
An Evaluation of Different I/O Techniques for Checkpoint/Restart

Faisal Shahzad, Markus Wittmann, Thomas Zeiser, Georg Hager and Gerhard Wellein

Erlangen Regional Computing Center, University of Erlangen-Nuremberg

Erlangen, Germany

{faisal.shahzad, markus.wittmann, thomas.zeiser, georg.hager, gerhard.wellein}@rrze.fau.de

Abstract—Today’s High Performance Computing (HPC)
clusters consist of hundreds of thousands of CPUs, mem-
ory units, complex networks, and other components. Such
an extreme level of hardware parallelism reduces the mean
time to failure (MTTF) of the overall cluster. The future of
HPC urgently demands to develop environments that facil-
itate programs to run successfully even in the presence of
failures. Checkpoint/Restart (C/R) is one of the most common
techniques to provide fault tolerance. C/R is relatively easy to
implement, but typically it introduces significant overhead in
the runtime of the application. In this paper, a checkpointing
technique is presented that significantly reduces the checkpoint
overhead and is highly scalable. This is achieved by overlapping
the I/O for writing the checkpoint with the computation of the
application. For this asynchronous checkpointing technique,
a theoretical model is developed to estimate the checkpoint
overhead. An implementation of this technique is then bench-
marked and compared with other checkpointing strategies. We
show our approach to have marginal overhead as opposite
to standard synchronous checkpointing for typical application
scenarios. A comparison with the node-level checkpointing
technique by using Scalable Checkpoint/Restart (SCR) library
is also presented.

Keywords-fault tolerance; asynchronous checkpointing;
multi-stage checkpointing; checkpoint/restart; MPI

I. INTRODUCTION

In the High Performance Computing (HPC) sector, an

ever increasing demand in computational capacity has

recently resulted in systems with as many as 1.5 million

processors, reaching a maximum performance of around

16.3 PetaFlops according to the Top500 list of Nov. 2012

[1]. The HPC community expects that with the help of

such extreme levels of hardware parallelism, the ExaFlop

barrier is going to be crossed in 2018 [2]. Unfortunately,

the reliability of each of the hardware component is not

increasing correspondingly and thus the overall system

reliability is reduced. Mean time to failure (MTTF) is a

metric used to estimate the reliability of a system. Today,

for large HPC systems, MTTF is usually in the order of

days or weeks. The MTTF of future systems is expected

to decrease further. Moreover, HPC applications have

continued to grow in complexity and runtime. Thus, the

risk of encountering component failure during a single

application run becomes high. This results in an urgent need

to develop fault-tolerant solutions for HPC applications.

Several techniques exist for providing fault tolerance in

applications. Each fault tolerance technique introduces a

certain amount of overhead to the application in terms of

time and/or resources. Checkpoint/Restart (C/R) is one of

the most popular fault tolerance techniques. The overhead

for C/R comes in terms of time for writing and (in the

case of a restart) reading the checkpoints, and is directly

proportional to the size of the checkpoint. In most of

the cases, the checkpoints are synchronously stored on

the parallel file system (PFS). As the bandwidth of any

PFS saturates quite easily by a low number of nodes, the

scalability of such techniques is very limited. In this paper,

we implement an asynchronous checkpointing technique

that is highly scalable and reduces the PFS-level checkpoint

overhead to a minimum. We compare this approach with

other C/R techniques. The comparison between these

approaches is made on the bases of their respective

overheads induced on the application runtime. In order to

demonstrate the worst case scenario, we use a benchmark

application that creates large checkpoints.

The main contributions of this paper are:

1) Introduction of an asynchronous checkpointing tech-

nique based on dedicated threads.

2) A theoretical model for overhead estimation for asyn-

chronous and synchronous checkpointing techniques.

3) A benchmark study of overhead comparison between

our presented asynchronous checkpointing approach

and other C/R approaches.

This paper is structured as follows. In Sect. II, we

present a brief introduction to C/R based fault tolerance

techniques and the related work on C/R based optimizations.

The details of our C/R approach are presented in Sect.

III. In Sect. IV, we develop a model to estimate the

checkpoint overhead. Section V gives an overview of

our experimental framework. The performance results

of our C/R implementation in comparison with other

implementations are presented in Sect. VI. Finally, Sect.

VII gives the summary and concludes the paper.

II. BACKGROUND AND RELATED WORK

C/R is a classical and the most widely used fault tolerance

technique. The state (also called snapshot) of each process

is periodically stored on a stable storage. In case of a

failure, processes can be restarted from these states. The

checkpoint latency (also regarded checkpoint overhead per

checkpoint) is the duration required to create and store

a single checkpoint on the stable storage. Depending on

the size, the checkpoint latency can become significantly

high resulting in large overheads. The time between two

consecutive checkpoints is called checkpoint interval. The

optimal checkpoint interval is very important so that the

runtime is not spent on generating useless checkpoints.

One model for determining an optimal checkpoint interval

is presented in [3].

Depending upon the degree of transparency and

implementation level, there exist three different kinds of

C/R [4]. An application-level C/R service is implemented

inside the application by the user. In this implementation,

the user stores only the information in the checkpoints

that is required for restarting. This leads to the smallest

possible checkpoint size. A user-level C/R service is linked

to a program via libraries. Such implementations usually

produce larger checkpoints as they cannot take advantage

of application-specific information. A system-level approach

captures the state of a process without requiring any

changes to the application. This requires support from the

operating system and eventually from the used software

stack (e.g. the MPI implementation or the batch system).

Open MPI [5] supports two kinds of C/R services [6]. The

system-level implementation is based on the Berkeley Lab

Checkpoint/Restart (BLCR) library [7]. The application-

level implementation is called SELF, which is based on

callback routines to perform C/R.

Considerable research has been carried out on reducing

the overhead caused by C/R mechanisms. Apart from

checkpoint compression and write aggregation techniques

[8], [9], multi-level checkpointing is seen as the key element

for reducing the checkpoint overhead on the Exascale level

[10]. The Scalable Checkpoint/Restart (SCR) library [11] is

a multi-level checkpointing library that offers three kinds

of node-level checkpoints namely local-level, partner-level,

partner-XOR-level. Apart from node-level checkpoints,

the user can specify the frequency at which node-level

checkpoints are flushed to PFS to create a global checkpoint.

With this technique, usual node-level checkpoints can be

taken more frequently and they cause less overhead to the

application. Expensive PFS-level checkpoints which can

cope with catastrophic failures are taken less frequently.

In case of a failure, restart is either performed by reading

node-level or PFS-level checkpoints (if the node-level

checkpoint state is inconsistent). Although the node-level

approach of creating checkpoints is highly scalable, the cost

of PFS-level checkpoints is rather huge. A non-blocking

checkpointing system has been recently added to the

library via utilizing additional dedicated “staging nodes”

that transfer the node-level checkpoints to PFS in an

asynchronous manner [12]. Open MPI supports such a

method via the “stage checkpoint” mechanism [13], in

which the checkpoint is first stored on a node-level storage

and then is asynchronously transferred to the PFS to make

a global checkpoint.

In the past, frameworks such as MTIO [14] and

DataStager [15] have been developed to improve the I/O

efficiency on the large scale systems. Almost 15 years

ago, background threads have been used to overlap the

computation and I/O [16]. The performance gains of such

implementation was shown for collective and non-collective

I/O for different architectures. We revisit such a thread-

based I/O approach for making asynchronous checkpoints

in the context of multi-core SMT environments with hybrid

MPI/OpenMP parallelization and achieve it by utilizing

a two-stage checkpointing mechanism in the application.

In [17], we presented initial results for our strategy. The

present paper is an extension to our previous work with

the addition of a theoretical model for asynchronous

checkpointing overhead and a comparison with two other

library-based C/R implementations, namely SCR and Open

MPI Stage checkpointing.

III. PROPOSED TECHNIQUE

In this paper, we present a technique that reduces the

PFS-level checkpoint latency to a minimum level. We

follow an application-level C/R approach. In most cases,

application-level C/R has performance advantages as only

the relevant data has to be saved instead of everything when

system-level C/R is used.

A two-stage checkpointing mechanism is implemented

where the first stage involves the creation of an in-memory

checkpoint. In the second stage this checkpoint is trans-

fered to the PFS in the background without interrupting

the application. In the ideal case, the second stage could

be achieved utilizing non-blocking MPI-IO if the I/O is

carried out in an asynchronous manner. A benchmark

(shown in Fig. 1) is used to evaluate the ability of an MPI

implementation to perform asynchronous I/O. A compute

function, which performs compute-bound calculations for

a configurable amount of time, is put between the calls

to MPI File iwrite() and MPI Wait(). If I/O is performed

asynchronously, the duration of the computation will be

hidden behind the duration of I/O until the first becomes

larger than the latter. The experimental framework for this

get_walltime_(&starttime_total);

MPI_File_iwrite(fh, buf, ndoubles_write,

 MPI_DOUBLE, &request);

perform_calc(calc_time); //==== DUMMY CALCULATION

MPI_Wait(&request, &status);

get_walltime_(&endtime_total);

Figure 1. Benchmark used to measure the asynchronous non-blocking
MPI-IO capabilities of an MPI implementation.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l

ti
m

e
(c

al
c.

 t
im

e
+

 I
O

 t
im

e)
 [

s]

0 10 20 30 40 50
Calculation time [s]

OpenMPI-1.6

IntelMPI-4.0.3
MVAPICH2-1.8
Ideal

Figure 2. Benchmark analysis of the asynchronous non-blocking MPI-IO
capabilities of different implementations. Ten MPI processes write a total
of 20 GB of data to LiMa cluster’s PFS using one node.

benchmark is described in Sec. V. Figure 2 shows that Open

MPI does not perform asynchronous MPI-IO. Despite Intel

MPI and MVAPICH2 hide the I/O behind the computation

time, the implementations lack efficiency. Thus, using non-

blocking MPI-IO routines for checkpointing purposes is not

an adequate option.

In order to transfer the in-memory checkpoint to the PFS,

we utilize a dedicated checkpointing thread (CP-thread) for

each MPI process. The implementation relies on OpenMP,

but in principle any other threading library can be used.

Figure 3 shows the flow chart of the implementation.

Each MPI process first creates two OpenMP threads, a

worker thread and a CP-thread. Each worker thread is

divided into another layer of threads via nested OpenMP

parallelism. This gives the user the flexibility to select

one dedicated CP-thread over as many worker threads as

desired. The worker threads are typically distributed so

that only one SMT core of each physical core is used.

The CP-thread will reside on the same physical core as

one of the worker threads, but bound to the remaining

free SMT core. Thus, no extra physical core is used for

the CP-thread which is idle most of the time. If SMT is

not available, one physical core may be oversubscribed.

The pinning of the processes is implemented within

CP-thread

... idle idle ...

.

Write CP-grid to PFS

Worker thread

Process 1

Process 2

Process 'n'

copy CP-Grid

to Memory

Make CP

Figure 3. Program flow diagram: Each MPI process is divided into a
worker thread and a CP-thread. Worker threads are further subdivided into
another layer of threads. At checkpoint iteration, the worker thread signals
the CP-thread to write the checkpoint.

the application via the sched setaffinity() call. When a

checkpoint is triggered (e.g. by iteration count, time, or an

external signal), an in-memory checkpoint is made first by

the worker thread(s). The second stage of checkpointing

involves copying the in-memory checkpoint to the PFS and

is carried out by the CP-thread. Figure 4 shows the pseudo

code of how such an implementation could look like.

During the checkpoint iteration, the worker thread signals

the CP-thread that a checkpoint can be performed. The

CP-thread detects this and starts writing the data to the PFS.

Three schemes are followed and tested for their respective

checkpointing overheads:

• 1 CP-thread per node: This scheme has one MPI-

process per node, with the number of worker threads

equal to the number of physical cores on the node. In

addition, one core of the node holds a CP-thread along

with the worker thread but both threads are bound to

separate virtual cores.

• 1 CP-thread per socket: In this scheme, there is one

MPI-process per socket each having the number of

worker threads equal to the number of physical cores

on the socket and one CP-thread in addition.

• 1 CP-thread per core: In this scheme, each physical

core has an MPI-process with an additional CP-thread

attached to the second virtual core of the same physical

core. If SMT is not available, physical cores may be

oversubscribed.

In stencil type algorithms, “toggle grids” are frequently

used, meaning that successive iterations of the algorithm

write to alternating arrays. For such algorithms, the time

to create the in-memory copy of a checkpoint can be

avoided by introducing an extra checkpointing-grid (CP-

grid). The CP-grid is in addition to the two “normal” source

and destination grids. By switching the grid pointers only,

the time usually spent for creating the in-memory copy

of the CP-grid from the currently updated grid can be

completely avoided. Figure 5 depicts this pointer switching

of the grids with respect to time-steps. In a checkpoint

 //========WORKER THREAD =========//
 while(current_time_step<=timesteps){

 computation_step();

 apply_BoundaryCondition();

 if(current_time_step==checkpoint_iter){

 CP_temp_swap=src_grid;

 src_grid=CP_grid;

 CP_grid=dst_grid;

 signal_write_checkpoint();

 }

 if(current_time_step==(checkpoint_iter+1)){

 src_grid=CP_temp_swap;

 }

 switch_grid_pointers(dst_grid,src_grid);

 ++current_time_step;

 }

//=========CP THREAD=========//
 while(!iteration_finished){

 wait_for_write_checkpoint_signal();

 if(signaled_write_checkpoint()){

 write_checkpoint_to_PFS();

 }

 }

Figure 4. Pseudo code of the worker (top panel) and CP-threads (bottom
panel). During the checkpoint iteration, the worker thread signals the CP-
thread that the checkpoint can be performed. The CP-thread then in turn
starts writing the data to PFS.

A B C

src. dst.

(a) checkpoint
iteration

A B C

dst. src.

(b) checkpoint+1

iteration

A B C

src. dst.

(c) checkpoint+2

iteration

Figure 5. Pointer switching mechanism for efficient in-memory checkpoint
creation for stencil based algorithms. In a checkpoint iteration (a), A and
B act as source and destination grids, respectively. B becomes the CP-grid
and also serves as the source grid during checkpoint + 1 iteration (b).
Afterwards, A and C act as source and destination grids respectively (c).

iteration (Fig. 5(a)), grids A and B serve as source and

destination grids, respectively. After the update, B becomes

the CP-grid and also serves as the source grid during the

iteration checkpoint + 1 (Fig. 5(b)). The CP-thread starts

to write B (CP-grid) to the file system. During the iteration

checkpoint+ 2 (Fig. 5(c)), grids A and C serve as source

and destination grids, respectively

IV. OVERHEAD ESTIMATION

In a standard synchronous checkpointing method, each

MPI process interrupts its computations after receiving a

checkpoint signal. The computation is resumed after the

checkpoint is fully written to PFS. Figure 6(a) shows a

schematic timeline of an application with two synchronous

checkpoints. The overhead is due to the time intervals

of checkpoint I/O during which no computation can be

performed. We define the following quantities:

tO,s = overhead for synchronous checkpoints

tCP,s = duration of a synchronous checkpoint

SCP = size of a single checkpoint in bytes

BIO = I/O bandwidth to the file system in bytes/s

BM = memory bandwidth of a node in bytes/s

n = number of checkpoints

The overhead in this case can be written as:

tO,s = n · tCP,s

tO,s = n ·
SCP

BIO

(1)

With weak scaling, the total checkpoint size increases

linearly with the number of nodes. In contrast, usually

the I/O bandwidth BIO scales poorly with the number of

nodes. Thus the overhead is directly proportional to the

number of compute nodes.

In the case of asynchronous checkpointing, the overhead

is mainly due to competing memory accesses of the worker

and CP-thread(s) for the duration of the checkpoint I/O.

The scenario of asynchronous checkpoint is depicted in Fig.

6(b). We can calculate the overhead in case of asynchronous

checkpointing. The model is based on the assumption that

all I/O-time overlaps with computation (a single checkpoint

time is less than the time between two consecutive check-

points). We define the following notations:

tO,a = overhead for asynchronous checkpoints

tCP,a = duration of an asynchronous checkpoint

SCP,node = checkpoint size per node in bytes

BM,CP = memory bandwidth used for checkpoint-

I/O in bytes/s

The overhead for asynchronous case can be formulated as

BM · tO,a = n ·BM,CP · tCP,a

For I/O purposes, the amount of data traffic (reads/writes)

between memory and processes can be m times larger

than the file size itself. This factor depends on the specific

implementation of fwrite()/MPI File write*() functions and

the number of different buffers they use (our study reveals

this factor to be between 5-7 for Open MPI). Thus,

BM,CP =
m · SCP,node

tCP,a

The total overhead tO,a then is

tO,a =
m · SCP,node

BM

· n (2)

which remains a constant factor in the case of weak scaling.

Thus the overhead is independent of the number of nodes.

Furthermore, the checkpoint overhead becomes independent

from the bandwidth to the PFS.

t
CP, s t

CP, s

t O, s

B
M

time

(a) Synchronous checkpointing

(b) Asynchronous checkpointing

Figure 6. A memory bandwidth utilization model with checkpoints in
synchronous and asynchronous cases. During a checkpoint, only a small
portion of memory bandwidth is utilized for checkpoint I/O. The rest of the
memory bandwidth resource remains idle in the case of synchronous check-
pointing whereas it is utilized for computation in the case of asynchronous
checkpointing.

V. TEST BED

For performance evaluation, we have used RRZE’s

LiMa1 cluster and HLRS’s HERMIT2 cluster.

LiMa: This cluster comprises 500 compute nodes

equipped with two Intel Xeon 5650 “Westmere” CPUs

(six physical cores, two-way SMT cores) running at the

base frequency of 2.66 GHz. The ccNUMA system has two

locality domains, each with 12 GB RAM (24 GB in total).

The STREAM (scale) benchmark [18] achieves a bandwidth

of around 40 GB/s (20 GB/s per socket). Simultaneous

multithreading (SMT) and “Turbo Mode” are enabled. The

system is equipped with QDR InfiniBand (IB) and GBit

Ethernet interconnects. The cluster is connected to a Lustre

PFS via the IB network. The aggregated bandwidth of the

PFS is around 3 GB/s.

HERMIT: This is a CRAY XE6 cluster with 3552

nodes, each with dual socket AMD Opteron 6278

(Interlagos) processors. Each processor consists of 16

cores running at 2.3 GHz. All nodes are equipped with at

least 32 GB of RAM. The system uses the CRAY Gemini

interconnect. It is connected to a Lustre PFS with an

aggregated I/O bandwidth of approximately 150 GB/s.

For benchmarking, the Open MPI library (version 1.6)

was used. We have used a prototype CFD solver based

on the lattice Boltzmann method, which is a stencil type

algorithm with toggle grids [19]. The runtime of the

1LiMa cluster at the Erlangen Regional Computing Center (RRZE): http:
//www.hpc.rrze.fau.de/systeme/lima-cluster.shtml

2HERMIT cluster at the High Performance Computing Center Stuttgart
(HLRS): http://www.hlrs.de/systems/platforms/cray-xe6-hermit

benchmark depends on the time-steps and the number of

domain cells. The number of domain cells also determines

the checkpoint size. In order to simulate the worst case

scenario, memory is used to its maximum size thus

creating large checkpoints. Both the SCR-library and our

implementation can easily be adapted for other kinds of

algorithms.

VI. RESULTS

We compare three different C/R strategies and their

relative overheads. These are node-level checkpointing,

synchronous, and asynchronous PFS-level checkpointing.

In order to validate our model of checkpointing overhead

presented in Sect. IV, we use the likwid tool [20] on

LiMa to analyze the memory bandwidth pattern during the

application run with checkpoints made on PFS. Figure 7

shows the memory bandwidth pattern of a single socket

of a LiMa node with synchronous and asynchronous

checkpointing, respectively. Two checkpoints are written

to LiMa’s PFS, each with 6.1 GB. The memory bandwidth

of each socket is measured using likwid-perfctr

every 500 ms. At the time of creating a synchronous

checkpoint, the used memory bandwidth drops to a low

level due to the much smaller I/O bandwidth to the

PFS. The durations for checkpointing during which no

work is performed, add up to make the large overhead.

Furthermore, the effective I/O bandwidth per node (which

is utilized for checkpointing) decreases with increasing

number of nodes and thus the resulting overhead gets larger.

On the other hand, with asynchronous checkpointing,

the memory bandwidth utilization does not drop during

checkpoint creation as both the checkpointing and the

computations are being carried out at the same time. This

makes the asynchronous technique an efficient way to create

checkpoints with minimal overhead. Our theoretical model

for asynchronous checkpointing (2) suggests an overhead

of 2.2s (n= 2, SCP,node = 6.25 GB, BM = 40 GB/s, m= 7),

which is close to the actual overhead of 2.6s in this case.

In Sec. III, we have described three possibilities for

having dedicated checkpoint threads in the application, i.e.,

1 CP-thread/core, 1 CP-thread/socket and 1 CP-thread/node.

Figure 8 shows the performance comparison of these three

approaches with and without writing checkpoints. In this

case, 32 LiMa nodes have been used with a domain size of

336 × 336 × 10752 cells and 2000 time-steps, resulting in

a total of 200 GB per checkpoint. When no checkpoint is

created, the performance remains similar in all three cases

since dedicated CP-threads are idle and pinned to one of

the free SMT cores of a physical core. The creation of three

asynchronous checkpoints adds a little overhead in all the

5000

10000

15000

20000

25000

30000

S
o
c
k
e
t

M
e
m

.
B

a
n
d
w

id
th

[M
B

y
te

s
/s

]

25 50 75 100

 Application Runtime[s]

no-CP_S0
Async-CP_S0
Sync-CP_S0

synchronous

checkpoint

is being written

Figure 7. Bandwidth utilization of a single socket of a LiMa node
during an application run with asynchronous (black) and synchronous (red)
checkpointing. Two checkpoints are taken to LiMa’s PFS, each of 6.1 GB.
In case of asynchronous checkpointing, checkpoint I/O is overlapped with
computation which keeps the memory bandwidth utilization at maximum
level all the time. As a result, the overall runtime of the application
is also reduced. For reference, the bandwidth utilization in case of no
checkpointing is also shown (green).

250

500

750

1000

1250

A
p
p
li

ca
ti

o
n
 R

u
n
ti

m
e

[s
]

 1 CP-th./node,
 1 MPI-process/node,
12 omp-th./MPI-process

 1 CP-th./socket,
 1 MPI-process/socket,
6 omp-th./MPI-process

 1 CP-th./core,
 1 MPI-process/core,
1 omp-th./MPI-process

Checkpoint thread configuration

no-CPs
3 Async-CPs

Figure 8. Runtime comparison of different checkpoint thread configuration
schemes on LiMa. 32 nodes are utilized with the checkpoint size of 200 GB
each.

cases, but the overhead is similar for each configuration.

Because of its similarity with the pure MPI application,

we have selected “1 MPI-process/core (1 CP-thread/core)”

scheme for further analysis.

A comparison of the overhead between a naı̈ve

synchronous PFS-level checkpointing, our presented

asynchronous technique and SCR checkpointing (partner-

level, PFS-level) for the LiMa cluster is shown in

Fig. 9. In this case, 128 nodes are used resulting in

1536 MPI processes in total. The domain consists of

288 × 288 × 36864 cells, which gives an aggregated

checkpoint of size 510 GB. In case of no checkpoint, the

performance of all configurations is similar. The slight

variation in the runtime exists due to network performance

fluctuation. As expected, the time for I/O increases

linearly for the case of synchronous and SCR PFS-level

checkpoints. On the other hand, the checkpoint I/O causes

only negligible overhead for the case of asynchronous PFS-

level and partner-level checkpoints. A single checkpoint

introduces an overhead of 13% in case of synchronous

PFS-level checkpoints, whereas it is 1.3% for the case of

asynchronous PFS-level checkpoints and 1% for creating

partner-level checkpoints. For the case of four checkpoints,

the overhead becomes 51% for synchronous PFS-level

checkpoints, 2.5% for asynchronous PFS-level checkpoints,

and 1.4% for partner-level checkpoints. Although the

overhead for partner-level checkpoint is smallest, yet

in order to create global PFS-level checkpoints, the

asynchronous checkpointing technique proves to be far

more economical than the usual synchronous checkpointing.

On the HERMIT system we were not able to install

the SCR library. Thus, Fig. 10 shows the comparison

only between synchronous and asynchronous PFS-level

checkpointing for the HERMIT cluster. In this case, 256

nodes are used with “1 MPI-process/core (1 CP-thread/core)”

resulting in a total of 8192 processes running for 8000

time-steps. For the case of asynchronous checkpointing,

each core is oversubscribed with an additional CP-thread.

The domain size is 368 × 368 × 94208 cells, which gives

an aggregated checkpoint size of 2.3 TB. Each synchronous

checkpoint adds 5.6% overhead to the overall runtime. On

the other hand, each asynchronous checkpoint only adds

0.2% overhead. The overhead for four checkpoints is 23%

in the synchronous and 0.85% in the asynchronous case.

Due to the fact that with asynchronous checkpointing the

time needed for I/O is overlapped with computation, an

upper limit for the number of low cost checkpoints exist.

This can be calculated as

max. number of async. CPs =
Total runtime without CPs

I/O time for a single CP
.

Exceeding this number of checkpoints will introduce

high overhead, as the next checkpoint will have to wait for

the completion of the previous one. As with synchronous

checkpointing, this model will be feasible as long as MTTF

of the system remains greater than the time to make an

asynchronous checkpoint.

In order to determine the scaling capability of our

method, we have performed a weak scaling test on up

to 128 nodes of the LiMa cluster. Figure 11 depicts a

relative comparison between synchronous vs. asynchronous

checkpoints in the weak scaling scenario with four

checkpoints. The overhead of synchronous checkpointing

0

1000

2000

3000

4000

5000

6000

A
p
p
li

ca
ti

o
n
 t

im
el

in
e

[s
]

0 1 2 3 4
Number of checkpoints

Sync-PFS-level-CP

Async-PFS-level-CP

SCR-PFS-level-CP
SCR-Partner-level-CP

Figure 9. Benchmark of overhead analysis on the LiMa cluster for
asynchronous PFS-level checkpointing and synchronous PFS-level, node-
level checkpointing. 128 nodes are used in this case with “1 MPI-
process/core” making a total of 1536 MPI processes. The aggregated size
of each checkpoint is 510 GB. For synchronous PFS level checkpointing,
the overhead increases linearly with the number of checkpoints. On the
other hand, the overhead is minimal in case of node-level checkpointing
and asynchronous PFS-level checkpointing.

0 1 2 3 4
Number of checkpoints

1000

2000

3000

4000

5000

6000

A
p
p
li

ca
ti

o
n
 t

im
el

in
e

[s
]

Sync. CP: comp. time

Sync. CP: PFS I/O time

Async. CP: comp. time

Async. CP: PFS I/O time

Figure 10. Benchmark of overhead analysis on the HERMIT cluster
for synchronous and asynchronous PFS-level checkpointing. 256 nodes
are used in this case with “1 MPI-process/core” making a total of 8192
MPI processes. The aggregated size of each checkpoint is 2.3 TB which is
stored on a Lustre based file system. The overhead increases linearly for
the synchronous case while it remains minimal for asynchronous case.

increases proportional to the number of nodes and the

number of checkpoints. On the other hand, the overhead of

asynchronous checkpointing remains nearly constant. This

makes asynchronous checkpointing suitable option for large

applications.

We have also tested Open MPI’s capability of stage

checkpoint, in which a checkpoint is first stored on

an on-node storage and then copied to the file system

asynchronously. A comparison of the performance over-

head between Open MPI’s stage mechanism and our pre-

1 2 4 8 16 32 64 128
Number of nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
p
p
li

ca
ti

o
n
 t

im
el

in
e

[s
]

6.25 12.5 25 50 100 200 400 800

CP-size per CP (GB)

Async.-CP: 0-CP

Async.-CP: 4-CP

Sync.-CP: 4-CP

Figure 11. A weak scaling study of checkpointing overhead with four
synchronous vs. asynchronous checkpoints on the PFS.

0 1 2 3 4
Number of checkpoints

0

250

500

750

1000

1250

1500

A
p
p
li

ca
ti

o
n
 r

u
n
ti

m
e

[s
]

OpenMPI SELF-stage CP

Async-CP with dedicated threads

Figure 12. Overhead comparison between Open MPI stage option and
our asynchronous checkpointing technique. In this case, 4 LiMa nodes are
used with an aggregated checkpoint size of 25 GB each.

sented asynchronous checkpointing technique is shown

in Fig. 12 for checkpoints taken on LiMa’s PFS. The

“filem rsh max incoming” (number of simultaneous copy

operation from local checkpoint to global checkpoint di-

rectory) parameter is made equal to the number of MPI

processes in order to have the same effect as our asyn-

chronous application. In this case, four nodes are used with

an aggregated checkpoint size of 25 GB each. Our presented

checkpointing technique shows a clear advantage over the

SELF library stage checkpointing option. The introduction

of checkpoint ability by enabling “-am ft-enable-cr” flag

itself introduces 3.2% overhead in this case. Each SELF-

stage checkpoint introduces additional 4% overhead. In case

of four checkpoints, the overhead for SELF-stage check-

pointing is 18%, whereas it is only 0.35% for our presented

technique.

VII. SUMMARY

The checkpointing overhead is one of the primary reasons

that hinder the wide use of the checkpoint/restart technique

to introduce fault tolerance in applications. In this paper,

we studied the asynchronous checkpointing technique by

the introduction of dedicated checkpointing threads on the

application-level. We have followed a hybrid MPI/OpenMP

approach with multi-level checkpointing. We have formu-

lated a theoretical model to calculate the overhead of

asynchronous and synchronous checkpointing. Using nested

OpenMP parallel approach, we compared three different

scenarios of checkpointing threads (1 CP-thread/node, 1

CP-thread/socket, 1 CP-thread/core) and found their per-

formance to be similar. A comparison between the asyn-

chronous checkpointing with the synchronous checkpoint-

ing and a node-level checkpoint approach is preformed.

Although the node-level checkpoint approach costs least

overhead, an asynchronous checkpointing technique with a

dedicated CP-thread was found to be an optimal approach to

create parallel file system level checkpoints. The overhead

introduced by our asynchronous checkpointing method is

similar to node-level checkpointing. We have also compared

our method with Open MPI’s Stage checkpointing mecha-

nism and found that our method has clear advantages in

terms of performance. The idea of asynchronous checkpoint-

ing can be extended to a large number of applications and

significant advantage can be gained in terms of checkpoint-

ing overhead. The idea is particularly useful for applications

that have to checkpoint large amounts of data.

ACKNOWLEDGMENT

This work was supported by BMBF under grant No.

01IH11011C (project FETOL).

REFERENCES

[1] Top500, “List of 500 most powerful computers.”

[2] J. Dongarra, P. Beckman, and et al., “The International
Exascale Software Roadmap,” International Journal of High
Performance Computer Applications, vol. 25, no. 1, pp. 3–60,
2011.

[3] J. Daly, “A model for predicting the optimum checkpoint
interval for restart dumps,” in Proceedings of the 2003 Inter-
national Conference on Computational Science, ser. ICCS’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 3–12.

[4] J. Hursey, “Coordinated Checkpoint/Restart Process Fault
Tolerance for MPI Applications on HPC Systems,” Ph.D.
dissertation, Indiana University, Bloomington, IN, USA, July
2010.

[5] Open MPI, http://www.open-mpi.org/.

[6] Fault Tolerance Research at Open Systems Laboratory, http:
//osl.iu.edu/research/ft/ompi-cr/.

[7] BLCR, “Berkeley Lab Checkpoint/Restart,” https://ftg.lbl.
gov/projects/CheckpointRestart/.

[8] J. Cornwell and A. Kongmunvattana, “Optimized I/O Oper-
ations for Checkpoint Creation in BLCR,” in Proceedings of
the 24th International Conference on Computer Applications
in Industry and Engineering, 2011, pp. 284–289.

[9] S. Mishra, “Design and Implementation of Process Migration
and Cloning in BLCR,” Master’s thesis, North Carolina State
University, North Carolina, USA, 2011.

[10] J. Daly et al., “Inter-Agency Workshop on HPC Resilience
at Extreme Scale,” http://institute.lanl.gov/resilience/docs/
Inter-AgencyResilienceReport.pdf, Tech. Rep., Feb. 2012.

[11] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-
level Checkpointing System,” in Proceedings of the 2010
ACM/IEEE International Conference for HPC, Networking,
Storage and Analysis, Washington,DC, USA, 2010, pp. 1–11.

[12] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin,
B. R. de Supinski, and S. Matsuoka, “Design and modeling of
a non-blocking checkpointing system,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2012, pp. 19:1–19:10.

[13] J. Hursey and A. Lumsdaine, “A composable runtime recov-
ery policy framework supporting resilient HPC applications,”
Indiana University, Bloomington, Indiana, USA, Tech. Rep.
TR686, August 2010.

[14] S. More, A. Choudhary, and I. Foster, “MTIO a multi-
threaded parallel I/O system,” in In Proceedings of the
Eleventh International Parallel Processing Symposium, 1997,
pp. 368–373.

[15] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng, “Datastager: scalable data staging services
for petascale applications,” in Proceedings of the 18th ACM
international symposium on High performance distributed
computing. New York, NY, USA: ACM, 2009, pp. 39–48.

[16] P. M. Dickens, “Improving collective I/O performance using
threads,” in In Proceedings of the 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, 1999, pp. 38–45.

[17] F. Shahzad, M. Wittmann, T. Zeiser, and G. Wellein, “Asyn-
chronous checkpointing by dedicated checkpoint threads,”
in Proceedings of the 19th European conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 289–290.

[18] J. D. McCalpin, “Stream: Sustainable memory bandwidth in
high performance computers,” University of Virginia, Char-
lottesville, Virginia, Tech. Rep., 1991-2007.

[19] G. Wellein, T. Zeiser, G. Hager, and S. Donath, “On the single
processor performance of simple lattice Boltzmann kernels,”
Computers & Fluids, vol. 35, no. 8–9, pp. 910–919, Nov.
2006.

[20] LIKWID tool suite, http://code.google.com/p/likwid/.

