ERLANGEN REGIONAL

COMPUTING CENTER

2

— —m'-.

The practitioner’s cookbook for good
parallel performance on multi- and
many-core systems

J. Treibig

PPOPP14, 16.2.2014

Schedule

8:30am — 10:00am | Overview, Introduction to computer architecture
10:00am — 10:30am | Coffee break
10:30am — 12:00am | Performance Engineering, Micro-Benchmarking
12:00pm — 1:30pm | Lunch break
1:30pm — 3:00pm | Performance Modeling, SIMD, NUMA, SMT
3:00pm — 3:30pm | Coffee break
3:30 pm — 5:00pm | LIKWID tools, Accelerators, Case Studies

Where it all started: Stored Program Computer

I
RLRLE

Arithmetic i (MU R R
Control ol (et R

Loaical
Unit

: Architect’s view: B o o
ﬁ Make the common case fast ! |- L

EDSAC 1949
Maurice Wilkes, Cambridge

Provide improvements for relevant software
What are the technical opportunities?
Economical concerns

Multi-way special purpose

Basic Resources:
Instruction throughput and data movement

1. Instruction execution

This is the primary resource of the processor. All efforts in

hardware design are targeted towards increasing the
iInstruction throughput.

2. Data transfer bandwidth

Data transfers are a consequence of instruction execution
and therefore a secondary resource.

Thinking in Bottlenecks

* A bottleneck is a performance limiting setting
* A microarchitecture exposes numerous
bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Hardware-Software Co-Design?
From algorithm to execution

Notions of work: Algorithm

* Application Work JB
. FlOpS Programming language
+ LUPS T
- VUPS

* Processor Work
- |nstructions
« Data Volume

Example: Threaded vector triad in C

Consider the following code: Setup:
32 threads running on a dual
socket 8-core SandyBridge-EP

#pragma omp parallel private(3j) gcc 4.7.0

{
for (int j=0; j<niter; j++) {
#pragma omp for
for (int i=0; i<size; i++) {
a[i] = b[i] + c[i] * d[i];

M| /* global synchronization */

Every single synchronization in this setup costs in the order
of 60000 cycles !

Why hardware should not be exposed

Such an approach is not portable ...
Hardware issues frequently change ...

Those nasty hardware details are too difficult to learn for the
average programmer ...

Important fundamental concepts are stable and
portable (ILP, SIMD, memory organization).

The basic principals are simple to understand

and every programmer should know them.

The driving forces behind performance

(] Moo] [Cuae] oo] [T] [Twe] [] (oo] [T] [[we] [wo J[we J[we J[wo J[w0 [0 [o |[o |

I Intel lvyBridge-EP NS [N 'BM Power7 N
* F * S * vV

P=n

core

Number of cores n_, 12 8

FP instructions per cycle F 2 2 (DP) /1 (SP)
FP ops per instructions S 4 (DP) /8 (SP) 2 (DP) /4 (SP) - FMA
Clock speed [GHZz] v 2.7 3.7
Performance [GF/s] P 259 (DP) / 518 (SP) 236 (DP/SP)

TOP500 rank 1 (1996) |

But: P=5.4 GF/s or 14.8 GF/s(dp) for serial, non-SIMD code

Timeline of technology developments

Octa-core -
AVX

- Sandandge 2 9 .
@@ Pcak Bandwidth
5 Quad Core _
10 E" | @—@ Peak Flops \ .
- Core 2 Quad 3 1
- ¥Bridge 2.7
B Core 2 DUO 3.0 Westmere 2393
0 B ehalem 3.2
oM A DIVEINGI - —
S 10°F 3-channel,
- = DDR3 on-chip
» r — P43.0 PentiumD 3.8 ccNUMA
B - Deep pipeline 2 -
g | High clock : i
LL SSE2
2 10°F =
i P 200 i
10°F =
o | | 1 | 1 | 1 | 1 I 1 | 1 l 1 | 1 | 1]

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
year

What needs to be done on one slide

Reduce work
Reduce data volume (over slow data paths)

Make use of parallel resources
Load balancing
Serial fraction

|[dentify relevant bottleneck(s)
Eliminate bottleneck
Increase resource utilization

Final Goal: Fully exploit offered resources for your specific code!

HARDWARE OPTIMIZATIONS FOR
SINGLE-CORE EXECUTION

« ILP

« SIMD

« SMT

* Memory hierarchy

Common technologies

= |nstruction Level Parallelism (ILP) Cycle Pipeline latency
= |nstruction pipelining Stages .
. Bubbles Wind-up
= Superscalar execution Wind-down
= Qut-of-order execution CPI Scheduler
Hazard

Caches Write allocate

= Memory Hierarch :
4 Y Temporal locality ~ Cache-line

* Branch Prediction Unit, Hardware Prefetching Speculative execution

Single Instruction Multiple Data (SIMD) ~ -2"°% Register width

Packed Scalar

= Simultaneous Multithreading (SMT)

5-stage Multiplication-Pipeline:
A(i)=B(i)*C(i) ; i=1,...,N

1 2 3 4 5 N N+1 N+2 N+3 N+4
Cycle
Separate B(1)| | B(2)| | B(3)| | B(4)| | B(5) B(N) }< 4
mant./exp. C(l)| [€(2)]| |C(3)| [C(4)]| | €(5) o C(N) Wind-down
Multiply B(1)| | B(2)| | B(3)| | B(4) B(N-1)| | B(N)
mantissas (| [c2)| | c3)]| | c) e ciN-1)| | C(N)
Add B(1)| | B(2)| | B(3) B(N-2)| |B(N-1)| | B(N)
exponents C(1l) Cc(2) C(3) T c{N-2)| |c(n-1)| | C(N)
Normalize A A A
result RDVIR@ sy | -2y | -1y | 2D
Insert Wind-up A a A A
sign > =A@ || | | veay| | 3| |2y | vy | 2OD

First result is available after 5 cycles (=latency of pipeline)!

Pipelining: The Instruction pipeline

Besides ALUs, instruction execution itself is also pipelined:
Fetch Instruction Decode _
from L1l instruction

Fetch Instruction 1

from L1l
Fetch Instruction 2 Decode
. from L1l Instruction 1
Fetch Instruction 3 Decode
from L1 Instruction 2
Fetch Instruction 4 Decode
from L1l Instruction 3

v

Superscalar Processors
Instruction Level Parallelism

Multiple units enable to “parallelize” the sequential instruction
stream on the fly

FA+A|A lnoatviintiann A
Fr\-l-nlﬁ lnatviiatian D

Fotabh lnotrintinn 0 4-wa
| | Fetch Instruction 1 /

. NAannAA ,superscalar®

YT T T T Y T— Nan~nAA
| | Fetch Instruction 5 Decode
= from L11 Instruction 1

wOTAN _INnctriintinnNn & [VaYaVaVe Va

| | Fetch Instruction 9 Decode
[from L1l Instruction 5

TN _INnctriintinnNn /1 (I VaYaVaVe Va

: “ Fetch Instruction 13 Decode
from L11 Instruction 9

Core details: Simultaneous multi-threading (SMT)

Y

T I T —
g D _»: L1D : Registers ,";’-
'g [] L] [] — L2 cache — —‘l’aThel_ }] — E
g pb pu [— T [T §

c - _

s @H [(T
» M . cache _| Y 1]

smon | | | |~—=| control = [[[—

] '
A7 WZ%Z/B ,[—~{ VA V)——
V, / 7

S ul 2z et WP ;/55/9;3};';; _ 2
= [] A cache =~V | ——<
N |:, D : L2 cache /Z — 27 :
9 D%, %77 %na =T 2
= D ///// 7 VA 3
&l 21 7] Lz u ':ED :
Z 7, D00 g cache 7 w

Memory W, A /Control -:W_

Core details: SIMD processing

Single Instruction Multiple Data (SIMD) allows the concurrent execution of
the same operation on “wide” registers.

= SSE: register width = 128 Bit - 2 DP floating point operands

= AVX: register width = 256 Bit - 4 DP floating point operands
Adding two registers holding double precision floating point operands

RO R1 R2 RO R1 R2
— . i
SIMD execution:
V64ADD [RO,R1] >R2

256 Bit< \<

Scalar execution:
R2< ADD [RO,R1]

Latency and bandwidth in modern computer environments

ns110° —— 1 I { cache —[—— 10"
a 1
10 il L2/L3 cache /‘ HPC plays here
1077 Main memory 1010
us | 106 —— -
}7 HPC networks
105 —— — 10° |1 GBIs
} Qigabit-Etiernet
104 ——
——— Solid state disk
ms 1023 —— 108
7 i . g
102 —— J Local hard disk Avoiding slow data
ool paths is the key to
101 — L 407 many performance
Latency Bandwidth optlmlzatlons!

[sec] [bytes/sec]

Registers and caches:
Data transfers in a memory hierarchy

How does data travel from memory to the CPU and back?

Remember: Caches are organized oc)
in cache lines (e.g., 64 bytes) MISS
Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

CPU registers

STA(1)
MISS

LD C(2..N,

)
STA(2..NC:)} HIT

" Cache

MISS: Load or store instruction does
not find data in a cache level
- CL transfer required -

write| evict
allocate| |(delayed)

3CL

CG) AG) transfers

Memory

Example: Array copy A(:)=C(:)

Consequences for data structure layout

Promote temporal and spatial locality

« Enable packed (block wise) load/store of data

* Memory locality (placement)

« Avoid false cache line sharing

« Access data in long streams to enable efficient latency hiding

Above requirements may collide with object oriented programming
paradigm: array of structures vs structure of arrays

Conclusions about core architectures

« All efforts are targeted on increasing instruction throughput

» Every hardware optimization puts an assumption against the
executed software

* One can distinguish transparent and explicit solutions

« Common technologies:
Instruction level parallelism (ILP)

Data parallel execution (SIMD), does not affect instruction
throughput

Exploit temporal data access locality (Caches)
Hide data access latencies (Prefetching)

Avoid hazards

PRELUDE:

SCALABILITY 4 THE WIN!

Scalability Myth: Code scalability is the key issue

Lore 1
In a world of highly parallel computer architectures only highly
scalable codes will survive

Lore 2
Single core performance no longer matters since we have so many
of them and use scalable codes

Scalability Myth: Code scalability is the key issue

1SOMP PARALLEL DO
do k =1 , Nk
do j =1, Nj; doi=1, Ni
y(i,j,k)=b*(=x(i-1,j,k)+ x(i+l,j,k)+ x(i,3J-1,k)+
x(1i,j+1,k)+ x(1,7,k-1)+ x(i,j,k+1))
enddo; enddo | T T T | | T T
enddo 2

ISOMP END PARALLEL DO | 3D Stencil Update
7+ ("Jacob1")

Changing only the

cqmpile options makes R 5-_ =8 Version 1 O i
this code scalable on an i ®-# Version 2 - Prepared for 1
8-core chip Ane the highly N
------------------------------- i parallel era! I
ikl 1 L
)| -03 -xAVX]
I__________y_n_!_rvltrf _____________

[Memory] 1 __ —_

| | | | | | | |

| 2 3 4 5 6 7 8

#icores

Scalability Myth: Code scalability is the key issue

1SOMP PARALLEL DO
do k =1 , Nk
do j =1, Nj; doi=1, Ni
v(i,j,k)=Db*(=x(i-1,j,k)+ x(i+1l,j,k)+ x(i,J-1,k)+
x(1i,j+1,k)+ x(1,3,k-1)+ x(i,3,k+1))
enddo; enddo 1500 | | T T T | l l

enddo / = - - i

1SOMP END PARALLEL DO I T .

Upper limit from simple i _—— Versijn 1| -
*o 1

performance model: 0001 Versi¢gn 2| |

35 GB/s & 24 Byte/update B 3D St —_— i

! encil Update |

("Jacob1")

500 Single core/socket efficiency .

is key issue!

@nance [MLUP/s]
1 I I

#cores

UNDERSTANDING PARALLELISM

AND THE LIMITATIONS OF
PARALLEL COMPUTING

Amdahls law

Understanding Parallelism:
Sequential work

r %:»-

>,
>,

After 16 time steps: 4 cars

Understanding Parallelism:
Parallel work

AT AN

After 4 time steps: 4 cars

“perfect speedup”

Understanding parallelism:
Shared resources, imbalance

l/ _ Unused resources due to resource

bottleneck and imbalance!

I s~ =< I

x
x
x
x

Limitations of Parallel Computing:
Amdahl’s Law

¢

. |deal world:
All work is perfectly parallelizable

=serial =serial

Closer to reality:
Purely serial parts
limit maximum speedup

~seriell | -serial

Reality is even worse:
Communication and synchronization
impede scalability even further

Limitations of Parallel Computing:
Calculating Speedup in a Simple Model (“strong scaling’)

T(1) = s+p = serial compute time (=1) |

parallelizable part: p =1-s purely serial
part s

Parallel execution time: T(N) = s+p/N

General formula for speedup: I
Amdahl's Law (1967) S

O

“strong scaling” P T(N) - S -I.

Limitations of Parallel Computing:
Amdahl's Law (“strong scaling”)

= Reality: No task is perfectly parallelizable
= Shared resources have to be used serially
= Task interdependencies must be accounted for
= Communication overhead (but that can be modeled separately)

= Benefit of parallelization may be strongly limited

= "Side effect"”: limited scalability leads to inefficient use of
resources

= Metric: Parallel Efficiency
(what percentage of the workers/processors is efficiently used):

= Amdahl case: 1

Limitations of Parallel Computing:
Adding a simple communication model for strong scaling

T(1) = s+p = serial compute time |

|

|]
parallelizable part: p =1-s purely serial
part s
) _ Model assumption: non-

parallel: T(N) = s+p/N+Nk overlapping communication fraction k for
messages communication per
worker

General formula for speedup:

o _ T0)

ST S+.+.

Limitations of Parallel Computing:

Amdahl's Law (“strong scaling”)

= Large N limits

= at k=0, Amdahl's Law
predicts

= at k#0, our simple model of S;; (N) N>l

communication overhead

1
. 0
Ilm S (N) =—
independent of N/
1

Nk

yields a beaviour of

Problems in real world programming
Load imbalance

Shared resources have to be used serially (e.g. 10)
Task interdependencies must be accounted for

Communication overhead

Limitations of Parallel Computing:
Amdahl’s Law (“strong scaling”) + comm. model

10

Z ~

6
/I’ —8— 5=0.01
$=0.1

-8-s5=0.1, k=0.05

S(N)

Limitations of Parallel Computing:
Amdahl’s Law (“strong scaling’)

Parallel
100 efficiency:
90 <10%
80 ~50%
70
60
_ =l=5=0 01
Z 50 s=0.1
)
=®=35=0.1, k=0.05
40
30
20
10
0

1 10 100 500 1000

Limitations of Parallel Computing:
How to mitigate overheads

= Communication is not necessarily purely serial

= Non-blocking crossbar networks can transfer many messages
concurrently — factor Nk in denominator becomes k (technical
measure)

= Sometimes, communication can be overlaﬁred with useful work
(implementation, algorithm):

= Communication overhead may show a more fortunate behavior
than Nk

= "superlinear speedups”: data size per CPU decreases with

Limits of Scalability:
Serial & Parallel fraction

Serial fraction s may depend on
= Program / algorithm
= Non-parallelizable part, e.g. recursive data setup
= Non-parallelizable 10, e.g. reading input data
= Communication structure
= Load balancing (assumed so far: perfect balanced)
= Computer hardware
= Processor: Cache effects & memory bandwidth effects
= Parallel Library; Network capabilities; Parallel 10
Determine s "experimentally":
Measure speedup and fit data to Amdahl’'s law — but that could
be more complicated than it seems...

Scalability data on modern multi-core systems

An example

1->2 cores on
CPUs

o}

S

g®)

D

D

Q
1->2 sockets
on node

Scalability data on modern multi-core systems
The scaling baseline

2,0 - .
= Scalability presentations should be intranode
grouped according to the memory- |
largest unit that the SEUITE e
. . code! 2
scaling is based on - Good
(the “scaling baseline”) SeElAE
S — 0,0- across
1 2 4 sockets
CPUs
2r .
Amdahl model with
o communication: Fit
§ 15F o (Iala . _ 1
g3 — fit s=0.01 k=0.05 | S (N) =

1-s
S+ 5+ kN

1 - to inter-node scalability numbers
(N = # nodes, >1)

Application to “accelerated computing”

= SIMD, GPUs, Cell SPEs, FPGAs, just any optimization...

= Assume overall (serial, un-accelerated) runtime to be T ,=s+p=1

= Assume p can be accelerated and run a times faster. We
neglect any additional cost (communication...)

= To get a speedup of ra, how small must s be? Solve for s:

| rt =1
1-s a-1
a

ro =

= At a=100 and r =0.9 (for an overall speedup of 90), we get
s=0.0011, i.e. you must accelerate over 99.9% of serial runtime!

* Limited memory on accelerators may limit the achievable
speedup

End part 1 42

TOPOLOGY OF MULTI-CORE /
MULTI-SOCKET SYSTEMS

e Chip Topology
* Node Topology
* Memory Organisation

Building blocks for multi-core compute nodes

Core: Unit reading and executing instruction stream

Chip: One integrated circuit die

Socket/Package: May consist of multiple chips

Memory Hierarchy:
Private caches

Shared caches
ccNUMA: Replicated memory interfaces

Chip Topologies

Separation into core and uncore

Memory hierarchy holding together
the chip design

L1 (L2) private caches
L3 cache shared (|_|_C) Westmere-EP, 6C, 32nm 248mm?

Serialized LLC = not scalable

Segmented ring bus, distributed
LLC - scalable design

SandyBridge-EP, 8C, 32nm 435mm?

Cray XC30 “SandyBridge-EP” 8-core dual socket node

____________ = 8 cores per socket 2.7 GHz

e 8 |lgl: B (3.5 @ turbo)

I § = = DDR3 memory interface with 4
| il g g channels per chip

o [l [I=; L = Two-way SMT

I = Two 256-bit SIMD FP units
e By [- SSE4.2, AVX

a A

3': § = 32 kB L1 data cache per core
e Jels| (=] = 256 kB L2 cache per core

e A — = 20 MB L3 cache per chip

From UMA to ccNUMA
Memory architectures

Yesterday (2006): Dual-socket Intel “Core2” node:

—_——n e e e e = = =

P P P P

L1D L1D L1D L1D

Uniform Memory Architecture (UMA)

| B | B Flat memory ; symmetric MPs

R —

Today: Dual-socket Intel (Westmere,...) node:

__

T1‘T2 T1|T2 T1|T2 T1|T2 T1‘T2 T1|T2 :T1|T2 T1|T2 T1|T2 T1‘T2 T1|T2 T1|T2 .

PP |[r e P Ip [PlP [PI[PlP][P| = Cache-coherent Non-Uniform Memory

e - e v - N - - - e Architecture (ccNUMA)

| L3 ! L3 !

[Wemennersce == Wemymemes 1 = HT/ QPI provide scalable bandwidth at
the price of ccNUMA architectures:

[Memory } [Memory] Where does my data finally end up?

Conclusions about Node Topologies

Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms
= Sockets/devices — CPU: 1-8, GPGPU: 1-6
= Cores — moderate (CPU: 4-16) to massive (GPGPU: 1000’s)
= SIMD — moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

Exploiting performance: parallelism + bottleneck awareness
= “High Performance Computing” == computing at a bottleneck

Performance of programs is sensitive to architecture
= Topology/affinity influences overheads of popular programming models
= Standards do not contain (many) topology-aware features
> Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)

= Apart from overheads, performance features are largely independent of the
programming model

MULTICORE PERFORMANCE AND

TOOLS:
PROBING NODE TOPOLOGY

= Standard tools
= |ikwid-topology

How do we figure out the node topology?

= Topology =
= Where in the machine does core #n reside? And do | have to
remember this awkward numbering anyway?
= Which cores share which cache levels?

= Which hardware threads (“logical cores”) share a physical core?
* LinuXx /$ numactl --hardware

available: 4 nodes (0-3)
= cat /proc/cpuinfo is of limited use | node 0 cpus: 012345
node 0 size: 8189 MB
= Core numbers may change across kernels node 0 free: 3824 MB
. . node 1 cpus: 6 7 8 9 10 11
and BIOSes even on identical hardware < node 1 size. 8192 MB
- _ : node 1 free: 28 MB
numactl h_ardwar_e prlnts node 2 cpus: 18 19 20 21 22 23
ccNUMA node information = node 2 size: 8192 MB
.) node 2 free: 8036 MB
= Information on caches is harder node 3 cpus: 12 13 14 15 16 17
: node 3 size: 8192 MB
to Obtam \node 3 free: 7840 MB

How do we figure out the node topology?

LIKWID tool suite:

Like

I
Knew
What
I'm
Doing

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite for

Open source tool collection x86 multicore environments. Accepted for
(developed at RRZE): PSTI2010, Sep 13-16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431
http://code.google.com/p/likwid

Likwid Tool Suite

= Command line tools for Linux:
= easy to install

= works with standard linux 2.6 488N
= simple and clear to use
= supports Intel and AMD CPU

= Current tools:
= |likwid-topology: Print thread and cache topology
= likwid-pin: Pin threaded application without touching code
= likwid-perfctr: Measure performance counters
= likwid-mpirun: mpirun wrapper script for easy LIKWID integration
= |likwid-bench: Low-level bandwidth benchmark generator tool

Output of likwid-topology -g
on one node of Cray XE6

CPU type: AMD Interlagos processor
hkkkkkkhkkkhkkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkkhkkkhkhkkkhkkkhkkhkkkhkx

Hardware Thread Topology
khkkhkkkhkkhkhkkhkhkhkhkkhkkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkkhkhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkkhkx

Sockets: 2
Cores per socket: 16
Threads per core: 1

Socket 0: (0123456789 10 11 12 13 14 15)
Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

hkkhkkkkhkkhkkhkhkkkhkkhkkhkkhkkhkhkkhkkhkkkhkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkkkkx

Cache Topology

hkkhkkkkkhkkkhkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkkhkkhkkhkhkkhkhkkkhkkhkkkhkx

Level: 1
Size: 16 kB
Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)
(27) (28) (29) (30) (31)

FRIEDRICH-ALEXANDER
SITAT

Output of likwid-topology continued

Level 2
Size: 2 MB
Cache groups: (01) (23) (45) (67) (89) (1011) (12 13) (1415) (16 17) (18

19) (2021) (22 23) (2425) (2627) (28 29) (30 31)

Level: 3
Size: 6 MB
Cache groups: (01234567) (891011 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

hkkhkkhkkkhkkhkkhkhkkkhkkkhkhkkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkhkkkkk*k

NUMA Topology
hkkhkkkx

NUMA domains: 4

Domain O:

Processors: 01 2 3 45 6 7

Memory: 7837.25 MB free of total 8191.62 MB
Domain 1:

Processors: 8 9 10 11 12 13 14 15
Memory: 7860.02 MB free of total 8192 MB
Domain 2:

Processors: 16 17 18 19 20 21 22 23
Memory: 7847.39 MB free of total 8192 MB
Domain 3:

Processors: 24 25 26 27 28 29 30 31
Memory: 7785.02 MB free of total 8192 MB

FRIEDRICH-ALEXANDER
SITAT

inued

-topology cont

Ikwi

Output of |

hhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhkhhkkhhkkhhkkhhkhkhkhhkhkhkhkhhkhhkhkhkkhkhkhkhhkkhhkkk

Graphical:

hkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhhkhkhhkhkhhkhkhkhhhkhhhkhkhkhkhhkhkhkhkhkkhkhkhkhkhkkhhkkk

Socket 0:

2MB

2MB
6MB

2MB 2MB
|

2MB

2MB

6MB

T ittt Tt e Tt T et ¥
|
T ittt Tt e Tt T et ¥

2MB

2MB

Socket 1:

2MB

2MB
6MB

2MB

2MB

2MB

2MB
6MB

2MB

2MB

oo
|
oo

[
w
-}
z
<
x
[}
-
=
=
o
z
o
|
[
[

ENFORCING

THREAD/PROCESS-CORE AFFINITY
UNDER THE LINUX OS

= Standard tools and OS affinity facilities under
program control
= likwid-pin

Example: STREAM benchmark on 16-core Sandy Bridge:
Anarchy vs. thread pinning

T I T I T I T I T I T I T I T I :T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2: :T1|T2 T1|T2 T1|T2 T1|12 T1|12 T1|T2 T1|T2 T1|T2:
80— — ! - |
I 1 e lelplle [P |lPp|r| P|[PlPlP|[P|P|PIP|
E_ i[Lo |[b |[o |[o |[o |[o |[o |[b |} «[Lap |[b |[b |[b |[b |[b |[Lab |[LD |
70 — Itz L2 L2 L2 L2 L2 L2 [E2 [I L2 L2 L2 L2 L2 L2 L2 |
L 1 L3 Lo L3 |

1 L 1 L
60 - I ﬁ | || Memory Interface H Memory Interface |:
oo ——————1 - F-F-F-—--—-—---—-—---=- [p————— - F-F-F--—--—-—-—-—-—-—--.

.
o
I

Bandwidth [GB/s)
W i
S S
| T T I T
[|
——T43
—H
| |
=
[
3
o
<
-
T
=
@
3
o
<

- No pinning 1 : : . . ; ; : :

10 _—_ —— 80 - =| _
0 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i = !E_
4 8 12 16 20 24 28 32 70 = -]

threads - - __-_ -z i

60 = T T —

550 - -= I

There are several reasons for caring ?§40j ==]
about affinity: 23 T . _ _ -
i Pinning (physical cores first, |

Eliminating performance variation w0 T first socket first) -
Making use of architectural features 10" -
Avoiding resource contention b]

4 8 12 16 20 24 28 32
threads

-NURNBERG

More thread/Process-core affinity (“pinning”) options

* Highly OS-dependent system calls
= But available on all systems

Linux: sched setaffinity (), PLPA - hwloc
Windows: SetThreadAffinityMask ()

= Support for “semi-automatic” pinning in some compilers/
environments

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU

SGl Altix dplace (works with logical CPU numbers!)

Generic Linux: taskset, numactl, 1likwid-pin (see below)
= OpenMP 4.0

Affinity awareness in MPI libraries

= OpenMPI

= |ntel MPI

Likwid-pin

Overview

= Pins processes and threads to specific cores without touching code

= Directly supports pthreads, gcc OpenMP, Intel OpenMP

= Based on combination of wrapper tool together with overloaded pthread library
-> binary must be dynamically linked!

= Can also be used as a superior replacement for taskset

= Supports logical core numbering within a node and within an existing CPU set

= Useful for running inside CPU sets defined by someone else, e.g., the
MPI start mechanism or a batch system

= Usage examples:
= Physical numbering (as given by likwid-topology):
likwid-pin -c 0,2,4-6 ./myApp parameters
= Logical numbering by topological entities:
likwid-pin -c S0:0-3 ./myApp parameters

Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP_NUM THREADS=4
$ likwid-pin -c¢ 0,1,4,5 ./stream
[likwid-pin] Main PID -> core 0 - OK Main PID a|ways

"""""""""""""""""""""""""""""" pinned

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

[... some STREAM output omitted ...]

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper] PIN MASK: 0->1 1->4 2->5

[pthread wrapper] SKIP MASK: 0x1 N Skip shepherd
[pthread wrapper 0] Notice: Using libpthread.so.0 thread
threadid 1073809728 -> SKIP
[pthread wrapper 1] Notice: Using libpthread.so.0
threadid 1078008128 -> core 1 - OK >’
[pthread wrapper 2] Notice: Using libpthread.so.0 \\\\ -
threadid 1082206528 -> core 4 - OK Pin all spawned
[pthread wrapper 3] Notice: Using libpthread.so.0 p threads in turn

threadid 1086404928 -> core 5 - OK
[... rest of STREAM output omitted ...]

Likwid-pin

Using logical core numbering

Core numbering may vary from system to system

= Likwid-topology delivers this information, which can then be fed into likwid-pin
Alternatively, likwid-pin can abstract this variation and provide a purely
logical numbering (physical cores first)

Socket 0: Socket 0:

B e + B e +

| +--—-=- + -——m—- + - + - + | +--—-=- + -—-—-- + - + -—---- + |

I o0 111 2 311 4 511 6 7|1 I 0o 8 | 1 9 | 210 | 311] |

| 4=——m——- e + - + 4 + | | 4=—m——- + 4 + - + 4 +

| +====—= + - + - + b + | | +====—- + - + - + - + 1

| 1 32kB| | Socket 1: I | 32kB| | Socket 1:

| +-—--—- b + | +-——-—- B +

| +==—-- LA IR + +------ + - + +------ + | +===-=- oA - + - + 4-—-—-- + - +

| | 256kB| | © | | 8 9| |10 11| |12 13| |14 15] | | | 256kB| | @ | | 412] | 513| | 6 14| | 7 15| |

| +=====- S B R + +------ + - + +----—- + | +=====- A T + +--—-—- + 4---—-- + +--—-—- +

I | +=-———m- + e + A= + e + | | #=mmmmmmm | 4=—m-mm- e + e + e + |

Il | | 32kB| | 32kB| | 32kB| | 32kB| | Il | | 32kB| | 32kB| | 32kB| | 32kB| |

| A== | +--—--- + +------ + - + +------ + | +==—m—— | +--—-—- + - + 4-—-—-- + - +

oo o R + - A + Fommmm omm B R B +
| | 256kB| | 256kB| | 256kB| | 256kB| | | | 256kB| | 256kB| | 256kB| | 256kB| |
| +--—-—- + d----m- + -——-—- L + | +--—-—- + - + -—-—-- + - +
| oo e + | oo s +
(I 8MB (I (I 8MB (I
| #mm e e + | e e +
e + B +

Across all cores In the node:
OMP NUM THREADS=8 likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
OMP NUM THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Likwid-pin

Using logical core numbering

Default if -c is not
specified!

Possible unit prefixes

N node

HE =
4l e | o | e e | o | T | IS T | T | e e

'@)) ™) v} ¥
s / \ 4

(Memory Memory]

M NUMA domain

Coherent HyperTransport (16x+8x)

FRIEDRICH-ALEXANDER
UNIVERSITAT
ERLANGEN-NURNBERG

DEMO

[
w
-}
z
<
x
[}
-
=
=
o
z
o
|
[
[

o
=
&
2
=
z
2
.
Ed
2o
¥3
23
Zx
Sw

PATTERN-DRIVEN

PERFORMANCE ENGINEERING
PROCESS

Basics of Benchmarking
Performance Patterns
Signatures

Basics of Optimization

Define relevant test cases

Establish a sensible performance metric

Acquire a runtime profile (sequential)

|dentify hot kernels (Hopefully there are any!) lteratively
Carry out optimization process for each kernel

o kWb~

Motivation:

« Understand observed performance

 Learn about code characteristics and machine capabilities
* Deliberately decide on optimizations

Best Practices Benchmarking

Preparation

Reliable timing (Minimum time which can be measured?)

Document code generation (Flags, Compiler Version)

Get exclusive System

System state (Clock, Turbo mode, Memory, Caches)

Consider to automate runs with a skript (Shell, python, perl)
Doing

= Affinity control
Check: Is the result reasonable?

Is result deterministic and reproducible.
= Statistics: Mean, Best 7?7

= Basic variations: Thread count, affinity, working set size (Baseline!)

Best Practices Benchmarking cont.

Postprocessing
Documentation
Try to understand and explain the result
Plan variations to gain more information

Many things can be better understood if you plot them (gnuplot,
xmgrace)

Philosophy of pattern based approach

Motivated by a resource utilization driven view.
Provide a structured iterative process based on:
= Performance patterns
= A diagnostic performance model
Performance patterns are typical performance limiting bottlenecks
Patterns are indicated by signatures which can consist of:
= HPM data
= Scaling behavior
= Other data
Uses one of the most powerful tools available:

Your brain !
You are a investigator making sense of what’s going on.

Performance pattern classification

1. Maximum resource utilization
2. Hazards
3. Work related (Application or Processor)

The system offers two basic resources:

= Execution of instructions (primary)
= Transferring data (secondary)

Microbenchmarking Hardware, gttt /
instruction set code analysis
Notions of work
Application work
£
- Processor work
a
©
T
o
= Performance model
Pattern: qualitative

c Model validation Vi d c

5 = HW metrics 5 =

= 2 = 2

S g s g

() [()] n -

2 £ e gl Model: quantitative

=] Validation No s]

OK?
Yes

g Optimize for better ¢ = > Identify Find the relevant
= resource utilization - ® correct pattern " mgs
5 | © J | J limiting bottleneck!
g 4 1\ ‘g (1\
2 Eliminate non— ¢ = '§ 5> Adjust
o expedient activity model input

Pattern

Behavior

Bandwidth saturation

Limited Pipeline saturation
Instruction Pipelining hazards
throughput .
Control flow issues
Inefficient Strided Access

data access iratic Access

Microarchitectural anomalies
False cacheline sharing

Bad ccNUMA page placement

Load imbalance
Synchronization overhead

Code Instruction overhead
composition

. Expensive instructions
Issues

Ineffective instructions

saturating speedup across cores sharing a data path
throughput at design limit

in-core throughput far from design limit, performance
insensitive to data size

simple BW models far too optimistic

large discrepancy from simple performance models

very low speedup, or slowdown / discrepancy from
model only in parallel case

bad/no scaling across locality domains, better
performance w/ interleaved placement

saturating/sub-linear speedup

speedup going down as more cores are added / no
speedup with small problem sizes

low application performance, good scaling across
cores, performance insensitive to problem size

Pattern

Detection

Bandwidth saturation

Limited Pipeline saturation
Instruction pjneining hazards
throughput

Control flow issues
Inefficient Strided Access
data access prratic Access

Microarchitectural anomalies
False cacheline sharing
Bad ccNUMA page placement

Load imbalance
Synchronization overhead

Code Instruction overhead
composition
issues Expensive instructions

Ineffective instructions

Bandwidth meets BW of suitable streaming benchmark
Low CPI, 1:1 ratio of cy to specific instruction counts

Large integral ratio of cy to specific instruction counts,
high CPI

High branch rate, high branch miss ratio

Low cache hit ratio, frequent line evics/replacements
See above, plus low BW utilization (latency)

Very hardware specific, memory aliasing, alignment ...
Frequent remote evicts

Unbalanced bandwidth on memory interfaces/ high
remote traffic

Different amount of “work” across cores
Large non-"work” instruction count / Low CPI

Low CPI / large non-FP instruction count, low resource
utilization

Large CPI

Scalar instructions dominating in data-parallel loops

optional BRE

Example rabbitCT

Work reduction
optimization

ECM Model analysis
using IACA

J saturation,
Pipelining issues,
Code composition
patterns

Replace divide with
pipelined reciprocal

Apply SIMD vectorization

Use SMT capabilities

Result of effort:

9-6 X improvement
against initial parallel C
code implementation

>50% of peak
performance (SSE)

ALU saturation pattern

Ruling out memory bandwidth limitation

80 | «—= unblocked 6T L
. o—0a unblocked 12T SMT

20 +—+ 4-way blocked 6T 20
I =—= 4-way blocked 12T SMT

60

(o)}

?lllllllllo

I
0F 300 400 500 810 700
runtime [ms]

+—= unblocked 6T
o—0 unblocked 12T SMT

SP GFlops/s
)

W
o

memory bandwidth [GB/s]
X

8
_ 4 +—= 4-way blocked 6T
20 =—= 4-way blocked 12T SMT
- . -4
10 i i
0 | I | I | | 0 | | | |

1545 155 1555 175 176
runtime [s] runtime [s]

MICROBENCHMARKING FOR

ARCHITECTURAL EXPLORATION

Probing of the memory hierarchy
Saturation effects in cache and memory
Typical OpenMP overheads

Latency and bandwidth in modern computer environments

ns110° —— 1 I { cache —[—— 10"
8 1
10 il L2/L3 cache /‘ HPC plays here
1077 Main memory 1010
us | 106 —— -
}7 HPC networks
105 —— —— 10° |1 GBIs
} Gigabit-EHvermst
104 ——
——— Solid state disk
ms 10° —— __ {0®
7 i . g
102 —— J Local hard disk Avoiding slow data
ool paths is the key to
101 — L 407 most performance
Latency Bandwidth optlmlzatlons!

[sec] [bytes/sec]

Recap: Data transfers in a memory hierarchy

= How does data travel from memory to the CPU and back?
= Example: Array copyA(:)= C(:)

LD C(1)
MISS

LD C(1)
MISS

STA(1)

NTST A(1)
MISS

LD C(2..N_) LD C(2..N,) HIT
ST A(2..Nc|)} HIT NTST A(2..Nc:)

\

Cache che

write| |evict
allocate| |(delayed)

: : 3 CL _ _ 2CL
() AG) transfers C() A(:) B e
Memory Memory
50%
Standard stores Nonterrtlporal (NT) gerfotrrfnance
stores oost for

COPY

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:
double precision, dimension(N) :: A,B,C,D
A=1.d0; B=A; C=A; D=A

do j=1,NITER

Prevents smarty-pants

do i=1,N compilers from doing
A(i) = B(i) + C(i) * D(i) “clever” stuff
enddo

if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo

Report performance for different N
This kernel is limited by data transfer performance for all
memory levels on all current architectures!

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

90(X)|I I I I llllll I I lllllll I I I llllll I I I llllll
2000 | Theoretical limit AVX |
. \\ 4 W | iteration — — scalar i
7000 - 128 GB/s _
g - i
£ 6000 — —
= . L1D cache (32k) 'Y i
2 5000 : —
8 - -
g 4000 - :_2 cache (256k|) _
g _
+= 3000 L3 cache (20M) —
5} |
oy |
2000 | Memory
————————— I -
- - 5W/it.
Oll 1 1 1 llllll 1 1 1 llllll 1 1 1 llllll 1 1 1 llllll 918GBIS
10° 10° 10 10° 10° (incl. write
allocate)

Loop length

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

9000

8000

| Theoretical limit

7000

T

3
S

T
< 2.66x SIMD im

S

T

4000

3000

Performance [MFlops/s]

2000

— AVX
— = gcalar

pact
}

4 W |/ iteration
-> 128 GB/s

Max. LD/ST throughput:
1 AVX Load & 2 AVX Store per cycle
- 3 cy/ 8 Flops <> 8 Flops/3 cy

D
- . .. ar
Theoretical limit awg
- Leoretice] y 9smaller SIMD,-
e —— - e m
. \; - Pact
.

- 4 W /iteration =~ T T T TT T T =% .
10001 Y erton o LDor1LD&1ST)/ ck
N | 9 2 Flops/2 cy]

O | 5 1 | I | | | L1111 l | | | I | 1 | I |
10° 10° 10° 10° 10°

Loop length

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark
double precision, dimension(:), allocatable :: A,B,C,D

1$OMP PARALLEL private(i,j,A,B,C,D)
allocate(A(1:N) ,B(1:N),C(1:N),D(1:N))
A=1.d0; B=A; C=A; D=A
do j=1,NITER
do i=1,N
A(i) = B(1) + C(i) * D(1i)
enddo
if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo

1SOMP END PARALLEL
—> pure hardware probing, no impact from OpenMP overhead

Throughput vector triad on Sandy Bridge socket (3 GHz)

70 II I | I |||||I I I L | | | IIIII' I | IIlIIII _____________
i i :i¢ﬁ _I ()
m S L l | T T T 1 :é : :
60 2.0 EIeED |
—_ | [—T= 161 o 1E= |y
o I L] i g
5“ - — T= 1 1 5%34 gi s
S 4 L= T=8 0.8 ~ - ingﬁ 2!
Py 5 Saturation effect 4 :; '
S 0.4 in memory] :#@ﬁ
S0PV - 1 |
g i -\1 0.0 1 1 1 1 [|6 | i L [B) | -
= 10
g 20t -
o _
L
S
. ~—— AN
O | | IIIIII | | I/ml | | | IIIIIIL_ I?l ||
10‘ 0’ 10" 10° 10°
Scalable BW in Loop length

L1, L2, L3 cache

Bandwidth limitations: Main Memory
Scalability inside a NUMA domain (V-Triad)

50 T T T [T T T | T T T T T : |
I B8 Westmere i
40 Saturation with *e ISatndly Bridge
B / 3 threads ®—@ Interlagos .

9%
o
I

Saturation with
2 threads

\ Saturation with B

1 thread cannot
B saturate bandwidth 4 threads

I, NUMA domai

b
O
I

Bandwidth [GByte/s]

10~

NUMA domains

| 1 I

O | | 1

)
0 4 8 12 16
cores

Attainable memory bandwidth: Comparing architectures

i

e j

[
i L3

[l)
L3 |

AMD Interlagos

#

8 10 12 14 16
Threads

[I [I [I [I
401 & o o— o 401~
R A |
30k S
 ———— ;
o [[1T11] 1
Memory
S oot _
101 . .
Intel Sandy Bridge
0 1] 1] 1] 1] 0
1 2 3 4 5 6 7 8
Threads
|
160 160+
140 140}
120 120
100 100k
0 0
& sof- D ool
sol- 2-socket [
40 1 ~ CPU node
Intel Xeon Phi 5110P] 4or
201 = 20}
| ! | ! | | | | |
0 0 10 20 30 40 50 60 0
Threads

FRIEDRICH-ALEXANDER
UNIVERSITAT
ERLANGEN-NURNBERG

10°

Threads

Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache

300 ' ' ' I ' ! ' ' B8 Westmere (LL3) !
5 ®—® Sandy Bridge (L3) .
®—® Interlagos (L.3)
250 O © Interlagos (1.2) ,(2 N
- / i =
-~
= -7
f‘i 2001 Intel SB: P - |
M | New scalable P -
< L3 design ~7
— / i
< 150 .~ AMD:
-g i Optimize for L2 cachel] |
=
ocg 100 .
S0 7
O | | I

16

Parallel vector triad benchmark

We use the following code:

#pragma omp parallel private(j)
{
for (int j=0; j<niter; j++) {
#pragma omp for
for (int i=0; i<size; i++) {
af[i] = b[i] + c[i] * d[i];
}

1}

The parallel vector triad benchmark
Single thread on Cray XEG6 Interlagos node

5000 |
| L1 perf. model (3.3 GHz)

4.___
S
1

:

I§Q

Performance [MFlop/s]

1000

expensive!

— Serial
= OpenMP T=1

— OpenMP T=1 outer parallel

OMP overhead
and/or lower

optimization w/
OpenMP active

eam restart is

F— o a | (\
ol © Il
w - ol
— O] 8
— ©
2l O [S]a t >
W - ol 9
1 o |5 - || E (]
ol © =l o Q
— O 4 °
o 8 gN =
o Y
._l L -/
- use only

outer parallel
from now on!

10 AT 10°
Loop féngth N

memory

L2 cache L3 cache

Overhead OpenMP Synchronization
SandyBridge-EP ICC 13.1

38000_ I 1T TTTrrn I | L Irlllll / L3 CaChe
36000 | fully usable
34000 | — Sequential
32000 | — OpenMP (socket) 8T
30000 | — OpenMP (socket, SMT2) 16T
@ 28000 | —— OpenMP (node) 16T
8- 26000 | —— OpenMP (node, SMT2) 32T A
g ;gggg Small impact
= 20000 of using SMT
€ 18000
< 16000
5 14000 |
12000
o 10000 Crossover
8000 point close to
6000/ L1 cachesize
4000 :
2000 | ~— -
=0 10000 16406

Loop length [elements]

Overhead Syncronization OpenMP
SandyBrldge -EP GCC4.7.0

38000_ T T T T 1110 T T T 11111 L3 CaChe
36000 ffect not
Sequential SUSCENS

34000
32000 OpenMP (socket) 8T fuIIy usable
30000 OpenMP (socket, SMT2) 16T

o 28000 | OpenMP (node) 16T

g. 26000 OpenMP (node, SMT2) 32T

L 24000

= 22000
20000 |
18000
16000
14000
12000 '

10000 F CE Crossover

8000 point at end of
6000 | L2 cachesize
4000 s
2000

Large impact
of using SMT

Performance

100 - 10000 16406

Loop length [elements]
End part 2 89

“SIMPLE” PERFORMANCE

MODELING:
THE ROOFLINE MODEL

Loop-based performance modeling:
Execution vs. data transfer

Preliminary: Estimating Instruction throughput

How to perform a instruction throughput analysis on the example of
Intel’'s port based scheduler model.

Issue 6 uops

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

ALU ALU LOAD LOAD STORE ALU
[FMUL [FADDT AGU AGU FSHUF
16b'T 16bT 16b¢ JUMP

Retire 4 uops

SandyBridge

Preliminary: Estimating Instruction throughput

Every new generation provides incremental improvements.
The OOO microarchitecture is a blend between P6 (Pentium Pro)

and P4 (Netburst) architectures.
Issue 8 uops

Port O Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

ALU ALU LOAD LOAD STORE ALU ALU AGU

'FMA| [FMAT AGU AGU FSHUF JUMP
FMUL 32b'T 32bT 32b¢ JUMP

Retire 4 uops

Haswell

Exercise: Estimate performance of triad on
SandyBridge @3GHz

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[i] + C[i] * D[1i]

How many cycles to process one 64byte cacheline?

64byte equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and "z store and mult and add
Cycle 2: load and 'z store

Cycle 3: load Answer: 6 cycles

Exercise: Estimate performance of triad on
SandyBridge @3GHz

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[i] + C[i] * D[1i]

Whats the performance in GFlops/s and bandwidth in MBytes/s ?

One AVX iteration (3 cycles) performs 4x2=8 flops.

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s
4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

The Roofline Model'-2

1. P_ .. = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over
the slowest data path utilized (“the bottleneck”)

= Code balance B, = /-1

3. bs = Applicable peak bandwidth of the slowest data path utilized

[F/B] [B/s]

-
Expected performance: P =min(P,,, | by)

TW. Schonauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
28. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)
on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)
= bs =40 GBI/s
= B, =(4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

->1=0.4F/W=0.05F/B
-2 - bs=2.0 GF/s (1.2 % of peak performance)

« P_..« = 173 GFlopl/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

= P_..7 = Observe LD/ST throughput maximum of 1 AVX Load and 2

max *

AVX store per cycle - 3 cy / 8 Flops
-2 P...= 57.6 GFlop/s (33% peak)

P = min(Py,x I * bs) = min(57.6,2.0) GFlop/s
= 2.0 GFlop/s

“Simple” Roofline: The vector triad

Example: Vectortriad A (:)=B (:)+C(:)*D(:)
on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized)

bs = 160 GB/s
B, = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)
->1=0.4F/W=0.05F/B

- |- bg = 8.0 GF/s (0.8 % of peak performance)

* Poea = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz)

P...? = Observe LD/ST throughput maximum of 1 Load or 1 Store per
cycle > 4 cy /16 Flops =2 P__. = 252 Gflop/s (25% of peak)

max

P = min(Py.x I - bg) = min(252,8.0) GFlop/s
= 8.0 GFlop/s

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo
in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

| 864GFs _ _ L
st &/ - ~
Ry ADD peak
£ [2160Fs &0& . (best possible code)
Lé; 16 Q,\"’ - no SIMD How do we get
g o0 these?
,g s [2CFs W /2 __ = \ - See next!
= . 3-cycle latency per ADD
if not unrolled

/

1/32 lx 1/8 1/4 172 1 2z
Computational intensity [Flops/Byte]
| =1 Flop / 8 byte (in DP)
P =5 Gflopl/s

Applicable peak for the summation loop

Plain scalar code, no SIMD

ADD pipes utilization:

LOAD rl1.0 € 0 N —

.)

i €1 <« E

loop: a
LOAD r2.0 € a(i) %
ADD r1l.0 € rl.0+r2.0

++i 27? loop

- 1/12 of ADD peak
result € rl.0

Applicable peak for the summation loop

Scalar code, 3-way unrolling ADD pipes utilization:
LOAD rl.0 € O _
LOAD r2.0 € O
LOAD r3.0 € O
i1
loop:
LOAD r4.0 € a(i)
LOAD r5.0 € a(i+l) > 1/4 of ADD peak
LOAD r6.0 € a(i+2)
ADD r1l.0 € rl1.0+r4.0
ADD r2.0 € r2.0+r5.0
ADD r3.0 € r3.0+r6.0
i+=3 =2? loop
result € rl.0+r2.0+r3.0

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled ADD pipes utilization:
LOAD [rl1.0,..,r1.3] € [0,0]
LOAD [r2.0,..,r2.3] € [0,0]
LOAD [r3.0,..,r3.3] € [0,0]
i €1
loop:
LOAD [r4.0,..,r4.3] € [a(i),..,a(i+3)]
LOAD [r5.0,..,r5.3] € [a(i+4),..,a(i+7)]
LOAD [r6.0,..,r6.3] € [a(i+8),..,a(i+1l1l)]
ADD rl € rl+r4
ADD r2 €< r2+r5
ADD r3 €< r3+ré6
i+=12 ->? loop
result € rl.0+rl.1+...+4+r3.2+r3.3

- ADD peak

Input to the roofline model

... on the example of do i=1,N; s=s+a(i); enddo

Throughput: 1 ADD + 1 LD/cy architecture

Pipeline depth: 3 cy (ADD)
4-way SIMD, 8 cores

/‘ 7.2..864GF/s —

- |
Code analysis: Memory bOl_Jnd @ large N!
1 ADD + 1 LOAD Pmax = 5 GF/s

\

5GFils
measurement
analysis .
Maximum memory
bandwidth 40 GB/s

Assumptions for the Roofline Model

The roofline formalism is based on some (crucial) assumptions:

= There is a clear concept of “work” vs. “traffic”
» “work” = flops, updates, iterations...
» “traffic” = required data to do “work”
= Attainable bandwidth of code = input parameter! Determine

effective bandwidth via simple streaming benchmarks to model more
complex kernels and applications

= Data transfer and core execution overlap perfecitly!

= Slowest data path is modeled only; all others are assumed to be
infinitely fast

= |f data transfer is the limiting factor, the bandwidth of the slowest
data path can be utilized to 100% (“saturation”)

= Latency effects are ignored, i.e. perfect streaming mode

Shortcomings of the roofline model

Saturation effects in multicore chips are not explained
= Reason: “saturation assumption”
= Cache line transfers and core execution do sometimes not overlap
perfectly A(:)=B(:)+C(:)*D(:)
= Only increased “pressure” on the memory T

interface can saturate the bus
- need more cores!

ECM model gives more insight

Memory bandwidth [GB/s]

Roofline predicts
full socket BW

Where the roofline model fails

70 LR | T rrril | T rriri

///////////////// max -

''''''' 1 T T T T
60 -~ - 4 -
SN)

: — ! N S22/ B
250 |.... T=2| | L6 TN\ _
§ "] - ng' 1 ”LLB L2f- i
G 40 Qi 772222720 -
S 0 \ ot 1
§303,—-""_"“‘-—- . 04—]
5 i -

»g " 0.0 L p 7
& 20 \ AN 10 —
............ .~ _ .
e ~ |

O | | — l.l.l....lL P e
10° 10’ 10* 10’ 10°

Loop length N

ECM Model

ECM = “Execution-Cache-Memory”

Assumptions:
Single-core execution time is composed of
1. In-core execution
2. Data transfers in the memory hierarchy
Data transfers may or may not overlap with
each other or with in-core execution
Scaling is linear until the relevant bottleneck
IS reached
Input:
Same as for Roofline
+ data transfer times in hierarchy

Core

!

L1

|y

L2

sy

L3

206 cycles
per cacheline

4 cycles
32 b/cycle

4 cycles
32 b/cycle

5.3 mem cycles
= ca. 12 cycles
24 b/mem cycle

Example: Schonauer Vector Triad in L2 cache

REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision
Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

Machine characteristics: Triad analysis (per CL): Timeline:

16 F/CL
Registers Registers (AVX)
ADD | ADD
MULTMULT
! LDicy + 0.5 STley 6cy/CL LDsfasmlDietalofs
L1 L1
32 Blcy (2 cy/CL) T 10 cy/CL Lb Lb Lb WA ST
L2 L2 Roofline prediction: 16/10 F/cy

Arithmetic: Arithmetic: _
1 ADD/cy+ 1 MULT/cy AVX: 2 cy/CL M1e7acsyurement. 16F / ,

Example: ECM model for Schonauer Vector Triad
A(:)=B(:)+C(:)*D(:) with AVX

Registers
S oase A , CL
256 bit LD max(2(B) + 2(C) + 2(D), 4(A)) cy =6 ¢y t f
& 128 bit ST Bl ¢|[o ranster
L1D
Z
E oot Al T BT CT DT (2(B) +2(C) + 2(D) + 4(A)) cy = 10 cy Write-
2 allocate
g < L2 CL
2 transfer
23 256 bit A (2(B) +2(C) +2(D) + 4(A)) cy = 10 ¢y
T Bl c| D - - T
o
L3
107 bit
(5-64B-2.7Gceyl/s)/ (36 GB/s) =24 cy

_ (@ 2.7 GHz)

Full vs. partial vs. no overlap

All caches Full overlap
No overlap single—ported beyond L2 Measured

- |2

6.3 Results

- L3 > suggest
no
overlap!

N
9
9

=== Memory J
(d)

Multicore scaling in the ECM model

|dentify relevant bandwidth bottlenecks
= L3 cache
= Memory interface
Scale single-thread performance until first bottleneck is hit:

P(t)=min(tP,,P,), with P,..~min(P,....| b)

roof
[Registers | [Registers | { Registers | ‘ Registers]
A AN A AL A AL A A A
Scilxaabr;‘]epll_eB ' L1D ' L1D ' LD ' LD
RANE I S NI S I L
on Sandy L2 L2 | L2 L2

Bridoe £ 1t fAd U EE I E

L3

ECM prediction vs. measurements for
A(:)=B(:)+C(:)*D(:), nooverlap

Orr—T—T—TTT"T 7

1 Model: Scales until saturation sets in

Saturation point (# cores) well predicted

o (']
N -
1 1

o
o (
T T

Measurement: scaling not perfect

—
N
|
|

| Caveat: This is specific for this

@—@ Schonavertriad 1 grchjtecture and this benchmark!
= = ECM Model .

Memory bandwidth [GB/s]

-
I 1

1 Check: Use “overlappable” kernel code

ECM prediction vs. measurements for
A(:)=B(:)+C(:)/D(:) with full overlap

40 In-core execution is dominated
by divide operation

(44 cycles with AVX, 22 scalar)

- Almost perfect agreement
with ECM model

15
Parallelism “heals” bad

single-core performance
= O—=0 DIV triad (scalar) . . jUSt barely!

5 w == ECM Model (AVX) _|
= == FECM Model (scalar) |

I I N N N
3 4 5 6 7 8

cores

10

Memory bandwidth [GB/s]

—
(WY o

The impact of in-core optimizations

QO(X)II I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII

| AV X scalar — AVX |

8000
ZJ,\\ — — gcalar _
7000

Reme

§~600()— —
2 i)
= 5000}~ = =
) - = g 4
o
3 4000~ = m
o
S
3]
[T

- Less SIMD benefit for
30007 = o = = ~r \\-—sf\\ far-away data |
B TN\ T -~ 7] ’ Y|
2000 - / AN - “Amdahl’s Law”!|
1000 — ‘\-—

OII 1 IIIIIIII | IllIIIIl | IIIIIII| | IIIIIIII

10° 10 10° 10° 10
Loop length

Summary: The ECM Model

Saturation effects are ubiquitous; understanding them gives us opportunity to
= Find out about optimization opportunities
= Save energy by letting cores idle - see power model later on

= Putting idle cores to better use - asynchronous communication, functional
parallelism

ECM correctly describes several effects
= Saturation for memory-bound loops
= Diminishing returns of in-core optimizations for far-away data
= Parallelism heals bad sequential code (sometimes...)
= Get clean picture of different runtime contributions

Simple models work best. Do not try to complicate things unless it is really
necessary!

EXPLOITING
PARALLEL RESOURCES ON

MULTICORE NODES

- SIMD

SIMD processing — Basics
Steps (done by the compiler) for “SIMD processing”

for (int i=0; i<n;i++)
Cl[i]=A[i]+B[i]; % “Loop unrolling”

for(int i=0; i<n;i+=4) {
C[i] =A[i] +BI[1i];
Cl[i+l1l]=A[i+1]+B[i+1];
Cl[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling i

Load 256 Bits starting from address of A[i] to | iaBELI:
register RO T S VLOAD RO € A[i]
VLOAD R1 € B[i]

Add the corresponding 64 Bit entries in ROand | Xg;gDRg [22 '1;1] . Z | R2

R1 and store the 4 results to R2 / VoL
i<ci+4
i<(n-4)? JMP LABEL1l

Store R2 (256 Bit) to address / //remainder loop handling
starting at C[i]

SIMD processing — Basics

No SIMD vectorization for loops with data dependencies:
for(int i=0; i<n;i++)
A[i]=A[i-1]*s;

“Pointer aliasing” may prevent SIMDfication

void scale shift(double *A, double *B, double *C, int n) ({
for(int i=0; i<n; ++i)
C[i] = A[i] + BJ[il]:;
}

= C/C++ allows thatAa - &C[-1] andB > &C[-2]
- C[i] = C[i-1] + C[i-2]: dependency - No SIMD

If “pointer aliasing” is not used, tell it to the compiler, e.g. use
—fno-alias switch for Intel compiler or use restrict(C99)

Case Study: Simplest code for the summation of
the elements of a vector (single precision)

float sum = 0.0; To get object code use

objdump -d on object file or
for (int j=0; Jj<size; J++){ executable or compile with -s
sum += datal[j];

Instruction code:

401d408: £f3 0f 58 04 82 addss xmmO, [rdx + rax * 4]
401d40d: 48 83 cO0 01 add rax,1l
401d11: 39 c7 cmp edi,beax
401d13: 77 £3 ja 401408
Instruction Opcodes Assembly
address ol

Summation code (single precision):

Optimizations

1:

addss xmmO, [rsi + rax * 4] 1

add rax vaddps ymmO, [rsi + rax * 4]

cmp eax,edi 3 cycles add vaddps ymml, [rsi + rax * 4 + 32]

js 1b :"a'f;:::';e vaddps ymm2, [rsi + rax * 4 + 64]
vaddps ymm3, [rsi + rax * 4 + 96]

Unrolling with sub-sums to break up add rax. 32
14

register dependency
<j;i:3 cmp eax,edi
1l: js 1b

addss xmmO, [rsi + rax * 4]
AVX SIMD vectorization
addss xmml, [rsi + rax * 4 + 4]
addss xmm2, [rsi + rax * 4 + 8]
addss xmm3, [rsi + rax * 4 + 12]

add rax, 4

cmp eax,edi

SIMD processing — single-threaded

SIMD influences instruction execution in the ~ Registers | 48 cycles
- cycles
core — other bottlenecks stay the same! 200 0] oux 4 cycles
Full Data transfers § HiP
benefit in are overlapped 5 | 32bytercycle | 2 cycles
L1 cache with execution 5 < L2
15000 \\ Peak § 32 byte/cycle T 2 cycles
T “em B Scalar] & L2
B Plain
12500 N S|MD 9 15.6 byte/cycle 4 cycles
10000 Some penalty RIS 7 /
" i for SIMD (12 cy
@ 8cy predicted) Per-cacheline
g 7500 cycle counts
= —
5000 Execution Cache Memory
2500 1 6 4 4

L1 L3 MEM 4

+ 17500

" 15000

MFlops/s

And with AVX?

30000

27500

25000

22500

20000

12500

10000

7500

5000

2500

L1 L3 MEM

With preloading:
AVX down to less than 7 cycles (8309 MFlops/s)

L3 Cache
SSE 8 cycles
AVX 6 cycles

Cache Memory

4 4

2 \ diminishing

returns (Amdahl)

SIMD processing — Full chip (all cores)
Influence of SMT

Bandwidth saturation is the primary performance limitation on
the chip level!

Full sc;'\;lr}gd Conclusion: If the code saturates the ‘:‘;'tl‘:far;:';:‘se
using ue . |

to bubbles in bottleneck, all variants are acceptable! memory
pipeline bandwidth

70000

8 threadsWal cores 16 threads using SMT
70000 \\\

60000 60000

50000

40000

30000

50000

40000

GFlops/s
ops/

GFl

30000

20000

20000

10000 10000

L1 L3 MEM L1 L3 MEM

How to leverage SIMD

Alternatives:

= The compiler does it for you (but: aliasing, alignment, language)

= Compiler directives (pragmas)

= Alternative programming models for compute kernels (OpenCL,
ispcC)

* Intrinsics (restricted to C/C++)

= Implement directly in assembler

To use intrinsics the following headers are available:

* xmmintrin.h (SSE)

" pmmintrin.h (SSE2)

" immintrin.h (AVX)

* x86intrin.h (all instruction set extensions)

= See next slide for an example

Example: array summation using C intrinsics
(SSE, single precision)

__ml28 sum0, suml, sum2, sum3;

__ ml28 t0, tl, t2, t3;
float scalar sum;

sum0 = mm setzero ps();
suml = mm setzero ps();
sum2 = mm setzero ps();
sum3 = mm setzero ps();

sum0 = mm add ps(sum0, suml);
sum0 = mm add ps(sum0, sum2);
sum0 = mm add ps(sum0, sum3);
sum0 = mm hadd ps(sum0O, sumO) ;
sum0 = mm hadd ps(sumO, sumO) ;

mm store ss(&scalar sum, sumO);

for (int j=0; j<size; j+=16) {

t0 = mm loadu ps(data+j);

tl = mm loadu ps(data+j+4);

t2 = mm loadu ps(data+]j+8);

t3 = mm loadu ps(data+j+12);

sum0 =
suml =

sum2 =

sum3

_mm_add ps(sumO,
_mm_add ps(suml,
_mm_add ps(sum2,

_mm_add ps(sum3,

t0) ;
tl);
t2);
t3);

Example: array summation from intrinsics,
instruction code

14: 0f 57 c9 xorps sxmml, sxmml

17: 31 c0 XOor $eax, Seax

19: 0f 28 di movaps %$xmml, $xmm2

lc: 0f 28 cl movaps %$xmml, $xmm0O

1f: 0f 28 d9 movaps $xmml, $xmm3

22 66 0f 1f 44 00 00 nopw 0x0 (%rax, %srax,1)
28: 0f 10 3e movups (%$rsi), sxmm’/

2b: Of 10 76 10 movups 0x10 (%rsi), $xmmb6
2f: Of 10 6e 20 movups 0x20 (%rsi), xmmb
33: Of 10 66 30 movups 0x30 (%rsi), $xmm4
37 ¢ 83 c0 10 add $0x10, $eax

3a: 48 83 c6 40 add $0x40, $rsi

3e: 0Of 58 df xmm7, $xmm3

41 . Of 58 cb6 xmmo6 , $xmmo

44 . Of 58 db5 xmmb5, $xXmm?2

47 : 0Of 58 cc Fxmmd4 , sxmml

4a: 39 c¢7 cmp $eax, Sedi

dc: 77 da e 28 <compute sum SSE+0x18> Loop body
4de 0f 58 <3 addps Sxmm3, sxmm0

51: 0f 58 c2 addps $xmmZ2, $xmm0

54: 0f 58 cl addps Sxmml, $xmm0

57: £f2 0f 7c¢ <0 haddps %xmmO0, $xmmO

5b: £f2 0f 7c¢ <0 haddps %xmmO, $xmmO

FRIEDRICH-ALEXANDER
= UNIVERSITAT
= ERLANGEN-NURNBERG

Rules for vectorizable loops

Countable

Single entry and single exit

Straight line code

No function calls (exception intrinsic math functions)

B\

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:
= Non-contiguous memory access
= Data dependencies

EXPLOITING
PARALLEL RESOURCES

ON MULTICORE NODES

e ccNUMA

ccNUMA performance problems
“The other affinity” to care about

ccNUMA:

= Whole memory is transparently accessible by all processors

= pbut physically distributed

= with varying bandwidth and latency

= and potential contention (shared memory paths)
How do we make sure that memory access is always as "local"
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB)

Cray XEG6 Interlagos node
4 chips, two sockets, 8 threads per ccNUMA domain

ccNUMA map: Bandwidth penalties for remote access
= Run 8 threads per ccNUMA domain (1 chip)
= Place memory in different domain - 4x4 combinations

CPU node

N

o

STREAM triad performance [MB/s]

13000 —F
3 12000
11000
m
2 10000
9000
1 8000 .
—
7000
0 6000
5000 £
0 1 2 3

Memory node

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>
and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across
all <nodes>
Examples: ccNUMA map scan

for m in 'seq 0 3 ; do
for ¢ in 'seqgq 0 3°; do
env OMP NUM THREADS=8 \
numactl --membind=$m --cpunodebind=$c ./stream
enddo
enddo

But what is the default without numactl?

ccNUMA default memory locality

"Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

= Except if there is not enough local memory available

Caveat: "touch" means "write", not "allocate" Memory not
mapped here yet
Example:

double *huge = (double*)malloc (N*sizeof (double)) ;

for (i=0; i<N; i++) // or i+=PAC™ -~~~
) _——— | Mapping takes
huge[i] = 0.0; place here

It is sufficient to touch a single item to map the entire page

Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must be
the same as in all computational loops

= Only choice: static! Specify explicitly on all NUMA-sensitive loops,
just to be sure...

= Imposes some constraints on possible optimizations (e.g. load balancing)

= Presupposes that all worksharing loops with the same loop length
have the same thread-chunk mapping

= |If dynamic scheduling/tasking is unavoidable, more advanced methods
may be in order

How about global objects?

= Better not use them

= |[f communication vs. computation is favorable, might consider properly
placed copies of global data

Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality
problems

Otherwise, bad locality limits scalability at very low CPU
numbers (whenever a node boundary is crossed)

= If the code makes good use of the memory interface
= But there may also be a general problem in your code...

Running with numactl --interleave might give you a hint

Consider using performance counters

The curse and blessing of interleaved placement:
OpenMP STREAM on a Cray XEG6 Interlagos node

Parallel init: Correct parallel initialization
LDO: Force data into LDO via numactl -m 0
Interleaved: numactl --interleave <LD range>

70000

I Parallel placement
60000 — B LDO placement
I Interleaved placement

50000

4=
S
o
o

30000

Peformance [MBytes/s]

20000

10000

1 2 3 4
of locality domains

The curse and blessing of interleaved placement:
same on 4-socket (48 core) Magny Cours node

Bparallelinit ®WLD0O ®jnterleaved
120000

100000
80000

60000

40000
. h
1 2 3 4 5 6 7

NUMA domains (6 threads per domain)

Bandwidth [Mbyte/s]

Summary on ccNUMA issues

|dentify the problem
= |Is ccNUMA an issue in your code?
= Simple test: run with numactl --interleave

Apply first-touch placement
= Look at initialization loops
= Consider loop lengths and static scheduling
= C++ and global/static objects may require special care

If dynamic scheduling cannot be avoided
= Consider round-robin placement

MULTICORE PERFORMANCE

TOOLS: PROBING PERFORMANCE
BEHAVIOR

likwid-perfctr

likwid-perfctr
Basic approach to performance analysis

1. Runtime profile / Call graph (gprof)

2. Instrument those parts which consume a significant part of
runtime

3. Find performance signatures

Possible signatures:

= Bandwidth saturation

= Instruction throughput limitation (real or language-induced)

= Latency impact (irregular data access, high branch ratio)

= | oad imbalance

= ccNUMA issues (data access across ccNUMA domains)

» Pathologic cases (false cacheline sharing, expensive operations)

Probing performance behavior

= How do we find out about the performance properties and requirements
of a parallel code?
= Profiling via advanced tools is often overkill

= A coarse overview is often sufficient

= |ikwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on
Linux/Altix)

= Simple end-to-end measurement of hardware performance metrics
= “Marker’” API for Starting/stopping /BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio
counters CLOCK: Clock of cores
. . DATA: Load to store ratio
= Multiple measurement region FLOPS_DP: Double Precision MFlops/s
FLOPS SP: Single Precision MFlops/s
support FLOPS_X87: X87 MFlops/s
= Preconfigured and extensible < L2: L2 cache bandwidth in MBytes/s
]]) L2CACHE: L2 cache miss rate/ratio
metric groups, list with L3: L3 cache bandwidth in MBytes/s
. . [:::::i:> L3CACHE: L3 cache miss rate/ratio
likwid-perfctr -a MEM: Main memory bandwidth in MBytes/s

\TLB: TLB miss rate/ratio

likwid-perfctr
Example usage with preconfigured metric group

$ env OMP_NUM THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS DP ./stream.exe

CPU type:
CPU clock:

Intel Core Lynnfield processor
2.93 GHz

Configured metrics
(this group)

Always
measured -

Measuring group FLOPS DP

YOUR PROGRAM OUTPUT

————————————— e e e =
| core 1 | core 2 | core 3 |
S s e o - o - +
. | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |
.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |
4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
882 | 0 | 0 | 0 |
0 I 0 I 0 I 0 I
4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
———————— T et B e e Tt
e e e Tt $o— - - - $-—m - +
| Metric | core 0 | corel | core 2 | core 3 |
- o - - - e +
| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |
| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 | Derived
| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 | >,///// metrics
| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |
| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |
| SP MUOPS/s | 0 | 0 | 0 | 0 |
| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |)
- e et e e e it e +

FRIEDRICH-ALEXANDER
= UNIVERSITAT
ERLANGEN-NURNBERG

likwid-perfctr
Identify load imbalance...

Instructions retired / CPI may not be a good indication of
useful workload — at least for numerical / FP intensive codes....
Floating Point Operations Executed is often a better indicator
Waiting / “Spinning” in barrier generates a high instruction count

e R EE e et SEEEEEEEEEEEEE EEEE PR R R +

| Event core O core 1 | core 2 core 3 core 4 | core 5 |

e e B e B o +

| INSTR RETIRED ANY 2.10045e+10 | 1.90983e+10 | 1.729e+10 | 1. 1.67958e+10 | 1.84689e+10 |

| CPU CLK UNHALTED CORE . et 1.81203e+10 | 1.81802e+10 | 1.82084e+10 | 1.82334e+10 | 1.82484e+10 |

| CPU CLK UNHALTED REF | 1.66053e+10 | 1.6473e+10 | 1.65274e+10 | 1.65531e+10 | 1.65758e+10 | 1.65894e+10 |

| FP COMP OPS EXE SSE FP PACKED | 2.77016e+08 | 7.83476e+08 | 1.39355e+09 | 1.94365e+09 | 2.38059e+09 | 2.85981e+09 |

| FP COMP OPS EXE SSE FP SCALAR | 1.70802e+08 | 2.640656+08 | 2.23153e+08 | 2.60835e+08 | 2.30434e+08 | 2.07293e+08 |

| FP_COMP OPS EXE SSE SINGLE PRECISION 0 | 0 | 0 | 0 | 0 |

| FP_COMP OPS EXE SSE DOUBLE PRECISION ' 4.47818e+08 ' 1.04754+09 | 1.61671e+09 [2.20448e+09 || 2.61102e+09 | 3.0671e+09 |

R L LT . S o —————- e e e R +
e e TR R R R EEEEEEEEE +

| Metric | core © | corel | core2 | core3 | core4 | core5 |

---------------- R e e e e e

!SOMP PARALLEL DO | Runtime [s] | 6.84594 | 6.79471 | 6.81716 | 6.82773 | 6.83711 | 6.84274 |
DOI =1. N | Clock [MHz] || 2933.51 | 2933.51 |29 2933.51 | 2933.51 |
’ | CPI | 0.869191 || 0.948789 | 1.05148 1.08559 | 0.988061 |

DO J =1, I | DP MFlops/s | 109.192 | 275.833 | 453.48 | 624.893 | 751.96 | 892.857 |

x(I) = x(I) + A(J,I) * y(J)
ENDDO
ENDDO
'$OMP END PARALLEL DO

ITAT
EN-NURNBERG

likwid-perfctr
... and load-balanced codes

env OMP_NUM THREADS=6 likwid-perfctr -C S0:0-5 -g FLOPS DP ./a.out

L e Fo-mmmme Fo-mmmme R e R e Fommmmmme R e +
| Event | core ® | corel | core 2 | core 3 | core 4 | cores5 |
L e R e R R e e Fommmmmee Fommmmee R e Fommmmm e Fommmmmme +
INSTR RETIRED ANY	1.83124e+10	1.74784e+10	1.68453e+10	1.66794e+10	1.76685e+10	1.91736e+10
CPU CLK UNHALTED CORE	2.24797e+10	2.23789%e+10	2.23802e+10	2.23808e+10	2.23799e+10	2.23805e+10
CPU CLK UNHALTED REF	2.04416e+10	2.03445e+10	2.03456e+10	2.03462e+10	2.03453e+10	2.03459%e+10
FP_COMP OPS EXE SSE FP PACKED	3.45348e+09	3.43035e+09	3.37573e+09	3.39272e+09	3.26132e+09	3.2377e+09
FP_COMP OPS EXE SSE FP SCALAR	2.93108e+07	3.06063e+07	2.9704e+07	2.96507e+07	2.41141e+07	2. 37397e+O7
FP_ COMP OPS EXE SSE SINGLE PRECISION	19 0 0 0 0					
FP COMP OPS EXE SSE DOUBLE PRECISION ﬂ 3.48279%9e+09	3.46096e+09	3.40543e+09	3.42237e+09	3.28543e+09	3. 26144e+O9	
f ++ ---------------- e F--------- LU P A +------- e eeae- ++

| Metric | core© | corel | core2 | core3 | core4 | core5 |

H e T et e e F--------- F--------- R +

ngher CPI bUt e | Runtime [s] | 8.42938 |

8.39157 | 8.39206 | 8.3923 | 8.39193 | 8.39218 |
1 | 2933.51

better performance

1. 22757
850 727

1. 28037
845. 212

| 1.32857
| 831.703

I 1.34182
| 835.865

| Scalar MUOPS/s | 3. 59494 | 3. 75383 | | | 2.95757 | 2.91165 |
1SOMP PARALLEL DO | SPMUOPS/s | 2.33e33e-06 | © | o | o | o | o |
| DP MUOPS/s | 427.161 | 424.483 | 417.673 | 419.751 | 402.955 | 400.013 |
DO I = 1-, N L L +--------- e +--------- +-----=---- +--------- +

DO J =1, N
x(I) = x(I) + A(J,I) * y(J)
ENDDO
ENDDO
ISOMP END PARALLEL DO

FRIEDRICH-ALEXANDER
= UNIVERSITAT

ERLANGEN-NURNBERG

Example 1:

Abstraction penalties in c++ code

C++ codes which suffer from overhead (inlining problems, complex
abstractions) need a lot more overall instructions related to the arithmetic
instructions

= Often (but not always) “good” (i.e., low) CPI = “Instruction overhead”
pattern

= Low-ish bandwidth
= Low # of floating-point instructions vs. other instructions

= High-level optimizations complex or impossible - “Excess data volume”
pattern

=Example: Matrix-matrix multiply with expression template frameworks on a
2.93 GHz Westmere cof&,| ctired

instructions [10'] CP Bandl\\flvie;’:r?EK/IB/s] MFlops/s
Classic 12.5 0.44 5300 1250
Boost uBLAS 10.1 4.6 630 156
Eigen3 2.1 0.41 371

Blaze/DGEMM 2.0 0.32 531 11260

likwid-perfctr
Stethoscope mode

= likwid-perfctr counts events on cores; it has no notion of what kind
of code is running (if any)

This enables to listen on what currently happens without any
overhead:

likwid-perfctr -c N:0-11 -g FLOPS DP -s 10

= |t can be used as cluster/server monitoring tool

= A frequent use is to measure a certain part of a long running
parallel application from outside

likwid-perfctr
Marker API

To measure only parts of an application a marker API is available.
The API only turns counters on/off. The configuration of the counters is
still done by likwid-perfctr application.

Multiple named regions can be measured
Results on multiple calls are accumulated
Inclusive and overlapping Regions are allowed

#define LIKWID PERFMON // comment to disable
#include <likwid.h>

LIKWID MARKER INIT;

LIKWID MARKER THREADINIT;
LIKWID MARKER START (“Compute”) ;

LIKWID MARKER STOP (“Compute”) ;
LIKWID MARKER START (“postprocess”) ;

LIKWID MARKER STOP (“postprocess”) ;

LIKWID MARKER CLOSE;

likwid-perfctr
Group files

Groups are architecture-specific
They are defined in simple text files
Code is generated on recompile of

SHORT PSTI

EVENTSET

FIXCO INSTR RETIRED ANY
FIXC1l CPU_CLK UNHALTED CORE

FIXC2 CPU_CLK_UNHALTED REF likwid
PMCO FP_COMP_OPS_EXE SSE_FP_PACKED . .
PMC1 FP_COMP_OPS_EXE SSE FP_SCALAR ||kW|d-perfctr -a outputs list of groups

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION

PMC3 FP_COMP_OPS_EXE SSE DOUBLE PRECISION For every group an extensive
UPMCO UNC_OMC_NORMAL READS_ANY documentation is available

UPMC1 UNC_QMC WRITES FULL ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS

UPMC3 UNC_QHL REQUESTS LOCAL READS

METRICS

Runtime [s] FIXCl*inverseClock

CPI FIXC1l/FIXCO

Clock [MHz] 1.E-06*(FIXC1l/FIXC2)/inverseClock
DP MFlops/s (DP assumed) 1.0E-06* (PMCO*2.0+PMCl)/time

Packed MUOPS/s 1.0E-06*PMCO/time

Scalar MUOPS/s 1.0E-06*PMC1l/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06* (UPMCO+UPMC1)*64/time;

Remote Read BW [MBytes/s] 1.0E-06* (UPMC2) *64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP OPS EXE SSE FP PACKED*2 + FP COMP OPS EXE SSE FP SCALAR)/ runtime.

FRIEDRICH-ALEXANDER
UNIVERSITAT
ERLANGEN-NURNBERG

Measuring energy consumption
likwid-powermeter and likwid-perfctr -g ENERGY

* Implements Intel RAPL interface (Sandy Bridge)
= RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor
CPU clock: 3.49 GHz

Base clock: 3500.00 MH=z

Minimal clock: 1600.00 MH=z

Turbo Boost Steps:

Cl 3900.
C2 3800.
C3 3700.
C4 3600.

Thermal
Minimum
Maximum

Maximum

00 MHz

00 MHz

00 MHz

00 MHz

Spec Power: 95 Watts

Power: 20 Watts

Power: 95 Watts

Time Window: 0.15625 micro sec

INTERLUDE:

A GLANCE AT CURRENT

ACCELERATOR TECHNOLOGY

Architecture

= 7.1B Transistors

15 “SMX” units

= 192 (SP) “cores” each
>1 TFLOP DP peak
1.5 MB L2 Cache
384-bit GDDR5

PCI Express Gen3

3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

Architecture

= 3B Transistors

60+ cores
512 bit SIMD
~1 TFLOP
DP peak

0.5 MB
L2/core
GDDR5

2:1 SP:DP
performance

ﬂl'ﬂlnl‘ﬂ

ﬂ|12|n|u

Intel Xeon Phi block diagram

T‘IIHI'BI'I"

ﬂ|12|n|u

(

Y

J GDDR-MC

(&)
VU VU = VU \"A0)
P (1 1) P E P (T 1) P
32k L1D 32k L1D 8 32k L1D 32k L1D
512k L2 512k L2 512k L2 512k L2
™ | | ™™
64 byte/cy
nlnlnlu ﬂ|12|n|'r4 o ﬂlnlnlu ﬂlnlnlu
VU VU = VU VU
P L P E P 000 P
32k L1D 32k L1D 8 32k L1D 32k L1D
512k L2 512k L2 512k L2 512k L2

@ooa«c

Comparing accelerators

e

= |ntel Xeon Phi

= 60+ 1A32 cores each with

T - NVIDIA Kepler K20
“F8El - 15 SMXunits each with

512 Bit SIMD 192 “cores” >
FMA unit > 480/960 SIMD DP/SP 960/2880 DP/SP “cores”
tracks
= Clock Speed: ~1000 MHz = Clock Speed: ~700 MHz
= Transistor count: ~3 B (22nm) = Transistor count: 7.1 B (28nm)
= Power consumption: ~250 W = Power consumption: ~250 W
= Peak Performance (DP): ~ 1 TF/s = Peak Performance (DP): ~ 1.3 TF/s
= Memory BW: ~250 GB/s (GDDRY) = Memory BW: ~ 250 GB/s (GDDR5)
= Threads to execute: 60-240+ = Threads to execute: 10,000+
= Programming: = Programming:

Fortran/C/C++ +OpenMP + SIMD CUDA, OpenCL, (OpenACC)

Trading single thread performance for parallelism:
GPGPUSs vs. CPUs

Control ALU ALU

ALU ALU

GPU vs. CPU

light speed estimate: _

1. Compute bound: 2-10x [PESEEEEEEEEE.

2. Memory Bandwidth: 1-5x CPU GPU

Intel Core i5 — 2500 Intel Xeon E5-2660v2 NVIDIA K20x
(“Sandy Bridge”) node (“lvy Bridge”) (“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2x10 @ 2.2 GHz 2880 @ 0.7 GHz
Performance*/core 52.8 GFlop/s 35.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <4 <20 >80007?
Total performance* 210 GFlop/s 704 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x42 GB/s 168 GB/s Ecc=1)
Transistors / TDP 1 Billion* / 95 W 2 x (2.86 Billion/95 W) | 7.1 Billion/250W

* Single Precision

CASE STUDY: HPCCG

Performance analysis on:
 Intel IvyBridge-EP@2.2GHz
 Intel Xeon Phi@1.05GHz

=Microarchitectural optimizations

Introduction to HPCCG (Mantevo suite)

for (int k=1; k<max iter && normr > tolerance; k++)
{
oldrtrans = rtrans;
ddot (nrow, r, r, &rtrans, t4);
double beta = rtrans/oldrtrans;
waxpby (nrow, 1.0, r, beta, p, p);
normr = sqgrt(rtrans);
HPC sparsemv (A, p, Ap);
double alpha = 0.0;
ddot (nrow, p, Ap, &alpha, t4);
alpha = rtrans/alpha;
waxpby (nrow, 1.0, r, -alpha, Ap, r);
waxpby (nrow, 1.0, x, alpha, p, x);

niters = k;

Components of HPCCG 1

ddot:

#pragma omp for reduction (+:result)
for (int i=0; i<n; i++) {

2 Flops
2*8bL=16b
result += x[i] * y[i]; 2.2GHz/2¢c * 16 Flops =
} 17.6 GFlops/s or
140GB/s L1 or 46GB/s L2

waxpby:
#pragma omp for 3 Flops
for (int i=0; i<n; i++) { 2*8bL+1*8bS=24b
w[i] = alpha * x[i] + beta * y[i]; 2.2GHz/4c * 24flops =
} 13.2 GFlops/s or

106GB/s L1 or 47GB/s L2

Sparse matrix-vector multiply (spMVM)

= Key ingredient in some matrix diagonalization algorithms

= Lanczos, Davidson, Jacobi-Davidson

= Store only N,, nonzero elements of matrix and RHS, LHS
vectors with N, (number of matrix rows) entries

= “Sparse”: N_, ~ N,

N
General case:
-+ o some indirect
> Nr addressing
required!

CRS matrix storage scheme

column index

1234...

\ 4

val[] stores all the nonzeros
(length N,)

col idx[] stores the column index
of each nonzero (length N, ,)

row_ptr[] stores the starting index
of each new row in val[] (length:
N,)

A WN -

row index

vall[]
1]2[3]5][1]2]5[1/3]4]6[3/4[7]1]2]5[8] ... | col idx[]

1158121519 ... row ptr[]

CRS (Compressed Row Storage) — data

format
"I I=—. [m]
[I
O L] oo
HE B
[m] O
HE N m|
I O |
O |
- I N HEE Em
A ow —_—
| - m]m| []|
H N O
H B BN
EN E N
I- i
- I ..I H N EEE m
- I |
| | | |
Format creation Data arrays
Store values and column double vall[]
indices of all non-zero elements unsigned int col[]
row-wise

unsigned 1nt rpt[]
Store starting indices of each

column (rpt)

Components of HPCCG 2

#pragma omp for
for (int i=0; i< nrow; i++) {
double sum = 0.0;

double* cur vals = vals in row[i];

int* cur inds inds in row[i];

int cur nnz = nnz in rowl[i];

for (int j=0; j< cur nnz; j++) {
sum += cur vals[j]*x[cur inds[]j]]’
}

y[i] = sum;

2 Flops
1*4bL+2*8bL=20b
2.2GHz/2c * 16 Flops =
17.6 GFlops/s or
140GB/s L1 or 46GB/s L2

First Step: Runtime Profile (3003)

Intel IvyBridge-EP (2.2GHz, 10 cores/chip)

ddot 5% 5%
waxby 12% 16%
spmyv 83% 79%

Intel Xeon Phi (1.05GHz, 60 cores/chip)

ddot 3%

waxby 8%

spmv 89%

Performance [MFlop/s]

Scaling behavior inside socket (IvyBridge-EP)

20000

17500 —

15000

O N=40
&9 N=100

12500

10000

7500

5000

2500

0

0

cores

HPM measurement
with LIKWID
instrumentation

on socket level

FRIEDRICH-ALEXANDER
UNIVERSITAT
ERLANGEN-NURNBERG

Routine
waxby 1
waxby 2
waxby 3

ddot 1
ddot 2

spmv

Z(X)OO T T T T T T T T
17500 o
—_— =3 4
T=4
15000 — T=5
1 - T 1
E 12500 o
1 =2 —_ T=9 .
310000 — T=10
g
1z i
£ 7500
(=¥
5000 —_—
2500
| 0 | 1 1 1 1 1 1 1 | 1]
10 10) 100
Problem size N (N) lattice)
Memory Bandwidth
Time [s] [MB/s] Data Volume [GB]
2,33 40464 93
2,37 39919 94
2,4 40545 96
0,72 46886 34
1,4 46444 64
33,84 45964 1555

Scaling to full node (1803)

Performance [GFlops/s]
Routine Socket Node
ddot 6726 14547
waxby 3642 6123
spmv 6374 6320
Total 9973 6531

Memory Bandwidth measured [GB/s]

Routine Socket 1 Socket 2 Total
ddot 44020 47342 91362
waxby 39795 28424 68219
spmv 43109 2863 45972

Optimization: Apply correct data placement

Matrix data was not placed. Solution: Add first touch initialization.
#pragma omp parallel for
for (int i=0; i< local nrow; i++) {
for (int j=0; j< 27; j++) {
curvalptr[i*27 + j] = 0.0;
curindptr[i*27 + j] = O;

Node performance: spmv 11692, total 10912

Routine Socket 1 Socket 2 Total
ddot 46406 48193 94599
waxby 37113 24904 62017
spmv 45822 40935 86757

Scaling behavior Intel Xeon Phi

25000

22500

20000

17500

15000

12500

10000

Performance [MFlops/s]

7500

5000

2500

-0 Total 134804 GB/s

-0 spvm
0 ddot /.__———"‘
@8 Vaxpy

/]

131803 GB/s
|

70039 GB/s

10 20 30 40 50 60
cores (4way SMT)

CASE STUDY: C++ SIMULATION

CODE

=Microarchitectural optimizations

