
Basics of performance modeling for

numerical applications:

Roofline model and beyond

Georg Hager, Jan Treibig, Gerhard Wellein

SPPEXA PhD Seminar

RRZE

April 30, 2014

Prelude:

Scalability 4 the win!

Scalability Myth: Code scalability is the key issue

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

(c) RRZE 2014 Performance Models 3

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 4 Performance Models

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only a the compile
options makes this code
scalable on an 8-core chip

–O3 -xAVX

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 5 Performance Models

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the

situation

(c) RRZE 2014 6 Performance Models

An example from physics

Newtonian mechanics

Fails @ small scales!

(c) RRZE 2014 7 Performance Models

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Consequences

 If models fail, we learn more

 A simple model can get us very far

before we need to refine

A little bit of

modern computer architecture

Core

Data transfer

Topology

Bottlenecks

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

A typical modern processor core

 Similar design on all

modern systems

(c) RRZE 2014 Performance Models 9

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2014 Performance Models

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

10

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources (“bottlenecks”):

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

Where is the bottleneck for your application?

(c) RRZE 2014 Performance Models 11

“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: A 3D Jacobi solver

Model-guided optimization

Prelude: Modeling customer dispatch in a bank

(c) RRZE 2014 13 Performance Models

Revolving door
throughput:

bS [customers/sec]

Processing
capability:

Pmax [tasks/sec]

Intensity:
I [tasks/customer]

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? P [tasks/sec]

 The bottleneck is either

 The service desks (max. tasks/sec)

 The revolving door (max. customers/sec)

 This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

(c) RRZE 2014 14 Performance Models

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

Pe
rf

o
rm

an
ce

Pmax

The Roofline Model for loop code execution1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

(c) RRZE 2014

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

15 Performance Models

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

How many cycles to process one 64-byte cache line (one core)?

64byte = equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and ½ store and mult and add
Cycle 2: load and ½ store
Cycle 3: load Answer: 6 cycles

(c) RRZE 2014 Performance Models 16

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

What is the performance in GFlops/s and the bandwidth in MBytes/s?

One AVX iteration (3 cycles) performs 4 x 2 = 8 flops.

(2.7 GHz / 3 cycles) * 4 updates * 2 flops/update = 7.2 GFlops/s

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

(c) RRZE 2014 Performance Models 17

Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.2 % of peak performance)

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

 Pmax = 8 x 7.2 Gflop/s = 57.6 Gflop/s (33% peak)

(c) RRZE 2014

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s
= 2.0 GFlop s

18 Performance Models

Exercise: Dense matrix-vector multiplication

 Assume N ≈ 5000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

(c) RRZE 2014

do i=1,N

 do j=1,N

 c(i)=c(i)+A(j,i)*b(j)

 enddo

enddo

do i=1,N

tmp = c(i)

 do j=1,N

 tmp = tmp + A(j,i)* b(j)

 enddo

 c(i) = tmp

enddo

Performance Models 19

Assumptions for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 20 Performance Models

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code

2. Increase intensity to make

better use of BW bottleneck

3. Increase intensity and go from

memory-bound to core-bound

4. Hit the core bottleneck by good

serial code

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation

(c) RRZE 2014 Performance Models 21

Case study:

A 3D Jacobi smoother

The basics in two dimensions

Roofline performance analysis and modeling

A Jacobi smoother

 Laplace equation in 2D:

 Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:

Naive balance (incl. write allocate):

phi(:,:,t0): 3 LD +
phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 10 B/F (= 40 B/LUP)

Re-use when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

(c) RRZE 2014

∆𝚽 = 𝟎

Performance Models 23

Analyzing the data flow

(c) RRZE 2014

cached
Worst case: Cache not large enough to hold 3
layers of grid

Performance Models 24

Analyzing the data flow

(c) RRZE 2014

Worst case: Cache not large enough to hold 3
layers of grid

25 Performance Models

Analyzing the data flow

(c) RRZE 2014

Making the
inner lop
dimension
successively
smaller

Best case: 3
layers of grid fit
into the cache!

26 Performance Models

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

 “layer conditions”

If cache is large enough to hold at least 3 rows:
Each phi(:,:,t0) is loaded once from main memory and re-used 3 times from
cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 24 B/LUP

If cache is too small :
phi(:,:,t0): 3 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 40 B/LUP

(c) RRZE 2014 Performance Models 27

2D 3D

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 B/LUP)

 No 3-layer condition but 3 rows fit: BC = 5/6 W/F (40 B/LUP)

 Worst case (3 rows do not fit): BC = 7/6 W/F (56 B/LUP)

(c) RRZE 2014

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

28

Layer condition:
nthreads*3*jmax*imax*8B < CS/2

Performance Models

Jacobi Stencil – Observed performance vs. problem size

Validation: Measured data traffic
from main memory [Bytes/LUP] 1 thread: Layer condition OK – but

can not saturate bandwidth

10 threads: performs starts to drop
around imax=230
(3 layers = 13 MB, CS = 25 MB)

(c) RRZE 2014 Performance Models 29

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.
problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Hardware performance counters (likwid-perfctr)

 Traffic volume per LUP measured using cache lines loaded/evicted from/to
memory

 Used for model validation

 Optimization == reducing the code balance by code
transformations

 See below

 (c) RRZE 2014 30 Performance Models

Data access optimizations

Case study: Optimizing the 3D Jacobi solver

How can we re-establish the layer condition?

(c) RRZE 2014

Problem size: N3

40 B/LUP model

?

Performance Models 32

Enforcing the layer condition by blocking

(c) RRZE 2014

Inner loop
block size
= 5

Performance Models 33

Enforcing the layer condition by blocking

(c) RRZE 2014

Inner loop
block size
= 5

34 Performance Models

Jacobi Stencil – simple spatial blocking

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

!$OMP PARALLEL DO SCHEDULE(STATIC)

 do k=1,kmax

 do j=jb,(jb+jblock-1) ! Loop length jblock

 do i=1,imax

 phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0) +phi(i,j,k+1,t0)) * 1/6.d0

 enddo

 enddo

 enddo

enddo

“Layer condition” (j-Blocking))
 nthreads*3*jblock*imax*8B < CS/2

Test system: Intel Xeon E5-2690 v2 (10 cores / 3 GHz)

 bS = 48 GB/s , CS = 25 MB (L3)

Ensure layer condition by choosing jblock appropriately (cubic domains):
jblock < CS/(imax * nthreads * 48 B)

 P = 2000 MLUP/s

(c) RRZE 2014 Performance Models 35

Spatial blocking

Determine:
jblock < CS/(2*nthreads*3*imax*8B)

imax = jmax = kmax

#blocks

changes

CS=10 MB:

~ 90% of Roofline limit

Validation: Measured data traffic from
main memory [Bytes/LUP]

(c) RRZE 2014 Performance Models 36

Conclusions from the Jacobi optimization example

 “What part of the data comes from where” is a crucial question

 Avoiding slow data paths == re-establishing the most favorable

layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

 Non-temporal stores avoid the write-allocate and thus reduce

memory traffic

 But they may come at a price

(c) RRZE 2014 Performance Models 37

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 ECM model gives more insight

A(:)=B(:)+C(:)*D(:)

Roofline predicts full
socket BW

(c) RRZE 2014

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Accepted for publication in Concurrency and Computation:
Practice and Experience. Preprint: arXiv:1208.2908

Performance Models 38

http://arxiv.org/abs/1208.2908

The Execution-Cache-Memory (ECM)

model

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Concurrency and Computation: Practice and
Experience, DOI: 10.1002/cpe.3180 (2013). Preprint: arXiv:1208.2908

J. Treibig and G. Hager: Introducing a Performance Model for
Bandwidth-Limited Loop Kernels. Proc. PPAM 2009, Lecture
Notes in Computer Science Volume 6067, 615-624 (2010).
DOI: 10.1007/978-3-642-14390-8_64. Preprint: arXiv:0905.0792

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64

ECM Model

 ECM = “Execution-Cache-Memory”

 Assumptions:

 Single-core execution time is composed of

1. In-core execution

2. Data transfers in the memory hierarchy

 Data transfers may or may not overlap with

each other or with in-core execution

 Scaling is linear until the relevant bottleneck

is reached

 Input:

 Same as for Roofline

 + data transfer times in hierarchy

(c) RRZE 2014 40 Performance Models

Example: Schönauer Vector Triad in L2 cache

 REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

(c) RRZE 2014 41 Performance Models

1 LD/cy + 0.5 ST/cy

Registers

L1

L2

32 B/cy (2 cy/CL)

Machine characteristics:

Arithmetic:
1 ADD/cy+ 1 MULT/cy

Registers

L1

L2

Triad analysis (per CL):

6 cy/CL

10 cy/CL

Arithmetic:
AVX: 2 cy/CL

LD LD
ST/2

LD
ST/2 LD LD

ST/2
LD

ST/2

LD

ADD
MULT

ADD
MULT

LD LD WA ST

Roofline prediction: 16/10 F/cy

Timeline:

16 F/CL (AVX)

Measurement: 16F / ≈17cy

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX

(c) RRZE 2014 42 Performance Models

CL
transfer

Write-
allocate
CL transfer

Full vs. partial vs. no overlap

(c) RRZE 2014 43 Performance Models

Results
suggest no
overlap!

Multicore scaling in the ECM model

 Identify relevant bandwidth bottlenecks

 L3 cache

 Memory interface

 Scale single-thread performance until first bottleneck is hit:

(c) RRZE 2014 44 Performance Models

𝑃 𝑡 = min(𝑡𝑃0, 𝐼 ∙ 𝑏𝑆)

. . . Example:
Scalable L3

on Sandy
Bridge

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:)

on a Sandy Bridge socket (no-overlap assumption)

Model: Scales until saturation

sets in

Saturation point (# cores) well

predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel

code

(c) RRZE 2014 45 Performance Models

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)

on a Sandy Bridge socket (full overlap assumption)

(c) RRZE 2014 46 Performance Models

In-core execution is dominated by

divide operation

(44 cycles with AVX, 22 scalar)

Almost perfect agreement with

 ECM model

General observation:

 If the L1 cache is 100% occupied

by LD/ST, there is no overlap

throughout the hierarchy

 If there is “slack” at the L1, there is

some overlap in the hierarchy

Performance Modeling of Stencil Codes

Applying the ECM model to a 2D Jacobi smoother

(H. Stengel, RRZE)

Example 1: 2D Jacobi in double precision

with SSE2 on Sandy Bridge

(c) RRZE 2014 48 Performance Models

Example 1: 2D Jacobi in DP with SSE2 on SNB

(c) RRZE 2014 49 Performance Models

Instruction count
- 13 LOAD
- 4 STORE
- 12 ADD
- 4 MUL

4-way unrolling
 8 LUP / iteration

Example 1: 2D Jacobi in DP with SSE2 on SNB

(c) RRZE 2014 50 Performance Models

Code characteristics
(SSE instructions per iteration)

- 13 LOAD
- 4 STORE
- 12 ADD
- 4 MUL

Processor characteristics
(SSE instructions per cycle)

- 2 LOAD || (1 LOAD + 1 STORE)
- 1 ADD
- 1 MUL

LD LD LD LD 2LD 2LD 2LD 2LD L

ST ST ST ST

+ + + + + + + + + + + +

* * * *

core execution:
12 cy

Example 1: 2D Jacobi in DP with SSE2 on SNB

(c) RRZE 2014 51 Performance Models

 Situation 1: Data set fits into L1 cache

 ECM prediction:

(8 LUP / 12 cy) * 3.5 GHz = 2.3 GLUP/s

 Measurement: 2.2 GLUP/s

 Situation 2: Data set fits into L2 cache (not into L1)

 3 additional transfer streams from L2 to L1 (data delay)

 ECM prediction:

(8 LUP / (12+6) cy) * 3.5 GHz = 1.5 GLUP/s

 Measurement: 1.9 GLUP/s

Overlap?

12 cy

6 cy t0 RFO t1

Example 1: 2D Jacobi in DP with SSE2 on SNB

(c) RRZE 2014 52 Performance Models

LD LD LD LD 2LD 2LD 2LD 2LD L

ST ST ST ST

+ + + + + + + + + + + +

* * * *

core execution: 12 cycles

 ECM prediction w/ overlap:

(8 LUP / (8.5+6) cy) * 3.5 GHz = 1.9 GLUP/s

 Measurement: 1.9 GLUP/s

L1 „single ported“
 no overlap during LD/ST

data delay: 6 cycles

12 cy

6 cy RFO t0 t1

“If the model fails, we learn something”

Conclusions

 Performance models help us understand more about

 Interaction of software with hardware

 Optimization opportunities

 Roofline Model

 “Simple” bottleneck analysis

 Good for “saturated” situations (full chip)

 Benefit of blocking / traffic saving optimizations can be predicted

 Shortcomings: Single data bottleneck, perfect overlap assumption

 multicore scaling cannot be modeled

 ECM Model

 Multiple bottlenecks: Execution, Caches, Memory

 1st shot: Assume no overlap in hierarchy

 Good single-core predictions, converges to Roofline in saturated case

(c) RRZE 2014 53 Performance Models

