
Automatic Generation
of Algorithms and
Data Structures for
Geometric Multigrid

Harald Köstler, Sebastian Kuckuk

Siam Parallel Processing

02/21/2014



Introduction



Multigrid

● Goal: Solve a partial differential equation approximately by solving a 

discretized form of said PDE

● An efficient method to solve such discretized PDEs in O(N) is 

multigrid

● Basic idea: Treat high frequency and low frequency errors separately 

by smoothing and solving for coarse grid representations respectively

3

∆𝑢 = 𝑓 in Ω
𝑢 = 0 in 𝜕Ω

Ω
𝐴 𝑢ℎ = 𝑓ℎ



Multigrid

4

Smoothing of

High Frequency

Errors

Coarsened

Representation of

Low Frequency Errors



Multigrid V-Cycle

5

Smoothing

Restriction Prolongation

& Correction

Coarse Grid Solving



Our Scope

● Uniform grids

● Block-Structured grids

6



Goals

● What do we want?

● Efficient and robust multigrid solvers

● Performance portability

● Easy to adapt to new settings and concepts (e.g. hardware)

● Easy to extend

● …

● Solutions?

● Extensive Libraries?

● Optimizing by hand?

● Auto-Tuning?

7



Problem – Variance

● There is a lot of variance in the MG domain:

● Hardware: CPU, GPU or both? Number of nodes, sockets and cores? 

Cache characteristics? Network characteristics?

● Software: MPI, OpenMP or both? CUDA or OpenCL? Which version?

● MG components: Cycle Type? Which smoother(s)? Which coarse grid 

solver? Which inter-Grid operators?

● MG parameters: Relaxation? Number of smoothing steps? Other 

component dependent parameters?

● Optimizations: Vectorization? (Software) Prefetching? Tiling? Temporal 

Blocking? Loop transformations?

● Problem description: Which PDE? Which boundary conditions?

● Discretization: Finite Differences, Finite Elements or Finite Volumes?

● Domain: Uniform or block-structured? How to partition?

● …

8



Possible Solutions

● What do we want?

● Efficient and robust multigrid solvers

● Performance portability

● Easy to adapt to new hardware

● Easy to extend

● …

● Solutions?

● Extensive Libraries?

● Optimizing by hand?

● Auto-Tuning?

● Code generation?

9



The ExaStencils Project



11

• Sebastian Kuckuk

• Harald Köstler

• Ulrich Rüde

• Christian Schmitt

• Frank Hannig

• Jürgen Teich

• Hendrik Rittich

• Matthias Bolten

• Alexander Grebhahn

• Sven Apel

• Stefan Kronawitter

• Armin Größlinger

• Christian Lengauer

Project ExaStencils



ExaStencils Vision

● Generate exa-scalable C++ code for GMG solvers from

● a high-level problem description specified by domain experts and

● a target hardware architecture specification

12



ExaStencils Overview

● DSL as intuitive 

interface to the user

● Automatic deduction of 

configuration if desired

● Prediction and 

Optimization of the 

configuration’s 

performance using 

SPL and LFA

● Code generation in 

Scala

● Automatic hardware-

specific optimizations

13



ExaStencils Workflow

14



ExaStencils Vision

● Generate exa-scalable C++ code from

● a high-level problem description specified by domain experts and

● a target hardware architecture specification

● Further visions: Provide different levels of abstraction that can be 

used as testing environments for

● Mathematicians researching multigrid methods and components

● Software Specialists researching programming languages, efficient 

communication strategies and program optimizations

● Hardware Experts researching low-level and hardware-specific 

optimizations

15



State of the Project



Current State – LFA

● Convergence rate 

prediction for 2D/3D 

Jacobi, Gauss-Seidel, 

Red-Black Gauss-

Seidel

● Hybrid GS and RBGS 

are predictable for 

small blocks as well

● Supports all cycle types

17

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o
n
v
e
rg

e
n
c
e
 R

a
te

Iteration

Residual Reduction for Different Smoothers on 
16384 nodes 

Jac - V(1,1) Jac - V(2,2) GS - V(1,1) GS - V(2,2)

RBGS - V(1,1) RBGS - V(2,2) BS - V(1,1) BS - V(2,2)



Current State – SPL

● First experiments in applying SPL techniques to our domain have 

been conducted [2]

18



Current State – HW Optimizations

19

● Experiments with basic 

optimizations (vectorization, 

address pre-calculation) and 

temporal/ spatial blocking on 

different hardware 

architectures [3]

0

2

4

6

8

10

12

1 2 3 4

S
p
e
e
d
u
p

Number of Threads

Speedups for Jacobi Smoothers on Ivy Bridge

Naïve Impl. Basic Opt.

Temporal Blocking Temp. & Spatial Blocking

0

50

100

150

200

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Threads

Speedups for Jacobi Smoothers on BlueGene/Q

Naïve Impl. Basic Opt.

Temporal Blocking Temp. & Spatial Blocking



Current State – DSL(s)

● Different levels

1. Continuous model (PDE, Domain)

2. Discrete model (Stencils, Fields)

3. Algorithmic components & parameters

4. Pseudo-code for critical functions

● Prototype DSLs for each level

● First work on deriving levels from previous configurations

20



Current State – Code Generation (Multigrid)

● Multigrid

● Scala prototype capable of generating fully working multigrid solvers for 

FD discretizations of Poisson’s equation in 2D and 3D

● Domain Generation

● Currently only uniform grids, i.e. no HHG (Hierarchical Hybrid Grids) data 

structures

● Domain is divided into rectangular blocks

● Each block is composed of one or more fragments

● Domain is setup at runtime

● This includes memory for data fields,

neighborhood connections, temporary

memory for communication, …

21



Current State – Code Generation

● Parallelization

● Uniform grids in 2D or 3D

● Different communication schemes (6P/26P in 3D and 4P/8P in 2D)

● Pure MPI or hybrid OpenMP-MPI parallelization

● OpenMP parallelization by replacing MPI communication with local 

communication or by agglomeration of fragments and parallelizing the 

stencil kernels directly

● Optional usage of MPI data types for sending and

receiving field data in most cases

● Variable number of ghost layers

● …

22



JuQueen

● 28 672 Nodes (458 752 Cores)

● Compute Node: IBM PowerPC A2, 

1.6 GHz, 16+1+1 cores

● Main memory:

16 GB per node

(aggregate 448 TB)

● Overall peak performance:

5.9 PetaFLOP/s

23



(Very) Preliminary Results for 3D FD Poisson

● Weak scaling for a V(3,3) cycle with Gauss-Seidel as smoother

● Coarse-grid solver is not implemented yet; thus, we use the smoother 

as CGS with the number of iterations according to

a) the squared maximum of the number of fragments per dimension or

b) a fixed number of iterations

24

100

1000

10000

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

R
u
n
ti
m

e
 p

e
r 

V
-c

yc
le

 [
m

s
]

Number of Cores

Weak Scaling for Different Smoothers

GS - V(3,3) With incomplete CGS



Next Steps



Next Steps

● Multigrid

● Integrate missing 

multigrid components to 

allow for comparison 

with our old multigrid

codes [1]

● This mainly includes 

coarse-grid solvers

● Data structures

● Generate HHG data 

structures and the 

necessary stencil 

application codes

26

10

100

1000

10000

512 2048 8192 32768 131072 524288R
u
n
ti
m

e
 p

e
r 

V
-c

y
c
le

 [
m

s
]

Number of Cores

Weak Scaling for Different Smoothers

RBGS - V(1,1) RBGS - V(2,2) BS - V(1,1) BS - V(2,2)

1

10

100

1000

512 2048 8192 32768 131072 524288

R
u
n
ti
m

e
 o

f 
C

o
a
rs

e
 G

ri
d
 S

o
lv

e
r 

[m
s
]

Number of Cores

Weak Scaling of the Coarse Grid Solver 
Performance

CG AMG



Next Steps

● Low-level optimization

● Setup an interface between the code generator and the polyhedron 

model

● Express transformations in polyhedron model

● Runtime prediction and optimization (LFA & SPL)

● Develop a more precise model for feature interactions

● Extend the LFA tool

● Combine the two approaches to yield an efficient and robust optimization

27



References

(1) Sebastian Kuckuk, Björn Gmeiner, Harald Köstler, and Ulrich Rüde. 

A generic prototype to benchmark algorithms and data structures for 

hierarchical hybrid grids. Accepted at ParCo2013.

(2) Alexander Grebhahn, Norbert Siegmund, Sven Apel, Sebastian 

Kuckuk, Christian Schmitt, and Harald Köstler. Optimizing 

Performance of Stencil Code with SPL Conqueror. In Proceedings 

of the 1st International Workshop on High-Performance Stencil 

Computations (HiStencils), pages 7–14, January 2014.

(3) Stefan Kronawitter and Christian Lengauer. Optimization of two 

Jacobi Smoother Kernels by Domain-Specific Program 

Transformation. In Proceedings of the 1st International Workshop on 

High-Performance Stencil Computations (HiStencils), pages 75–80, 

January 2014.

28



Thank you for your
Attention!

Questions?


