Alleviating memory bandwidth pressure with wavefront temporal blocking and diamond tiling

Tareq Malas*§
Georg Hager§
Gerhard Wellein§
David Keyes*

§Erlangen Regional Computing Center, Germany
*King Abdullah Univ. of Sci. & Tech. (KAUST), Saudi Arabia
Memory bandwidth starved stencil computations, with spatial blocking

- Example system
 - Double precision
 - Domain size: 520^3
 - 10-cores Intel Ivy Bridge
 - 7-pt 3D stencil with spatial blocking
 - Constant symmetric coefficients
- Performance limit =
 \[
 \frac{\text{attainable memory BW}}{\text{Memory Bytes / LUP}} = \frac{40 \text{ GB} / \text{s}}{24 \text{ B} / \text{LUP}} = 1.67 \text{ GLUP} / \text{s}
 \]
Stencil computations challenges in future architectures

• Each node may have up to a thousand shared-memory cores with:
 – small cache size per core
 – small memory bandwidth per core
 – complex cache sharing among cores
 – expensive synchronization among all the cores
 – interaction between heterogeneous processors

• Expensive synchronization after each iteration
Diamond tiling

- Improves the performance on shared and distributed memory systems

- High data reuse, reducing memory accesses
- Provides independent space-time blocks to reduce synchronization between threads and nodes
- Overlap computation with communication
- Tessellation reduces the overhead of handling the boundaries of subdomains, sockets, and heterogeneous processors
Diamond tiling

- Improves the performance on shared and distributed memory systems
 - High temporal reuse, reducing memory accesses

Diagram showing the concept of diamond tiling with time and space axes.
Diamond tiling

• Improves the performance on shared and distributed memory systems
 – high temporal reuse, reducing memory accesses
 – provides independent space-time blocks to
 • reduce synchronization between threads and nodes
 • overlap computation with communication
Diamond tiling

- Improves the performance on shared and distributed memory systems
 - high temporal reuse, reducing memory accesses
 - provides independent space-time blocks to
 - reduce synchronization between threads and nodes
 - overlap computation with communication
 - tessellation reduces the overhead of handling the boundaries of subdomains, sockets, and heterogeneous processors
Wavy assignments for larger diamonds

Send Left

Send Right

O : Out data
I : In data
W: wait
Related work

• Diamond tiling technique has drawn the attention of the research community in recent years

1-Core-Wavefront temporal blocking + Diamond tiling (1CWD)

- Extruded diamonds
 - Diamond tiling and domain decomposition across the Y-axis
 - Wavefront temporal blocking along the Z-axis
 - No decomposition across the X-axis

Multi-Core-Wavefront temporal blocking + Diamond tiling (MCWD)

- Advantages:
 - Can run at small domain sizes on many-core architectures, as it does not require concurrent tile for each thread
 - Large reduction in cache size requirements compared to having 1 cache block per core
 - Utilizes the shared cache between cores and hardware threads of modern processors
Diamond tiling temporal blocking

• Setup
 – Double precision
 – Domain size: 520^3
 – 10-cores Intel Ivy Bridge

• MCWD achieves
 – 1.11x speedup over 1CWD
 – 2.14x speedup over spatially blocked code
Coming enhancement

• Assign threads to multiple groups instead of one large threads group
• Use hierarchical cache blocking to improve the data reuse at different cache levels