
ERLANGEN REGIONAL
COMPUTING CENTER

J. Treibig

PPOPP14, 16.2.2014

The practitioner’s cookbook for good
parallel performance on multi- and
many-core systems

2

Time Topic
8:30am – 10:00am Overview, Introduction to computer architecture

10:00am – 10:30am Coffee break
10:30am – 12:00am Performance Engineering, Micro-Benchmarking
12:00pm – 1:30pm Lunch break
1:30pm – 3:00pm Performance Modeling, SIMD, NUMA, SMT
3:00pm – 3:30pm Coffee break
3:30 pm – 5:00pm LIKWID tools, Accelerators, Case Studies

Schedule

3

Where it all started: Stored Program Computer

§  Provide improvements for relevant software
§  What are the technical opportunities?
§  Economical concerns
§  Multi-way special purpose

EDSAC 1949
Maurice Wilkes, Cambridge

C
P

U

Memory

Control
 Unit

Arithmetic
Logical

 Unit

Input Output

Architect’s view:
Make the common case fast !

4

1.  Instruction execution
This is the primary resource of the processor. All efforts in
hardware design are targeted towards increasing the
instruction throughput.

2. Data transfer bandwidth
Data transfers are a consequence of instruction execution
and therefore a secondary resource.

Basic Resources:
Instruction throughput and data movement

5

•  A bottleneck is a performance limiting setting
•  A microarchitecture exposes numerous

bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks

6

Notions of work:

•  Application Work

•  Flops
•  LUPS
•  VUPS

•  Processor Work
•  Instructions
•  Data Volume

Hardware-Software Co-Design?
From algorithm to execution

Algorithm

Programming language

Machine code

Compiler

7

Consider the following code:

#pragma omp parallel private(j)
{
for (int j=0; j<niter; j++) {
#pragma omp for
 for (int i=0; i<size; i++) {
 a[i] = b[i] + c[i] * d[i];
 }
}
}

Example: Threaded vector triad in C

Setup:
32 threads running on a dual
socket 8-core SandyBridge-EP
gcc 4.7.0

/* global synchronization */

Every single synchronization in this setup costs in the order
of 60000 cycles !

8

Such an approach is not portable …

Hardware issues frequently change …

Those nasty hardware details are too difficult to learn for the
average programmer …

Why hardware should not be exposed

Important fundamental concepts are stable and
portable (ILP, SIMD, memory organization).
The basic principals are simple to understand
and every programmer should know them.

9

Intel IvyBridge-EP IBM Power7
Number of cores ncore 12 8
FP instructions per cycle F 2 2 (DP) / 1 (SP)
FP ops per instructions S 4 (DP) / 8 (SP) 2 (DP) / 4 (SP) - FMA
Clock speed [GHz] ν 2.7 3.7
Performance [GF/s] P 259 (DP) / 518 (SP) 236 (DP/SP)

The driving forces behind performance

 P = ncore * F * S * ν

But: P=5.4 GF/s or 14.8 GF/s(dp) for serial, non-SIMD code

TOP500 rank 1 (1996)

Intel IvyBridge-EP IBM Power7

10

Timeline of technology developments

Deep pipeline à
High clock

SSE2

Dual Core

Quad Core

3-channel,
DDR3 on-chip

ccNUMA

Octa-core
AVX

6C

12C

11

•  Reduce work
•  Reduce data volume (over slow data paths)

•  Make use of parallel resources
•  Load balancing
•  Serial fraction

•  Identify relevant bottleneck(s)
•  Eliminate bottleneck
•  Increase resource utilization

Final Goal: Fully exploit offered resources for your specific code!

What needs to be done on one slide

HARDWARE OPTIMIZATIONS FOR
SINGLE-CORE EXECUTION

•  ILP
•  SIMD
•  SMT
•  Memory hierarchy

13

Common technologies

§  Instruction Level Parallelism (ILP)
§  Instruction pipelining
§  Superscalar execution
§  Out-of-order execution

§  Memory Hierarchy

§  Branch Prediction Unit, Hardware Prefetching

§  Single Instruction Multiple Data (SIMD)

§  Simultaneous Multithreading (SMT)

Cycle
Stages

Bubbles Wind-up
Wind-down

Scheduler

Pipeline latency

Caches

Temporal locality Cache-line
Write allocate

Speculative execution

Lanes Register width
Packed

Scalar

Hazard

CPI

14

5-stage Multiplication-Pipeline:
A(i)=B(i)*C(i) ; i=1,...,N

First result is available after 5 cycles (=latency of pipeline)!"

15

Besides ALUs, instruction execution itself is also pipelined:

Pipelining: The Instruction pipeline

Each unit is pipelined itself (e.g., Execute = Multiply Pipeline).

Fetch Instruction  
from L1I"

Decode  
instruction"

Execute  
Instruction"

Fetch Instruction 1  
from L1I"

Decode  
Instruction 1"

Execute  
Instruction 1"

Fetch Instruction 2  
from L1I"

Decode  
Instruction 2"

Decode  
Instruction 3"

Execute  
Instruction 2"

Fetch Instruction 3  
from L1I"

Fetch Instruction 4  
from L1I"

t"

…"

1

2

3

4

16

Multiple units enable to “parallelize” the sequential instruction
stream on the fly

Modern processors are 3- to 6-way superscalar

Superscalar Processors
Instruction Level Parallelism

Fetch Instruction 4  
from L1I"

Decode  
Instruction 1"

Execute  
Instruction 1"

Fetch Instruction 2  
from L1I"

Decode  
Instruction 2"

Decode  
Instruction 3"

Execute  
Instruction 2"

Fetch Instruction 3  
from L1I"

Fetch Instruction 4  
from L1I"

Fetch Instruction 3  
from L1I"

Decode  
Instruction 1"

Execute  
Instruction 1"

Fetch Instruction 2  
from L1I"

Decode  
Instruction 2"

Decode  
Instruction 3"

Execute  
Instruction 2"

Fetch Instruction 3  
from L1I"

Fetch Instruction 4  
from L1I"

Fetch Instruction 2  
from L1I"

Decode  
Instruction 1"

Execute  
Instruction 1"

Fetch Instruction 2  
from L1I"

Decode  
Instruction 2"

Decode  
Instruction 3"

Execute  
Instruction 2"

Fetch Instruction 3  
from L1I"

Fetch Instruction 4  
from L1I"

Fetch Instruction 1  
from L1I"

Decode  
Instruction 1"

Execute  
Instruction 1"

Fetch Instruction 5  
from L1I"

Decode  
Instruction 5"

Decode  
Instruction 9"

Execute  
Instruction 5"

Fetch Instruction 9  
from L1I"

Fetch Instruction 13  
from L1I"

4-way
„superscalar“"

t"

17

Core details: Simultaneous multi-threading (SMT)
S

ta
nd

ar
d

co
re

2-

w
ay

 S
M

T

18

Single Instruction Multiple Data (SIMD) allows the concurrent execution of
the same operation on “wide” registers.

§  SSE: register width = 128 Bit à 2 DP floating point operands
§  AVX: register width = 256 Bit à 4 DP floating point operands

Adding two registers holding double precision floating point operands

Core details: SIMD processing

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:
R2ß ADD [R0,R1]

SIMD execution:
V64ADD [R0,R1] àR2

19

Latency and bandwidth in modern computer environments
ns

µs

ms

1 GB/s

HPC plays here

Avoiding slow data
paths is the key to
many performance
optimizations!

20

How does data travel from memory to the CPU and back?

Remember: Caches are organized
in cache lines (e.g., 64 bytes)
Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

MISS: Load or store instruction does
not find data in a cache level
à CL transfer required

Example: Array copy A(:)=C(:)

Registers and caches:
Data transfers in a memory hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1) MISS

write
allocate

evict
(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

21

•  Promote temporal and spatial locality

•  Enable packed (block wise) load/store of data

•  Memory locality (placement)

•  Avoid false cache line sharing

•  Access data in long streams to enable efficient latency hiding

Above requirements may collide with object oriented programming
paradigm: array of structures vs structure of arrays

Consequences for data structure layout

22

•  All efforts are targeted on increasing instruction throughput
•  Every hardware optimization puts an assumption against the

executed software
•  One can distinguish transparent and explicit solutions

•  Common technologies:
•  Instruction level parallelism (ILP)
•  Data parallel execution (SIMD), does not affect instruction

throughput
•  Exploit temporal data access locality (Caches)
•  Hide data access latencies (Prefetching)
•  Avoid hazards

Conclusions about core architectures

PRELUDE:
SCALABILITY 4 THE WIN!

24

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so many

of them and use scalable codes

Scalability Myth: Code scalability is the key issue

25

Scalability Myth: Code scalability is the key issue

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO
do k = 1 , Nk
 do j = 1 , Nj; do i = 1 , Ni
 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
 enddo; enddo
enddo
!$OMP END PARALLEL DO

Changing only the
compile options makes
this code scalable on an
8-core chip

–O3 -xAVX

26

Scalability Myth: Code scalability is the key issue
!$OMP PARALLEL DO
do k = 1 , Nk
 do j = 1 , Nj; do i = 1 , Ni
 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
 enddo; enddo
enddo
!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

UNDERSTANDING PARALLELISM
AND THE LIMITATIONS OF
PARALLEL COMPUTING

Amdahls law

28

Understanding Parallelism:
Sequential work

After 16 time steps: 4 cars"

29

Understanding Parallelism:
Parallel work

After 4 time steps: 4 cars"
“perfect speedup”"

30

Understanding parallelism:
Shared resources, imbalance

shared resource

Waiting for
shared resource

Unused resources due to resource
bottleneck and imbalance!"

Waiting for
synchronization

31

Limitations of Parallel Computing:
Amdahl's Law

§ serial § serial

§ serial § serial

§ seriell § seriell § serial

Ideal world:
All work is perfectly parallelizable

Closer to reality:
Purely serial parts

limit maximum speedup

Reality is even worse:
Communication and synchronization

impede scalability even further

32

Limitations of Parallel Computing:
Calculating Speedup in a Simple Model (“strong scaling”)

T(1) = s+p = serial compute time (=1)

purely serial
part s

parallelizable part: p = 1-s

Parallel execution time: T(N) = s+p/N

General formula for speedup:
 Amdahl's Law (1967)

“strong scaling” N
s

k
p sNT

TS
−+

==
1

1
)(
)1(

33

Limitations of Parallel Computing:
Amdahl's Law (“strong scaling”)

§  Reality: No task is perfectly parallelizable
§  Shared resources have to be used serially
§  Task interdependencies must be accounted for
§  Communication overhead (but that can be modeled separately)

§  Benefit of parallelization may be strongly limited
§  "Side effect": limited scalability leads to inefficient use of

resources
§  Metric: Parallel Efficiency

(what percentage of the workers/processors is efficiently used):

§  Amdahl case:
N
NS

N p
p

)(
)(=ε

1)1(
1

+−
=

Nspε

34

Limitations of Parallel Computing:
Adding a simple communication model for strong scaling

T(1) = s+p = serial compute time

purely serial
part s

parallelizable part: p = 1-s

fraction k for
communication per

worker

parallel: T(N) = s+p/N+Nk

General formula for speedup:

NksNT
TS

N
s

k
p ++

==
−1

1
)(
)1(

Model assumption: non-
overlapping communication

messages

35

Limitations of Parallel Computing:
Amdahl's Law (“strong scaling”)

§  Large N limits
§  at k=0, Amdahl's Law

predicts

§  at k≠0, our simple model of

communication overhead
yields a beaviour of

s
NSpN

1)(lim 0 =
∞→

§ independent of N !

§  Problems in real world programming
§  Load imbalance
§  Shared resources have to be used serially (e.g. IO)
§  Task interdependencies must be accounted for
§  Communication overhead

Nk
NS Nk

p
1)(1⎯⎯ →⎯ >>

36

Limitations of Parallel Computing:
Amdahl´s Law (“strong scaling”) + comm. model

37

Limitations of Parallel Computing:
Amdahl´s Law (“strong scaling”)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 500 1000

S(
N

)

CPUs

s=0.01
s=0.1
s=0.1, k=0.05

Parallel
efficiency:

<10%

~50%

38

Limitations of Parallel Computing:
How to mitigate overheads

§  Communication is not necessarily purely serial
§  Non-blocking crossbar networks can transfer many messages

concurrently – factor Nk in denominator becomes k (technical
measure)

§  Sometimes, communication can be overlapped with useful work
(implementation, algorithm):

§  Communication overhead may show a more fortunate behavior
than Nk

§  "superlinear speedups“: data size per CPU decreases with
increasing CPU count àmay fit into cache at large CPU counts

39

Serial fraction s may depend on
§  Program / algorithm

§  Non-parallelizable part, e.g. recursive data setup
§  Non-parallelizable IO, e.g. reading input data
§  Communication structure
§  Load balancing (assumed so far: perfect balanced)
§  …

§  Computer hardware
§  Processor: Cache effects & memory bandwidth effects
§  Parallel Library; Network capabilities; Parallel IO
§  …

 Determine s "experimentally":
Measure speedup and fit data to Amdahl’s law – but that could
be more complicated than it seems…

Limits of Scalability:
Serial & Parallel fraction

40

Scalability data on modern multi-core systems
An example

1à2 cores on
socket

1à2 sockets
on node

Scaling
across nodes

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

41

Scalability data on modern multi-core systems
The scaling baseline

§  Scalability presentations should be
grouped according to the
largest unit that the
scaling is based on
(the “scaling baseline”)

Amdahl model with
communication: Fit

to inter-node scalability numbers
(N = # nodes, >1)

kNs
NS

N
s ++

=
−1

1)(

0,0

0,5

1,0

1,5

2,0

Sp
ee

du
p

1 2 4

CPUs

intranode

memory-
bound
code!

Good
scaling
across
sockets

42

§  SIMD, GPUs, Cell SPEs, FPGAs, just any optimization…
§  Assume overall (serial, un-accelerated) runtime to be Ts=s+p=1
§  Assume p can be accelerated and run α times faster. We

neglect any additional cost (communication…)
§  To get a speedup of rα, how small must s be? Solve for s:

§  At α=100 and r =0.9 (for an overall speedup of 90), we get
s≈0.0011, i.e. you must accelerate over 99.9% of serial runtime!

§  Limited memory on accelerators may limit the achievable
speedup

Application to “accelerated computing”

1
1 1

1 1

−

−
=⇒

−
+

=
−

α
α

α
rsss

r

End part 1

TOPOLOGY OF MULTI-CORE /
MULTI-SOCKET SYSTEMS

•  Chip Topology
•  Node Topology
•  Memory Organisation

44

•  Core: Unit reading and executing instruction stream

•  Chip: One integrated circuit die

•  Socket/Package: May consist of multiple chips

•  Memory Hierarchy:
•  Private caches
•  Shared caches
•  ccNUMA: Replicated memory interfaces

Building blocks for multi-core compute nodes

45

Chip Topologies

SandyBridge-EP, 8C, 32nm 435mm2

Westmere-EP, 6C, 32nm 248mm2

§  Separation into core and uncore
§  Memory hierarchy holding together

the chip design
§  L1 (L2) private caches
§  L3 cache shared (LLC)

§  Serialized LLC à not scalable

§  Segmented ring bus, distributed
LLC à scalable design

46

Cray XC30 “SandyBridge-EP” 8-core dual socket node

§  8 cores per socket 2.7 GHz
(3.5 @ turbo)

§  DDR3 memory interface with 4
channels per chip

§  Two-way SMT
§  Two 256-bit SIMD FP units

§  SSE4.2, AVX

§  32 kB L1 data cache per core
§  256 kB L2 cache per core
§  20 MB L3 cache per chip

47

From UMA to ccNUMA
Memory architectures

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

§  Uniform Memory Architecture (UMA)

§  Flat memory ; symmetric MPs

§  Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

§  HT / QPI provide scalable bandwidth at
the price of ccNUMA architectures:
Where does my data finally end up?

48

Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms

§  Sockets/devices – CPU: 1-8, GPGPU: 1-6
§  Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)
§  SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

Exploiting performance: parallelism + bottleneck awareness
§  “High Performance Computing” == computing at a bottleneck

Performance of programs is sensitive to architecture

§  Topology/affinity influences overheads of popular programming models
§  Standards do not contain (many) topology-aware features
›  Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)

§  Apart from overheads, performance features are largely independent of the
programming model

Conclusions about Node Topologies

MULTICORE PERFORMANCE AND
TOOLS:
PROBING NODE TOPOLOGY

§  Standard tools
§  likwid-topology

50

§  Topology =
§  Where in the machine does core #n reside? And do I have to

remember this awkward numbering anyway?
§  Which cores share which cache levels?
§  Which hardware threads (“logical cores”) share a physical core?

§  Linux
§  cat /proc/cpuinfo is of limited use
§  Core numbers may change across kernels

and BIOSes even on identical hardware
§  numactl --hardware prints

ccNUMA node information è
§  Information on caches is harder

to obtain

How do we figure out the node topology?

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 8189 MB
node 0 free: 3824 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MB
node 1 free: 28 MB
node 2 cpus: 18 19 20 21 22 23
node 2 size: 8192 MB
node 2 free: 8036 MB
node 3 cpus: 12 13 14 15 16 17
node 3 size: 8192 MB
node 3 free: 7840 MB

51

LIKWID tool suite:

Like
I
Knew
What
I’m
Doing

Open source tool collection
(developed at RRZE):
http://code.google.com/p/likwid

How do we figure out the node topology?

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite for
x86 multicore environments. Accepted for
PSTI2010, Sep 13-16, 2010, San Diego, CA
§ http://arxiv.org/abs/1004.4431

52

Likwid Tool Suite

§  Command line tools for Linux:
§  easy to install
§  works with standard linux 2.6 kernel
§  simple and clear to use
§  supports Intel and AMD CPUs

§  Current tools:

§  likwid-topology: Print thread and cache topology
§  likwid-pin: Pin threaded application without touching code
§  likwid-perfctr: Measure performance counters
§  likwid-mpirun: mpirun wrapper script for easy LIKWID integration
§  likwid-bench: Low-level bandwidth benchmark generator tool

53

Output of likwid-topology –g
on one node of Cray XE6

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2
Cores per socket: 16
Threads per core: 1

HWThread Thread Core Socket
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
[...]
16 0 0 1
17 0 1 1
18 0 2 1
19 0 3 1
[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1
Size: 16 kB
Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)
(27) (28) (29) (30) (31)

54

Output of likwid-topology continued

Level: 2
Size: 2 MB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18
19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3
Size: 6 MB
Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26
27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:
Processors: 0 1 2 3 4 5 6 7
Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:
Processors: 8 9 10 11 12 13 14 15
Memory: 7860.02 MB free of total 8192 MB

Domain 2:
Processors: 16 17 18 19 20 21 22 23
Memory: 7847.39 MB free of total 8192 MB

Domain 3:
Processors: 24 25 26 27 28 29 30 31
Memory: 7785.02 MB free of total 8192 MB

55

Output of likwid-topology continued

Graphical:

Socket 0:
+---+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---+ +---+ |
| | 6MB | | 6MB | |
| +---+ +---+ |
+---+
Socket 1:
+---+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---+ +---+ |
| | 6MB | | 6MB | |
| +---+ +---+ |
+---+

ENFORCING
THREAD/PROCESS-CORE AFFINITY
UNDER THE LINUX OS

§  Standard tools and OS affinity facilities under
program control

§  likwid-pin

57

Example: STREAM benchmark on 16-core Sandy Bridge:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,
first socket first)

There are several reasons for caring
about affinity:
§  Eliminating performance variation

§  Making use of architectural features

§  Avoiding resource contention

58

§  Highly OS-dependent system calls
§  But available on all systems

 Linux: sched_setaffinity(), PLPA à hwloc
Windows: SetThreadAffinityMask()

§  Support for “semi-automatic” pinning in some compilers/
environments
§  Intel compilers > V9.1 (KMP_AFFINITY environment variable)
§  PGI, Pathscale, GNU
§  SGI Altix dplace (works with logical CPU numbers!)
§  Generic Linux: taskset, numactl, likwid-pin (see below)
§  OpenMP 4.0
Affinity awareness in MPI libraries
§  OpenMPI
§  Intel MPI

More thread/Process-core affinity (“pinning”) options

59

§  Pins processes and threads to specific cores without touching code
§  Directly supports pthreads, gcc OpenMP, Intel OpenMP
§  Based on combination of wrapper tool together with overloaded pthread library
à binary must be dynamically linked!

§  Can also be used as a superior replacement for taskset
§  Supports logical core numbering within a node and within an existing CPU set

§  Useful for running inside CPU sets defined by someone else, e.g., the
MPI start mechanism or a batch system

§  Usage examples:

§  Physical numbering (as given by likwid-topology):
likwid-pin -c 0,2,4-6 ./myApp parameters

§  Logical numbering by topological entities:
likwid-pin –c S0:0-3 ./myApp parameters

Likwid-pin
Overview

60

Running the STREAM benchmark with likwid-pin:

Likwid-pin
Example: Intel OpenMP

 $ export OMP_NUM_THREADS=4
 $ likwid-pin -c 0,1,4,5 ./stream
 [likwid-pin] Main PID -> core 0 - OK
 --
 Double precision appears to have 16 digits of accuracy
 Assuming 8 bytes per DOUBLE PRECISION word
 --
 [... some STREAM output omitted ...]
 The *best* time for each test is used
 EXCLUDING the first and last iterations
 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5
 [pthread wrapper] SKIP MASK: 0x1
 [pthread wrapper 0] Notice: Using libpthread.so.0
 threadid 1073809728 -> SKIP
 [pthread wrapper 1] Notice: Using libpthread.so.0
 threadid 1078008128 -> core 1 - OK
 [pthread wrapper 2] Notice: Using libpthread.so.0
 threadid 1082206528 -> core 4 - OK
 [pthread wrapper 3] Notice: Using libpthread.so.0
 threadid 1086404928 -> core 5 - OK
 [... rest of STREAM output omitted ...]

Skip shepherd
thread

Main PID always
pinned

Pin all spawned
threads in turn

61

Core numbering may vary from system to system
§  Likwid-topology delivers this information, which can then be fed into likwid-pin

Alternatively, likwid-pin can abstract this variation and provide a purely
logical numbering (physical cores first)

Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out
Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Likwid-pin
Using logical core numbering

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 1| | 2 3| | 4 5| | 6 7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 8| | 1 9| | 2 10| | 3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 4 12| | 5 13| | 6 14| | 7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

62

Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

Likwid-pin
Using logical core numbering

§ Chipset

§ Memory

Default if -c is not
specified!

63

DEMO

PATTERN-DRIVEN
PERFORMANCE ENGINEERING
PROCESS

Basics of Benchmarking
Performance Patterns
Signatures

65

1.  Define relevant test cases
2.  Establish a sensible performance metric
3.  Acquire a runtime profile (sequential)
4.  Identify hot kernels (Hopefully there are any!)
5.  Carry out optimization process for each kernel

Motivation:
•  Understand observed performance
•  Learn about code characteristics and machine capabilities
•  Deliberately decide on optimizations

Basics of Optimization

Iteratively

66

Preparation
§  Reliable timing (Minimum time which can be measured?)
§  Document code generation (Flags, Compiler Version)
§  Get exclusive System
§  System state (Clock, Turbo mode, Memory, Caches)
§  Consider to automate runs with a skript (Shell, python, perl)

Doing
§  Affinity control
§  Check: Is the result reasonable?
§  Is result deterministic and reproducible.
§  Statistics: Mean, Best ??
§  Basic variations: Thread count, affinity, working set size (Baseline!)

Best Practices Benchmarking

67

Postprocessing
§  Documentation
§  Try to understand and explain the result
§  Plan variations to gain more information
§  Many things can be better understood if you plot them (gnuplot,

xmgrace)

Best Practices Benchmarking cont.

68

Motivated by a resource utilization driven view.
Provide a structured iterative process based on:

§  Performance patterns
§  A diagnostic performance model

Performance patterns are typical performance limiting bottlenecks
Patterns are indicated by signatures which can consist of:

§  HPM data
§  Scaling behavior
§  Other data

Uses one of the most powerful tools available:

Philosophy of pattern based approach

Your brain !
You are a investigator making sense of what’s going on.

69

1.  Maximum resource utilization
2.  Hazards
3.  Work related (Application or Processor)

The system offers two basic resources:

§  Execution of instructions (primary)
§  Transferring data (secondary)

Performance pattern classification

70

Model validation
Traces /

HW metrics

Optimize for better

resource utilization

expedient activity

Eliminate non−

Hardware,

instruction set
Microbenchmarking Algorithm /

code analysis

Adjust

model input

Identify

correct pattern

M
o

d
e

l
a

d
ju

s
tm

e
n

t

Performance model

Validation

OK?

Yes

No

M
o

d
e

l
b

u
il

d
in

g
O

p
ti

m
iz

a
ti

o
n

S
a

m
e

 p
a

tt
e

rn

C
h

a
n

g
e

 p
a

tt
e

rn

C
h

a
n

g
e

 p
a

tt
e

rn

S
a

m
e

 p
a

tt
e

rn

Pattern

Notions of work
§  Application work
§  Processor work

Pattern: qualitative

Model: quantitative

Find the relevant
limiting bottleneck!

71

Pattern Behavior
Bandwidth saturation saturating speedup across cores sharing a data path

Limited
Instruction
throughput

Pipeline saturation throughput at design limit

Pipelining hazards in-core throughput far from design limit, performance
insensitive to data size Control flow issues

Inefficient
data access

Strided Access simple BW models far too optimistic
 Erratic Access

Microarchitectural anomalies large discrepancy from simple performance models

False cacheline sharing very low speedup, or slowdown / discrepancy from
model only in parallel case

Bad ccNUMA page placement bad/no scaling across locality domains, better
performance w/ interleaved placement

Load imbalance saturating/sub-linear speedup

Synchronization overhead speedup going down as more cores are added / no
speedup with small problem sizes

Code
composition
issues

Instruction overhead low application performance, good scaling across
cores, performance insensitive to problem size Expensive instructions

Ineffective instructions

72

Pattern Detection
Bandwidth saturation Bandwidth meets BW of suitable streaming benchmark

Limited
Instruction
throughput

Pipeline saturation Low CPI, 1:1 ratio of cy to specific instruction counts

Pipelining hazards Large integral ratio of cy to specific instruction counts,
high CPI

Control flow issues High branch rate, high branch miss ratio

Inefficient
data access

Strided Access Low cache hit ratio, frequent line evics/replacements

Erratic Access See above, plus low BW utilization (latency)

Microarchitectural anomalies Very hardware specific, memory aliasing, alignment …

False cacheline sharing Frequent remote evicts

Bad ccNUMA page placement Unbalanced bandwidth on memory interfaces/ high
remote traffic

Load imbalance Different amount of “work” across cores

Synchronization overhead Large non-”work” instruction count / Low CPI

Code
composition
issues

Instruction overhead Low CPI / large non-FP instruction count, low resource
utilization

Expensive instructions Large CPI

Ineffective instructions Scalar instructions dominating in data-parallel loops

optional

73

Example rabbitCT

Result of effort:
5-6 x improvement
against initial parallel C
code implementation

>50% of peak
performance (SSE)

74

Ruling out memory bandwidth limitation

MICROBENCHMARKING FOR
ARCHITECTURAL EXPLORATION

Probing of the memory hierarchy
Saturation effects in cache and memory
Typical OpenMP overheads

76

Latency and bandwidth in modern computer environments
ns

µs

ms

1 GB/s

HPC plays here

Avoiding slow data
paths is the key to
most performance
optimizations!

77

Recap: Data transfers in a memory hierarchy

§  How does data travel from memory to the CPU and back?
§  Example: Array copy A(:)= C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1) MISS

write
allocate

evict
(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL
transfers

LD C(2..Ncl)
NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)
stores

50%
performance
boost for
COPY

C(:) A(:) C(:) A(:)

78

Simple streaming benchmark:

Report performance for different N
This kernel is limited by data transfer performance for all
memory levels on all current architectures!

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

double precision, dimension(N) :: A,B,C,D
A=1.d0; B=A; C=A; D=A

do j=1,NITER
 do i=1,N
 A(i) = B(i) + C(i) * D(i)
 enddo
 if(.something.that.is.never.true.) then
 call dummy(A,B,C,D)
 endif
enddo

Prevents smarty-pants
compilers from doing
“clever” stuff

79

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

Theoretical limit

4 W / iteration
à 128 GB/s

5 W / it.
à 18 GB/s
(incl. write
allocate)

80

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

2.
66

x
SI

M
D

 im
pa

ct

Data far away àsmaller SIMD impact

Theoretical limit

4 W / iteration
à 128 GB/s

Theoretical limit

4 W / iteration
à 48 GB/s

Max. LD/ST throughput:
1 AVX Load & ½ AVX Store per cycle
à 3 cy / 8 Flops ßà 8 Flops/3 cy

(2 LD or 1 LD & 1 ST) / cy
à 2 Flops/2 cy

81

Every core runs its own, independent triad benchmark

à pure hardware probing, no impact from OpenMP overhead

The throughput-parallel vector triad benchmark

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)
allocate(A(1:N),B(1:N),C(1:N),D(1:N))
A=1.d0; B=A; C=A; D=A
do j=1,NITER
 do i=1,N
 A(i) = B(i) + C(i) * D(i)
 enddo
 if(.something.that.is.never.true.) then
 call dummy(A,B,C,D)
 endif
enddo
!$OMP END PARALLEL

82

Throughput vector triad on Sandy Bridge socket (3 GHz)

Saturation effect
in memory

Scalable BW in
L1, L2, L3 cache

83

Bandwidth limitations: Main Memory
Scalability inside a NUMA domain (V-Triad)

1 thread cannot
saturate bandwidth

Saturation with
3 threads

Saturation with
2 threads

Saturation with
4 threads

84

Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20 Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket
CPU node

85

Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache

86

We use the following code:

#pragma omp parallel private(j)
{
for (int j=0; j<niter; j++) {
#pragma omp for
 for (int i=0; i<size; i++) {
 a[i] = b[i] + c[i] * d[i];
 }
}}

Parallel vector triad benchmark

87

The parallel vector triad benchmark
Single thread on Cray XE6 Interlagos node

OMP overhead
and/or lower
optimization w/
OpenMP active

L1 cache L2 cache memory L3 cache

Team restart is
expensive!

à use only
outer parallel
from now on!

88

Overhead OpenMP Synchronization
SandyBridge-EP ICC 13.1

L3 cache
fully usable

Small impact
of using SMT

Crossover
point close to
L1 cachesize

89

Overhead Syncronization OpenMP
SandyBridge-EP GCC 4.7.0

L3 cache
effect not
fully usable

Large impact
of using SMT

Crossover
point at end of
L2 cachesize

End part 2

“SIMPLE” PERFORMANCE
MODELING:
THE ROOFLINE MODEL

Loop-based performance modeling:
Execution vs. data transfer

91

How to perform a instruction throughput analysis on the example of
Intel’s port based scheduler model.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Issue 6 uops

Retire 4 uops

SandyBridge

16b 16b 16b

92

Every new generation provides incremental improvements.
The OOO microarchitecture is a blend between P6 (Pentium Pro)
and P4 (Netburst) architectures.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

Issue 8 uops

93

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
 A[i] = B[i] + C[i] * D[i]
}

How many cycles to process one 64byte cacheline?

Exercise: Estimate performance of triad on
SandyBridge @3GHz

64byte equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and ½ store and mult and add
Cycle 2: load and ½ store
Cycle 3: load Answer: 6 cycles

94

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
 A[i] = B[i] + C[i] * D[i]
}

Whats the performance in GFlops/s and bandwidth in MBytes/s ?

Exercise: Estimate performance of triad on
SandyBridge @3GHz

One AVX iteration (3 cycles) performs 4x2=8 flops.

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s
4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

95

The Roofline Model1,2

1.  Pmax = Applicable peak performance of a loop, assuming that
data comes from L1 cache (this is not necessarily Ppeak)

2.  I = Computational intensity (“work” per byte transferred) over
the slowest data path utilized (“the bottleneck”)
§  Code balance BC = I -1

3.  bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

P = min(Pmax, I bs)

96

Example: Vector triad A(:)=B(:)+C(:)*D(:)
on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

§  bS = 40 GB/s
§  Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 à I = 0.4 F/W = 0.05 F/B
 à I · bS = 2.0 GF/s (1.2 % of peak performance)

§  Ppeak = 173 GFlop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)
§  Pmax? à Observe LD/ST throughput maximum of 1 AVX Load and ½

AVX store per cycle à 3 cy / 8 Flops
 à Pmax = 57.6 GFlop/s (33% peak)

“Simple” Roofline: The vector triad

97

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)
on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized)

§  bS = 160 GB/s
§  Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 à I = 0.4 F/W = 0.05 F/B

 à I · bS = 8.0 GF/s (0.8 % of peak performance)

§  Ppeak = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz)
§  Pmax? à Observe LD/ST throughput maximum of 1 Load or 1 Store per

cycle à 4 cy / 16 Flops à Pmax = 252 Gflop/s (25% of peak)

98

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo
in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

ADD peak
(best possible code)
no SIMD

3-cycle latency per ADD
if not unrolled

P = 5 Gflop/s

How do we get
these?
à See next!

I = 1 Flop / 8 byte (in DP)

86.4 GF/s

21.6 GF/s

7.2 GF/s

99

Plain scalar code, no SIMD

LOAD r1.0 ß 0
i ß 1
loop:
 LOAD r2.0 ß a(i)
 ADD r1.0 ß r1.0+r2.0
 ++i à? loop
result ß r1.0

Applicable peak for the summation loop

ADD pipes utilization:

à 1/12 of ADD peak

SI
M

D
 la

ne
s

100

Scalar code, 3-way unrolling
LOAD r1.0 ß 0
LOAD r2.0 ß 0
LOAD r3.0 ß 0
i ß 1
loop:
 LOAD r4.0 ß a(i)
 LOAD r5.0 ß a(i+1)
 LOAD r6.0 ß a(i+2)
 ADD r1.0 ß r1.0+r4.0
 ADD r2.0 ß r2.0+r5.0
 ADD r3.0 ß r3.0+r6.0
 i+=3 à? loop
result ß r1.0+r2.0+r3.0

Applicable peak for the summation loop

ADD pipes utilization:

à 1/4 of ADD peak

101

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.3] ß [0,0]
LOAD [r2.0,…,r2.3] ß [0,0]
LOAD [r3.0,…,r3.3] ß [0,0]
i ß 1
loop:
 LOAD [r4.0,…,r4.3] ß [a(i),…,a(i+3)]
 LOAD [r5.0,…,r5.3] ß [a(i+4),…,a(i+7)]
 LOAD [r6.0,…,r6.3] ß [a(i+8),…,a(i+11)]
 ADD r1 ß r1+r4
 ADD r2 ß r2+r5
 ADD r3 ß r3+r6
 i+=12 à? loop
result ß r1.0+r1.1+...+r3.2+r3.3

Applicable peak for the summation loop

ADD pipes utilization:

à ADD peak

102

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

analysis

Code analysis:
1 ADD + 1 LOAD

architecture Throughput: 1 ADD + 1 LD/cy
Pipeline depth: 3 cy (ADD)

4-way SIMD, 8 cores

measurement

Maximum memory
bandwidth 40 GB/s

Memory-bound @ large N!
Pmax = 5 GF/s

7.2 … 86.4 GF/s

5 GF/s

103

The roofline formalism is based on some (crucial) assumptions:
§  There is a clear concept of “work” vs. “traffic”
›  “work” = flops, updates, iterations…
›  “traffic” = required data to do “work”

§  Attainable bandwidth of code = input parameter! Determine
effective bandwidth via simple streaming benchmarks to model more
complex kernels and applications

§  Data transfer and core execution overlap perfectly!
§  Slowest data path is modeled only; all others are assumed to be

infinitely fast
§  If data transfer is the limiting factor, the bandwidth of the slowest

data path can be utilized to 100% (“saturation”)
§  Latency effects are ignored, i.e. perfect streaming mode

Assumptions for the Roofline Model

104

Saturation effects in multicore chips are not explained
§  Reason: “saturation assumption”
§  Cache line transfers and core execution do sometimes not overlap

perfectly
§  Only increased “pressure” on the memory

interface can saturate the bus
à need more cores!

ECM model gives more insight

Shortcomings of the roofline model

A(:)=B(:)+C(:)*D(:)

Roofline predicts
full socket BW

105

Where the roofline model fails

106

ECM = “Execution-Cache-Memory”

Assumptions:
Single-core execution time is composed of

1.  In-core execution
2.  Data transfers in the memory hierarchy

Data transfers may or may not overlap with
each other or with in-core execution

Scaling is linear until the relevant bottleneck
is reached

Input:
Same as for Roofline
+ data transfer times in hierarchy

ECM Model

107

REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision
Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

Example: Schönauer Vector Triad in L2 cache

1 LD/cy + 0.5 ST/cy

Registers

L1

L2

32 B/cy (2 cy/CL)

Machine characteristics:

Arithmetic:
1 ADD/cy+ 1 MULT/cy

Registers

L1

L2

Triad analysis (per CL):

6 cy/CL

10 cy/CL

Arithmetic:
AVX: 2 cy/CL

LD LD
ST/2

LD
ST/2 LD LD

ST/2
LD

ST/2

LD

ADD
MULT

ADD
MULT

LD LD WA ST

Roofline prediction: 16/10 F/cy

Timeline:
16 F/CL
(AVX)

Measurement: 16F /
≈17cy

108

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) with AVX

CL
transfer

Write-
allocate
CL
transfer

109

Full vs. partial vs. no overlap

Results
suggest
no
overlap!

110

Identify relevant bandwidth bottlenecks
§  L3 cache
§  Memory interface

Scale single-thread performance until first bottleneck is hit:

Multicore scaling in the ECM model

. . . Example:
Scalable L3

on Sandy
Bridge

P(t)=min(tP0,Proof), with Proof=min(Pmax,l bS)

111

Model: Scales until saturation sets in

Saturation point (# cores) well predicted

Measurement: scaling not perfect

Caveat: This is specific for this
architecture and this benchmark!

Check: Use “overlappable” kernel code

ECM prediction vs. measurements for
A(:)=B(:)+C(:)*D(:), no overlap

112

In-core execution is dominated
by divide operation
(44 cycles with AVX, 22 scalar)

à Almost perfect agreement
with ECM model

ECM prediction vs. measurements for
A(:)=B(:)+C(:)/D(:) with full overlap

Parallelism “heals” bad
single-core performance

… just barely!

113

Remember the sequential vector triad?

The impact of in-core optimizations

L1
L2

L3

M
em

AVX

L1

L2
L3

M
em

scalar

Less SIMD benefit for
far-away data
à “Amdahl’s Law”!

114

Saturation effects are ubiquitous; understanding them gives us opportunity to
§  Find out about optimization opportunities
§  Save energy by letting cores idle à see power model later on
§  Putting idle cores to better use à asynchronous communication, functional

parallelism

ECM correctly describes several effects
§  Saturation for memory-bound loops
§  Diminishing returns of in-core optimizations for far-away data
§  Parallelism heals bad sequential code (sometimes…)
§  Get clean picture of different runtime contributions

Simple models work best. Do not try to complicate things unless it is really
necessary!

Summary: The ECM Model

EXPLOITING
PARALLEL RESOURCES ON
MULTICORE NODES

•  SIMD

116

SIMD processing – Basics
Steps (done by the compiler) for “SIMD processing”
for(int i=0; i<n;i++)

 C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){
 C[i] =A[i] +B[i];

 C[i+1]=A[i+1]+B[i+1];
 C[i+2]=A[i+2]+B[i+2];
 C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:
 VLOAD R0 ß A[i]
 VLOAD R1 ß B[i]
 V64ADD[R0,R1] à R2
 VSTORE R2 à C[i]
 ißi+4
 i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to
register R0

Add the corresponding 64 Bit entries in R0 and
R1 and store the 4 results to R2

Store R2 (256 Bit) to address
starting at C[i]

117

No SIMD vectorization for loops with data dependencies:

“Pointer aliasing” may prevent SIMDfication

§  C/C++ allows that A à &C[-1] and B à &C[-2]
à C[i] = C[i-1] + C[i-2]: dependency à No SIMD

If “pointer aliasing” is not used, tell it to the compiler, e.g. use
–fno-alias switch for Intel compiler or use restrict(C99)

SIMD processing – Basics

for(int i=0; i<n;i++)
 A[i]=A[i-1]*s;

void scale_shift(double *A, double *B, double *C, int n) {
 for(int i=0; i<n; ++i)
 C[i] = A[i] + B[i];

}

118

float sum = 0.0;

for (int j=0; j<size; j++){
 sum += data[j];
}

Instruction code:
401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]
401d0d: 48 83 c0 01 add rax,1
401d11: 39 c7 cmp edi,eax
401d13: 77 f3 ja 401d08

Case Study: Simplest code for the summation of
the elements of a vector (single precision)

Instruction
address

Opcodes Assembly
code

To get object code use
objdump –d on object file or
executable or compile with -S

119

1:
addss xmm0, [rsi + rax * 4]
add rax, 1
cmp eax,edi
js 1b

Summation code (single precision):
Optimizations

1:
addss xmm0, [rsi + rax * 4]
addss xmm1, [rsi + rax * 4 + 4]
addss xmm2, [rsi + rax * 4 + 8]
addss xmm3, [rsi + rax * 4 + 12]
add rax, 4
cmp eax,edi
js 1b

1:
vaddps ymm0, [rsi + rax * 4]
vaddps ymm1, [rsi + rax * 4 + 32]
vaddps ymm2, [rsi + rax * 4 + 64]
vaddps ymm3, [rsi + rax * 4 + 96]
add rax, 32
cmp eax,edi
js 1b

Unrolling with sub-sums to break up
register dependency

AVX SIMD vectorization

3 cycles add
pipeline
latency

120

SIMD processing – single-threaded

SIMD influences instruction execution in the
core – other bottlenecks stay the same!

48
16
4

4 4

Execution Cache Memory

8cy

16cy 16cy
24cy

Full
benefit in
L1 cache

Data transfers
are overlapped
with execution

Some penalty
for SIMD (12 cy
predicted)

Peak

Per-cacheline
cycle counts

M
flo

ps
/s

121

And with AVX?

48
16
4
2

4 4

Cache Memory

8cy

Peak

M
Fl

op
s/

s

SSE 8 cycles
AVX 6 cycles

8cy

L3 Cache

With preloading:
AVX down to less than 7 cycles (8309 MFlops/s) diminishing

returns (Amdahl)

122

SIMD processing – Full chip (all cores)
Influence of SMT
Bandwidth saturation is the primary performance limitation on
the chip level!

8c

8 threads on physical cores 16 threads using SMT

Full scaling
using SMT due
to bubbles in
pipeline

All variants
saturate the
memory
bandwidth

Conclusion: If the code saturates the
bottleneck, all variants are acceptable!

123

Alternatives:
§  The compiler does it for you (but: aliasing, alignment, language)
§  Compiler directives (pragmas)
§  Alternative programming models for compute kernels (OpenCL,

ispc)
§  Intrinsics (restricted to C/C++)
§  Implement directly in assembler
To use intrinsics the following headers are available:
§  xmmintrin.h (SSE)
§  pmmintrin.h (SSE2)
§  immintrin.h (AVX)
§  x86intrin.h (all instruction set extensions)
§  See next slide for an example

How to leverage SIMD

124

Example: array summation using C intrinsics
(SSE, single precision)
__m128 sum0, sum1, sum2, sum3;
__m128 t0, t1, t2, t3;
float scalar_sum;
sum0 = _mm_setzero_ps();
sum1 = _mm_setzero_ps();
sum2 = _mm_setzero_ps();
sum3 = _mm_setzero_ps();

for (int j=0; j<size; j+=16){
 t0 = _mm_loadu_ps(data+j);
 t1 = _mm_loadu_ps(data+j+4);
 t2 = _mm_loadu_ps(data+j+8);
 t3 = _mm_loadu_ps(data+j+12);
 sum0 = _mm_add_ps(sum0, t0);
 sum1 = _mm_add_ps(sum1, t1);
 sum2 = _mm_add_ps(sum2, t2);
 sum3 = _mm_add_ps(sum3, t3);
}

sum0 = _mm_add_ps(sum0, sum1);
sum0 = _mm_add_ps(sum0, sum2);
sum0 = _mm_add_ps(sum0, sum3);
sum0 = _mm_hadd_ps(sum0, sum0);
sum0 = _mm_hadd_ps(sum0, sum0);

_mm_store_ss(&scalar_sum, sum0);

125

14: 0f 57 c9 xorps %xmm1,%xmm1
17: 31 c0 xor %eax,%eax
19: 0f 28 d1 movaps %xmm1,%xmm2
1c: 0f 28 c1 movaps %xmm1,%xmm0
1f: 0f 28 d9 movaps %xmm1,%xmm3
22: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)
28: 0f 10 3e movups (%rsi),%xmm7
2b: 0f 10 76 10 movups 0x10(%rsi),%xmm6
2f: 0f 10 6e 20 movups 0x20(%rsi),%xmm5
33: 0f 10 66 30 movups 0x30(%rsi),%xmm4
37: 83 c0 10 add $0x10,%eax
3a: 48 83 c6 40 add $0x40,%rsi
3e: 0f 58 df addps %xmm7,%xmm3
41: 0f 58 c6 addps %xmm6,%xmm0
44: 0f 58 d5 addps %xmm5,%xmm2
47: 0f 58 cc addps %xmm4,%xmm1
4a: 39 c7 cmp %eax,%edi
4c: 77 da ja 28 <compute_sum_SSE+0x18>
4e: 0f 58 c3 addps %xmm3,%xmm0
51: 0f 58 c2 addps %xmm2,%xmm0
54: 0f 58 c1 addps %xmm1,%xmm0
57: f2 0f 7c c0 haddps %xmm0,%xmm0
5b: f2 0f 7c c0 haddps %xmm0,%xmm0
5f: c3 retq

Example: array summation from intrinsics,
instruction code

Loop body

126

Rules for vectorizable loops

1.  Countable
2.  Single entry and single exit
3.  Straight line code
4.  No function calls (exception intrinsic math functions)

Better performance with:
1.  Simple inner loops with unit stride
2.  Minimize indirect addressing
3.  Align data structures (SSE 16 bytes, AVX 32 bytes)
4.  In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:
§  Non-contiguous memory access
§  Data dependencies

EXPLOITING
PARALLEL RESOURCES
ON MULTICORE NODES

•  ccNUMA

128

ccNUMA:
§  Whole memory is transparently accessible by all processors
§  but physically distributed
§  with varying bandwidth and latency
§  and potential contention (shared memory paths)

How do we make sure that memory access is always as "local"
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB)

ccNUMA performance problems
“The other affinity” to care about

C C C C

M M

C C C C

M M

129

ccNUMA map: Bandwidth penalties for remote access
§  Run 8 threads per ccNUMA domain (1 chip)
§  Place memory in different domain à 4x4 combinations

Cray XE6 Interlagos node
4 chips, two sockets, 8 threads per ccNUMA domain

§ S
TR

EA
M

 tr
ia

d
pe

rf
or

m
an

ce
 [M

B
/s

]
Memory node

C
PU

 n
od

e

130

numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
 --preferred=<node> a.out # map pages on <node>
 # and others if <node> is full
 --interleave=<nodes> a.out # map pages round robin across
 # all <nodes>

Examples:
for m in `seq 0 3`; do
 for c in `seq 0 3`; do
 env OMP_NUM_THREADS=8 \
 numactl --membind=$m --cpunodebind=$c ./stream
 enddo
enddo

But what is the default without numactl?

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

ccNUMA map scan

131

"Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

§  Except if there is not enough local memory available

Caveat: "touch" means "write", not "allocate"
Example:
double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE
 huge[i] = 0.0;
It is sufficient to touch a single item to map the entire page

ccNUMA default memory locality

Memory not
mapped here yet

Mapping takes
place here

132

Required condition: OpenMP loop schedule of initialization must be
the same as in all computational loops

§  Only choice: static! Specify explicitly on all NUMA-sensitive loops,
just to be sure…

§  Imposes some constraints on possible optimizations (e.g. load balancing)
§  Presupposes that all worksharing loops with the same loop length

have the same thread-chunk mapping
§  If dynamic scheduling/tasking is unavoidable, more advanced methods

may be in order
How about global objects?

§  Better not use them
§  If communication vs. computation is favorable, might consider properly

placed copies of global data

Coding for Data Locality

133

If your code is cache-bound, you might not notice any locality
problems

Otherwise, bad locality limits scalability at very low CPU
numbers (whenever a node boundary is crossed)

§  If the code makes good use of the memory interface
§  But there may also be a general problem in your code…

Running with numactl --interleave might give you a hint

Consider using performance counters

Diagnosing Bad Locality

134

Parallel init: Correct parallel initialization
LD0: Force data into LD0 via numactl –m 0
Interleaved: numactl --interleave <LD range>

The curse and blessing of interleaved placement:
OpenMP STREAM on a Cray XE6 Interlagos node

135

The curse and blessing of interleaved placement:
same on 4-socket (48 core) Magny Cours node

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
an

dw
id

th
 [M

by
te

/s
]

136

Identify the problem
§  Is ccNUMA an issue in your code?
§  Simple test: run with numactl --interleave

Apply first-touch placement
§  Look at initialization loops
§  Consider loop lengths and static scheduling
§  C++ and global/static objects may require special care

If dynamic scheduling cannot be avoided
§  Consider round-robin placement

Summary on ccNUMA issues

MULTICORE PERFORMANCE
TOOLS: PROBING PERFORMANCE
BEHAVIOR

likwid-perfctr

138

1.  Runtime profile / Call graph (gprof)
2.  Instrument those parts which consume a significant part of

runtime
3.  Find performance signatures

Possible signatures:
§  Bandwidth saturation
§  Instruction throughput limitation (real or language-induced)
§  Latency impact (irregular data access, high branch ratio)
§  Load imbalance
§  ccNUMA issues (data access across ccNUMA domains)
§  Pathologic cases (false cacheline sharing, expensive operations)

likwid-perfctr
Basic approach to performance analysis

139

§  How do we find out about the performance properties and requirements
of a parallel code?
§  Profiling via advanced tools is often overkill

§  A coarse overview is often sufficient
§  likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)
§  Simple end-to-end measurement of hardware performance metrics
§  “Marker” API for starting/stopping

counters
§  Multiple measurement region

support
§  Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

Probing performance behavior

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio

140

likwid-perfctr
Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor
CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
INSTR_RETIRED_ANY	1.97463e+08	2.31001e+08	2.30963e+08	2.31885e+08
CPU_CLK_UNHALTED_CORE	9.56999e+08	9.58401e+08	9.58637e+08	9.57338e+08
FP_COMP_OPS_EXE_SSE_FP_PACKED	4.00294e+07	3.08927e+07	3.08866e+07	3.08904e+07
FP_COMP_OPS_EXE_SSE_FP_SCALAR	882	0	0	0
FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION	0	0	0	0
FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION	4.00303e+07	3.08927e+07	3.08866e+07	3.08904e+07
+--------------------------------------+-------------+-------------+-------------+-------------+				
+--------------------------+------------+---------+----------+----------+				
Metric	core 0	core 1	core 2	core 3
+--------------------------+------------+---------+----------+----------+				
Runtime [s]	0.326242	0.32672	0.326801	0.326358
CPI	4.84647	4.14891	4.15061	4.12849
DP MFlops/s (DP assumed)	245.399	189.108	189.024	189.304
Packed MUOPS/s	122.698	94.554	94.5121	94.6519
Scalar MUOPS/s	0.00270351	0	0	0
SP MUOPS/s	0	0	0	0
DP MUOPS/s	122.701	94.554	94.5121	94.6519
+--------------------------+------------+---------+----------+----------+

Always
measured

Derived
metrics

Configured metrics
(this group)

141

likwid-perfctr
Identify load imbalance…

§  Instructions retired / CPI may not be a good indication of
useful workload – at least for numerical / FP intensive codes….

§  Floating Point Operations Executed is often a better indicator
§  Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO
DO I = 1, N
 DO J = 1, I
 x(I) = x(I) + A(J,I) * y(J)
 ENDDO
ENDDO
!$OMP END PARALLEL DO

142

likwid-perfctr
… and load-balanced codes

!$OMP PARALLEL DO
DO I = 1, N
 DO J = 1, N
 x(I) = x(I) + A(J,I) * y(J)
 ENDDO
ENDDO
!$OMP END PARALLEL DO

Higher CPI but
better performance

§ env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out

143

Example 1:
Abstraction penalties in C++ code
§ C++ codes which suffer from overhead (inlining problems, complex
abstractions) need a lot more overall instructions related to the arithmetic
instructions
§  Often (but not always) “good” (i.e., low) CPI à “Instruction overhead”

pattern
§  Low-ish bandwidth
§  Low # of floating-point instructions vs. other instructions
§  High-level optimizations complex or impossible à “Excess data volume”

pattern
§ Example: Matrix-matrix multiply with expression template frameworks on a
2.93 GHz Westmere core Total retired

instructions [1011] CPI Memory
Bandwidth [MB/s] MFlops/s

Classic 12.5 0.44 5300 1250

Boost uBLAS 10.1 4.6 630 156

Eigen3 2.1 0.41 371 8555

Blaze/DGEMM 2.0 0.32 531 11260

144

§  likwid-perfctr counts events on cores; it has no notion of what kind
of code is running (if any)

This enables to listen on what currently happens without any
overhead:

likwid-perfctr -c N:0-11 -g FLOPS_DP -s 10

§  It can be used as cluster/server monitoring tool

§  A frequent use is to measure a certain part of a long running
parallel application from outside

likwid-perfctr
Stethoscope mode

145

likwid-perfctr
Marker API
§  To measure only parts of an application a marker API is available.
§  The API only turns counters on/off. The configuration of the counters is

still done by likwid-perfctr application.
§  Multiple named regions can be measured
§  Results on multiple calls are accumulated
§  Inclusive and overlapping Regions are allowed

#define LIKWID_PERFMON // comment to disable
#include <likwid.h>

LIKWID_MARKER_INIT;

LIKWID_MARKER_THREADINIT;
LIKWID_MARKER_START(“Compute”);
. . .
LIKWID_MARKER_STOP(“Compute”);

LIKWID_MARKER_START(“postprocess”);
. . .

LIKWID_MARKER_STOP(“postprocess”);

LIKWID_MARKER_CLOSE;

146

SHORT PSTI
EVENTSET
FIXC0 INSTR_RETIRED_ANY
FIXC1 CPU_CLK_UNHALTED_CORE
FIXC2 CPU_CLK_UNHALTED_REF

PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED
PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR
PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION
PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION
UPMC0 UNC_QMC_NORMAL_READS_ANY
UPMC1 UNC_QMC_WRITES_FULL_ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS
UPMC3 UNC_QHL_REQUESTS_LOCAL_READS
METRICS
Runtime [s] FIXC1*inverseClock
CPI FIXC1/FIXC0

Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock
DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time
Packed MUOPS/s 1.0E-06*PMC0/time
Scalar MUOPS/s 1.0E-06*PMC1/time

SP MUOPS/s 1.0E-06*PMC2/time
DP MUOPS/s 1.0E-06*PMC3/time
Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;
Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;
LONG

Formula:
DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

likwid-perfctr
Group files

§  Groups are architecture-specific
§  They are defined in simple text files
§  Code is generated on recompile of

likwid
§  likwid-perfctr -a outputs list of groups
§  For every group an extensive

documentation is available

147

§  Implements Intel RAPL interface (Sandy Bridge)
§  RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor
CPU clock: 3.49 GHz

Base clock: 3500.00 MHz
Minimal clock: 1600.00 MHz
Turbo Boost Steps:
C1 3900.00 MHz
C2 3800.00 MHz
C3 3700.00 MHz
C4 3600.00 MHz

Thermal Spec Power: 95 Watts
Minimum Power: 20 Watts
Maximum Power: 95 Watts
Maximum Time Window: 0.15625 micro sec

Measuring energy consumption
likwid-powermeter and likwid-perfctr -g ENERGY

INTERLUDE:
A GLANCE AT CURRENT
ACCELERATOR TECHNOLOGY

149

NVIDIA Kepler GK110 Block Diagram

Architecture
§  7.1B Transistors
§  15 “SMX” units

§  192 (SP) “cores” each
§  > 1 TFLOP DP peak
§  1.5 MB L2 Cache
§  384-bit GDDR5
§  PCI Express Gen3

§  3:1 SP:DP performance

§ © NVIDIA Corp. Used with permission.

150

Intel Xeon Phi block diagram
Architecture
§  3B Transistors
§  60+ cores
§  512 bit SIMD
§  ≈ 1 TFLOP

DP peak
§  0.5 MB

L2/core
§  GDDR5

§  2:1 SP:DP
performance

64 byte/cy

151

§  Intel Xeon Phi
§  60+ IA32 cores each with

512 Bit SIMD
FMA unit à 480/960 SIMD DP/SP
tracks

§  Clock Speed: ~1000 MHz
§  Transistor count: ~3 B (22nm)
§  Power consumption: ~250 W

§  Peak Performance (DP): ~ 1 TF/s
§  Memory BW: ~250 GB/s (GDDR5)

§  Threads to execute: 60-240+
§  Programming:

Fortran/C/C++ +OpenMP + SIMD

Comparing accelerators

§  NVIDIA Kepler K20
§  15 SMX units each with

192 “cores” à
960/2880 DP/SP “cores”

§  Clock Speed: ~700 MHz
§  Transistor count: 7.1 B (28nm)
§  Power consumption: ~250 W

§  Peak Performance (DP): ~ 1.3 TF/s
§  Memory BW: ~ 250 GB/s (GDDR5)

§  Threads to execute: 10,000+
§  Programming:

CUDA, OpenCL, (OpenACC)

152

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

 GPU vs. CPU
light speed estimate:

1.  Compute bound: 2-10x
2.  Memory Bandwidth: 1-5x

 Intel Core i5 – 2500
(“Sandy Bridge”)

Intel Xeon E5-2660v2
node (“Ivy Bridge”)

NVIDIA K20x
(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 10 @ 2.2 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 35.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <4 <20 >8000?
Total performance+ 210 GFlop/s 704 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 42 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.86 Billion/95 W) 7.1 Billion/250W
+ Single Precision

CASE STUDY: HPCCG

Performance analysis on:
•  Intel IvyBridge-EP@2.2GHz
•  Intel Xeon Phi@1.05GHz

§ Microarchitectural optimizations

154

for(int k=1; k<max_iter && normr > tolerance; k++)
{
 oldrtrans = rtrans;
 ddot (nrow, r, r, &rtrans, t4);
 double beta = rtrans/oldrtrans;
 waxpby (nrow, 1.0, r, beta, p, p);
 normr = sqrt(rtrans);
 HPC_sparsemv(A, p, Ap);
 double alpha = 0.0;

 ddot(nrow, p, Ap, &alpha, t4);
 alpha = rtrans/alpha;
 waxpby(nrow, 1.0, r, -alpha, Ap, r);
 waxpby(nrow, 1.0, x, alpha, p, x);
 niters = k;
}

Introduction to HPCCG (Mantevo suite)

155

Components of HPCCG 1

#pragma omp for reduction (+:result)
for (int i=0; i<n; i++) {
 result += x[i] * y[i];
}

#pragma omp for
for (int i=0; i<n; i++) {
 w[i] = alpha * x[i] + beta * y[i];
}

ddot:

waxpby:

2 Flops
2 * 8b L = 16b
2.2GHz/2c * 16 Flops =
17.6 GFlops/s or
140GB/s L1 or 46GB/s L2

3 Flops
2 * 8b L + 1 * 8b S = 24b
2.2GHz/4c * 24flops =
13.2 GFlops/s or
106GB/s L1 or 47GB/s L2

156

Sparse matrix-vector multiply (spMVM)

§  Key ingredient in some matrix diagonalization algorithms
§  Lanczos, Davidson, Jacobi-Davidson

§  Store only Nnz nonzero elements of matrix and RHS, LHS
vectors with Nr (number of matrix rows) entries

§  “Sparse”: Nnz ~ Nr

= + • Nr

General case:
some indirect
addressing
required!

157

…

CRS matrix storage scheme

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

§  val[] stores all the nonzeros
(length Nnz)

§  col_idx[] stores the column index
of each nonzero (length Nnz)

§  row_ptr[] stores the starting index
of each new row in val[] (length:
Nr)

158

CRS (Compressed Row Storage) – data
format

§ Format creation
1.  Store values and column

indices of all non-zero elements
row-wise

2.  Store starting indices of each
column (rpt)

§ Data arrays
 double val[]
 unsigned int col[]

 unsigned int rpt[]

159

Components of HPCCG 2

#pragma omp for
for (int i=0; i< nrow; i++) {
 double sum = 0.0;
 double* cur_vals = vals_in_row[i];
 int* cur_inds = inds_in_row[i];
 int cur_nnz = nnz_in_row[i];

 for (int j=0; j< cur_nnz; j++) {
 sum += cur_vals[j]*x[cur_inds[j]];
 }
 y[i] = sum;
}

2 Flops
1 * 4b L + 2 * 8b L = 20b
2.2GHz/2c * 16 Flops =
17.6 GFlops/s or
140GB/s L1 or 46GB/s L2

160

Routine Serial Socket
ddot 5% 5%
waxby 12% 16%
spmv 83% 79%

First Step: Runtime Profile (3003)

Routine Chip
ddot 3%
waxby 8%
spmv 89%

Intel IvyBridge-EP (2.2GHz, 10 cores/chip)

Intel Xeon Phi (1.05GHz, 60 cores/chip)

161

Scaling behavior inside socket (IvyBridge-EP)

Rou$ne	 Time	 [s]	
Memory	 Bandwidth	

[MB/s]	 Data	 Volume	 [GB]	
waxby	 1	 2,33	 40464	 93	
waxby	 2	 2,37	 39919	 94	
waxby	 3	 2,4	 40545	 96	

ddot	 1	 0,72	 46886	 34	
ddot	 2	 1,4	 46444	 64	

spmv	 33,84	 45964	 1555	

HPM measurement
with LIKWID
instrumentation
on socket level

162

Routine Socket Node
ddot 6726 14547

waxby 3642 6123
spmv 6374 6320
Total 5973 6531

Scaling to full node (1803)

Routine Socket 1 Socket 2 Total
ddot 44020 47342 91362

waxby 39795 28424 68219
spmv 43109 2863 45972

Performance [GFlops/s]

Memory Bandwidth measured [GB/s]

163

Matrix data was not placed. Solution: Add first touch initialization.
#pragma omp parallel for
 for (int i=0; i< local_nrow; i++){
 for (int j=0; j< 27; j++) {
 curvalptr[i*27 + j] = 0.0;
 curindptr[i*27 + j] = 0;
 }
}

Optimization: Apply correct data placement

Routine Socket 1 Socket 2 Total
ddot 46406 48193 94599

waxby 37113 24904 62017
spmv 45822 40935 86757

Node performance: spmv 11692, total 10912

164

Scaling behavior Intel Xeon Phi

134804 GB/s

131803 GB/s

70039 GB/s

CASE STUDY: C++ SIMULATION
CODE

§ Microarchitectural optimizations

