybrid parallel systems. See his blog at http://blogs.fau.de/hager for

current activities, publications, and talks.

 Gerhard Wellein holds a PhD in solid state physics from the University of

Bayreuth and is a professor at the Department for Computer Science at the

University of Erlangen. He leads the HPC group at Erlangen Regional

Computing Center (RRZE) and has more than ten years of experience in

teaching HPC techniques to students and scientists from computational

science and engineering programs. His research interests include solving

large sparse eigenvalue problems, novel parallelization approaches,

performance modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

167

References

Book:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power

properties of modern multicore chips via simple machine models. Submitted. Preprint:

arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on

modern multicore processors: Best practices for performance engineering. Workshop on

Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012,

Rhodes Island, Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse

Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable

Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for

medical image reconstruction on recent standard multicore processors. International

Journal of High Performance Computing Applications, (published online before print).

DOI: 10.1177/1094342012442424

SAHPC 2012 Tutorial Performance Engineering

http://www.crcpress.com/product/isbn/9781439811924
http://www.crcpress.com/product/isbn/9781439811924
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424

168

References

Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC

2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel

Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop

on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.

DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector

multiplication with explicit communication overlap on current multicore-based systems.

Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for

iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).

DOI 10.1016/j.jocs.2011.01.010

 SAHPC 2012 Tutorial Performance Engineering

http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010

169

References

Papers continued:

 K. Iglberger, G. Hager, J. Treibig, and U. Rüde: Expression Templates Revisited: A

Performance Analysis of Current ET Methodologies. SIAM Journal on Scientific

Computing 34(2), C42-C69 (2012). DOI: 10.1137/110830125, Preprint: arXiv:1104.1729

 K. Iglberger, G. Hager, J. Treibig, and U. Rüde: High Performance Smart Expression Template

Math Libraries. 2nd International Workshop on New Algorithms and Programming Models for

the Manycore Era (APMM 2012) at HPCS 2012, July 2-6, 2012, Madrid, Spain. DOI:

10.1109/HPCSim.2012.6266939

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization

strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA. Advances in

Engineering Software and Computers & Structures 42 (5), 266–272 (2011). DOI:

10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance

prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.

DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In: Proceedings of

the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel

Programming Models on Hybrid Architectures. International Journal of High Performance

Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

SAHPC 2012 Tutorial Performance Engineering

http://blogs.fau.de/hager/files/2012/05/ET-SISC-Iglberger2012.pdf
http://blogs.fau.de/hager/files/2012/05/ET-SISC-Iglberger2012.pdf
http://dx.doi.org/10.1137/110830125
http://arxiv.org/abs/1104.1729
http://hpcs2012.cisedu.info/2-conference/workshops/workshop-07-apmm
http://hpcs2012.cisedu.info/
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

