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Introduction



Multigrid

● Goal: Solve a partial differential equation approximately by solving a 

discretized form of said PDE

● An efficient method to solve such discretized PDEs in O(N) is 

multigrid

● Basic idea: Treat high frequency and low frequency errors separately 

by smoothing and solving for coarse grid representations respectively

3

∆𝑢 = 𝑓 in Ω
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Multigrid
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Multigrid V-Cycle
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Our Scope

● Uniform grids

● Block-Structured grids
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Goals

● What do we want?

● Efficient and robust multigrid solvers

● Performance portability

● Easy to adapt to new settings and concepts (e.g. hardware)

● Easy to extend

● …

● Solutions?

● Extensive Libraries?

● Optimizing by hand?

● Auto-Tuning?
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Problem – Variance

● There is a lot of variance in the MG domain:

● Hardware: CPU, GPU or both? Number of nodes, sockets and cores? 

Cache characteristics? Network characteristics?

● Software: MPI, OpenMP or both? CUDA or OpenCL? Which version?

● MG components: Cycle Type? Which smoother(s)? Which coarse grid 

solver? Which inter-Grid operators?

● MG parameters: Relaxation? Number of smoothing steps? Other 

component dependent parameters?

● Optimizations: Vectorization? (Software) Prefetching? Tiling? Temporal 

Blocking? Loop transformations?

● Problem description: Which PDE? Which boundary conditions?

● Discretization: Finite Differences, Finite Elements or Finite Volumes?

● Domain: Uniform or block-structured? How to partition?

● …
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Possible Solutions

● What do we want?

● Efficient and robust multigrid solvers

● Performance portability

● Easy to adapt to new hardware

● Easy to extend

● …

● Solutions?

● Extensive Libraries?

● Optimizing by hand?

● Auto-Tuning?

● Code generation?
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The ExaStencils Project
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ExaStencils Vision

● Generate exa-scalable C++ code for GMG solvers from

● a high-level problem description specified by domain experts and

● a target hardware architecture specification
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ExaStencils Overview

● DSL as intuitive 

interface to the user

● Automatic deduction of 

configuration if desired

● Prediction and 

Optimization of the 

configuration’s 

performance using 

SPL and LFA

● Code generation in 

Scala

● Automatic hardware-

specific optimizations
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ExaStencils Workflow
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ExaStencils Vision

● Generate exa-scalable C++ code from

● a high-level problem description specified by domain experts and

● a target hardware architecture specification

● Further visions: Provide different levels of abstraction that can be 

used as testing environments for

● Mathematicians researching multigrid methods and components

● Software Specialists researching programming languages, efficient 

communication strategies and program optimizations

● Hardware Experts researching low-level and hardware-specific 

optimizations
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State of the Project



Current State – LFA

● Convergence rate 

prediction for 2D/3D 

Jacobi, Gauss-Seidel, 

Red-Black Gauss-

Seidel

● Hybrid GS and RBGS 

are predictable for 

small blocks as well

● Supports all cycle types

17

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o
n
v
e
rg

e
n
c
e
 R

a
te

Iteration

Residual Reduction for Different Smoothers on 
16384 nodes 

Jac - V(1,1) Jac - V(2,2) GS - V(1,1) GS - V(2,2)

RBGS - V(1,1) RBGS - V(2,2) BS - V(1,1) BS - V(2,2)



Current State – SPL

● First experiments in applying SPL techniques to our domain have 

been conducted [2]
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Current State – HW Optimizations
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● Experiments with basic 

optimizations (vectorization, 

address pre-calculation) and 

temporal/ spatial blocking on 

different hardware 

architectures [3]
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Current State – DSL(s)

● Different levels

1. Continuous model (PDE, Domain)

2. Discrete model (Stencils, Fields)

3. Algorithmic components & parameters

4. Pseudo-code for critical functions

● Prototype DSLs for each level

● First work on deriving levels from previous configurations
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Current State – Code Generation (Multigrid)

● Multigrid

● Scala prototype capable of generating fully working multigrid solvers for 

FD discretizations of Poisson’s equation in 2D and 3D

● Domain Generation

● Currently only uniform grids, i.e. no HHG (Hierarchical Hybrid Grids) data 

structures

● Domain is divided into rectangular blocks

● Each block is composed of one or more fragments

● Domain is setup at runtime

● This includes memory for data fields,

neighborhood connections, temporary

memory for communication, …
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Current State – Code Generation

● Parallelization

● Uniform grids in 2D or 3D

● Different communication schemes (6P/26P in 3D and 4P/8P in 2D)

● Pure MPI or hybrid OpenMP-MPI parallelization

● OpenMP parallelization by replacing MPI communication with local 

communication or by agglomeration of fragments and parallelizing the 

stencil kernels directly

● Optional usage of MPI data types for sending and

receiving field data in most cases

● Variable number of ghost layers

● …
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JuQueen

● 28 672 Nodes (458 752 Cores)

● Compute Node: IBM PowerPC A2, 

1.6 GHz, 16+1+1 cores

● Main memory:

16 GB per node

(aggregate 448 TB)

● Overall peak performance:

5.9 PetaFLOP/s
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(Very) Preliminary Results for 3D FD Poisson

● Weak scaling for a V(3,3) cycle with Gauss-Seidel as smoother

● Coarse-grid solver is not implemented yet; thus, we use the smoother 

as CGS with the number of iterations according to

a) the squared maximum of the number of fragments per dimension or

b) a fixed number of iterations

24

100

1000

10000

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

R
u
n
ti
m

e
 p

e
r 

V
-c

yc
le

 [
m

s
]

Number of Cores

Weak Scaling for Different Smoothers

GS - V(3,3) With incomplete CGS



Next Steps



Next Steps

● Multigrid

● Integrate missing 

multigrid components to 

allow for comparison 

with our old multigrid

codes [1]

● This mainly includes 

coarse-grid solvers

● Data structures

● Generate HHG data 

structures and the 

necessary stencil 

application codes

26

10

100

1000

10000

512 2048 8192 32768 131072 524288R
u
n
ti
m

e
 p

e
r 

V
-c

y
c
le

 [
m

s
]

Number of Cores

Weak Scaling for Different Smoothers

RBGS - V(1,1) RBGS - V(2,2) BS - V(1,1) BS - V(2,2)

1

10

100

1000

512 2048 8192 32768 131072 524288

R
u
n
ti
m

e
 o

f 
C

o
a
rs

e
 G

ri
d
 S

o
lv

e
r 

[m
s
]

Number of Cores

Weak Scaling of the Coarse Grid Solver 
Performance

CG AMG



Next Steps

● Low-level optimization

● Setup an interface between the code generator and the polyhedron 

model

● Express transformations in polyhedron model

● Runtime prediction and optimization (LFA & SPL)

● Develop a more precise model for feature interactions

● Extend the LFA tool

● Combine the two approaches to yield an efficient and robust optimization
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