Compiler Generation and Autotuning of Communication-Avoiding Operators for Geometric Multigrid

Protonu Basu*, Samuel Williams⁺, Brian Van Straalen⁺, Anand Venkat^{*}, Leonid Oliker⁺, Mary Hall^{*}

> *University of Utah + Lawrence Berkeley National Laboratory protonu@cs.utah.edu <u>http://ctop.cs.utah.edu/x-tune/</u>

Compiler-Based Optimization of Smooth

Optimization Using Known Transformations

• Loop skew, permute and tiling

New Domain Specific Transformations

- Loop fusion in presence of fusion preventing dependences
- Adding ghost zones (communication avoiding) to Multigrid operators

High Performance OpenMP Code Generation

Optimizations Built into CHiLL

• CHiLL is loop transformation framework with a script interface

Solve : Lu = f

Double precision, finite volume discretization of the variable-coefficient operator $L = a^{3}\alpha I - b\nabla^{3}\beta\nabla$ with periodic boundary conditions

> Right hand side (f) is: sin(2πx)sin(2πy)sin(2πz) on the [0,1] cubical domain

Solve : Lu = f

Double precision, finite volume discretization of the variable-coefficient operator $L = a^{3}\alpha I - b\nabla^{3}\beta\nabla$ with periodic boundary conditions

> Right hand side (f) is: sin(2πx)sin(2πy)sin(2πz) on the [0,1] cubical domain

8 GSRB sweeps per level of the V-cycle (4 going down and 4 coming back up)

48 GSRB sweeps at the bottom level

phi[k][j][i] = phi[k][j][i] - lambda[k][j][i] *(temp[k][j][i] - rhs[k][j][i]);}

/* statement S2 */

Smooth Operator

for (k...){ for (j...){ for (i...) { // LAPLACIAN OPERATOR }}} for (k...){ for (j...){ for (i...) { // HELMHOLTZ OPERATOR}}} for (k...){ for (j...){ for (i...) { if ((i+j+k+color+1)%2) // RED BLACK GAUSS SEIDEL OPERATOR}}}

phi[k][j][i] = phi[k][j][i] - lambda[k][j][i] *(temp[k][j][i] - rhs[k][j][i]);}

Smooth Operator

for (k...){ for (j...){ for (i...) { // LAPLACIAN OPERATOR }}} for (k...){ for (j...){ for (i...) { // HELMHOLTZ OPERATOR}}} for (k...){ for (j...){ for (i...) { if ((i+j+k+color+1)%2) // RED BLACK GAUSS SEIDEL OPERATOR}}}

3D 7-Point, Variable Coefficient Stencil

temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] – temp[k][j][i];

/* GSRB relaxation phi = phi – lambda(Helmholtz – rhs) */

```
for (k=0; k<N; k++)
```

```
for (j=0; j<N; j++)
for (i=0; i<N; i++){
if ((i+j+k+color)%2 == 0 )
/* statement S2 */
phi[k][j][i] = phi[k][j][i] - lambda[k][j][i] *(temp[k][j][i] - rhs[k][j][i]);}
```

Smooth Operator

for (k...){ for (j...){ for (i...) { // LAPLACIAN OPERATOR }}} for (k...){ for (j...){ for (i...) { // HELMHOLTZ OPERATOR}}} for (k...){ for (j...){ for (i...) { if ((i+j+k+color+1)%2) // RED BLACK GAUSS SEIDEL OPERATOR}}}

3D 7-Point, Variable Coefficient Stencil

Smooth Operator Optimization

Loop fusion across operators Introduce ghost zones (halo regions) Create a wavefront computation OpenMP parallel code generation

Loop Fusion

Loop Fusion

Loop Fusion

Solution: Array Data-Flow

Array data-flow analysis (temp) determines it is safe to contract iteration space for Laplacian and Helmholtz.

Adding Ghost Zones : Compute More, Communicate Less

Adding Ghost Zones : Compute More, Communicate Less

Ghost zone depth depends on box size and machine!

Adding Ghost Zone

Fused

Adding Ghost Zone

Fused

```
for (k=0; k<N; k++)
for (j=0; j<N; j++)
for (i=0; i<N; i++) {
if ((i+j+k+color)%2 == 0) {
S0(k,j,i); /* Laplacian */
S1(k,j,i); /* Helmholtz */
S2(k,j,i); /* GSRB */
```

Solution

Expand iteration space (compiler abstraction) to include ghost zone. Code generation involves scanning polyhedra described by iteration space

Adding Ghost Zone

- Single stencil sweep
- Larger working set
- Thread blocking needed

- Single stencil sweep
- Larger working set
- Thread blocking needed

Wavefront vs. Fusion depends on box size and machine!

Inter-Box Parallelism Thread Configuration <6,1>

Nested Parallelism Thread Configuration <2,3>

Parallel Decomposition

Intra-Box Parallelism Thread Configuration <1,6>

Inter-Box Parallelism Thread Configuration <6,1>

Best parallel code generation strategy depends on box size and machine!

Parallel Decomposition

Intra-Box Parallelism Thread Configuration <1,6>

Wavefront and Parallel Code Generation

Wavefront and Parallel Code Generation

Wavefront and Parallel Code Generation

known (d = 4) #d sets ghost zone
original()
skew ([0,1,2], 2, [2,1])
permute ([2,1,3,4])
tile(s0,3,TJ,2,counted)
gen_omp_parallel_region (locks, y)

Problem configuration

- 256^3 problem size (domain), decomposed to 64^3 boxes
- Variable coefficient 3D 7-point Gauss-Seidel red-black smooth operator
- Periodic boundary conditions
- V-cycle run 10 times

Target Architectures

Code was run on a single node on two NERSC machines. Hopper, a Cray XE6 and the new Cray XC30 Edison Phase II.

Hopper	Edison (Phase II)
AMD Opteron Cores	Intel Sandy Bridge Cores
4 chips per node, 6 cores per chip	2 chips per node, 12 cores per chip

Baseline Code

- Operators (Laplacian, Helmholtz, GSRB) not fused
- Ghost zone depth is one
- Inter-box thread decomposition

Hand tuned Code : miniGMG

High performance code from Samuel Williams et al. Supercomputing'12 paper : "Optimization of Geometric Multigrid for Emerging Multi- and Many core Processors"

Performance of Smooth on Hopper

Box Size

BERKELEY LAE

Performance of Smooth on Edison (Phase II)

Overall Speedup for Box Size 64

Total Time = Smooth + Residual + Restriction

baseline CHiLL Hand Tuned

Summary and Conclusion

Need For Autotuning And Compiler Support

At each level of the V-cycle we *need* to autotune for :

- Ghost zone depth
- Create a wavefront computation or use simple fused loops
- Thread decomposition

Higher Performance From Searching a Rich Space of Variants

Generated code betters hand tuned code without

- Software prefetching
- SSE/AVX code

Compiler-generated code variant has different threading configuration than manually tuned code!

Questions?

Extra

We use a double-precision, finite volume discretization of the variable-coefficient operator $L = a\vec{\alpha}I - b\nabla\vec{\beta}\nabla$ with periodic boundary conditions as the linear operator within our test problem. Variable-coefficient is an essential (yet particularly challenging) facet as most real-world applications demand it. The right-hand side (f) is $sin(2\pi x)sin(2\pi y)sin(2\pi z)$ on the [0,1] cubical domain. The $u, f, and \vec{\alpha}$ are cell-centered data, while the β 's are face-centered.