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Prelude: 

Scalability 4 the win! 



Scalability Myth: Code scalability is the key issue 

 

 

 

Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 
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Scalability Myth: Code scalability is the key issue 
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Prepared for  
the highly  
parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

 

Changing only a the compile 
options makes this code 
scalable on an 8-core chip 

–O3 -xAVX 



Scalability Myth: Code scalability is the key issue 
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!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

Single core/socket efficiency  
is key issue! 

Upper limit from simple 
performance model: 
35 GB/s & 24 Byte/update 



Questions to ask in high performance computing 

 Do I understand the performance behavior of my code? 

 Does the performance match a model I have made? 

 

 What is the optimal performance for my code on a given machine? 

 High Performance Computing == Computing at the bottleneck 

 

 Can I change my code so that the “optimal performance” gets 

higher? 

 Circumventing/ameliorating the impact of the bottleneck 

 

 My model  does not work – what’s wrong? 

 This is the good case, because you learn something 

 Performance monitoring / microbenchmarking may help clear up the 

situation 

 

(c) RRZE 2014 6 Performance Models 



An example from physics 

Newtonian mechanics 

 

 

 

 

 

 

 

Fails @ small scales! 
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𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  

quantum  

mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 

Consequences 

 If models fail, we learn more 

 A simple model can get us very far 

before we need to refine  



A little bit of 

modern computer architecture 

Core 

Data transfer  

Topology 

Bottlenecks 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAA 



A typical modern processor core 

 Similar design on all 

modern systems 
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Registers and caches: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 

 Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

 Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 MISS: Load or store instruction does 

not find the data in a cache level 

 CL transfer required 

 

 

 Example: Array copy A(:)=C(:) 
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CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 
allocate 

evict 
(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 
ST A(2..Ncl) 

 

HIT 

C(:) A(:) 
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Parallelism in a modern compute node 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 
PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / ccNUMA domains 

 Multiple accelerators 

    Shared resources (“bottlenecks”): 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 
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4 

5 

6 

6 

7 
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8 

8 

9 

9 

10 

10 

Where is the bottleneck for your application? 
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“Simple” performance modeling: 

The Roofline Model 

 
Loop-based performance modeling: Execution vs. data transfer 

Example: A 3D Jacobi solver 

Model-guided optimization  

 



Prelude: Modeling customer dispatch in a bank 
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Revolving door 
throughput: 

bS [customers/sec] 

Processing 
capability: 

Pmax [tasks/sec] 

Intensity: 
I [tasks/customer] 



Prelude: Modeling customer dispatch in a bank 

How fast can tasks be processed?  P [tasks/sec] 

 

 The bottleneck is either 

 The service desks (max. tasks/sec) 

 The revolving door (max. customers/sec) 

 

 

 

 

 This is the “Roofline Model” 

 High intensity: P limited by “execution” 

 Low intensity: P limited by “bottleneck” 
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𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

Intensity 

Pe
rf

o
rm

an
ce

 

Pmax 



The Roofline Model for loop code execution1,2 

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache (this is not necessarily Ppeak) 

 

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (“the bottleneck”) 

 Code balance BC = I -1 

 

3. bS = Applicable peak bandwidth of the slowest data path utilized 

 

 

Expected performance: 
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𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008) 

[B/s] [F/B] 

15 Performance Models 

http://www.rz.uni-karlsruhe.de/~rx03/book
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Example: Estimate Pmax of vector triad on SandyBridge 

double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

How many cycles to process one 64-byte cache line (one core)? 

64byte = equivalent to 8 scalar iterations or 2 AVX vector iterations. 
 
Cycle 1:  load and ½ store  and mult and  add 
Cycle 2:  load and ½ store 
Cycle 3:  load                                       Answer:  6 cycles                
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Example: Estimate Pmax of vector triad on SandyBridge 

double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

What is the performance in GFlops/s and the bandwidth in MBytes/s? 

One AVX iteration (3 cycles) performs 4 x 2 = 8 flops. 

 

(2.7 GHz / 3 cycles) * 4 updates * 2 flops/update = 7.2 GFlops/s 

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s 
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Pmax + bandwidth limitations: The vector triad 

Example: Vector triad A(:)=B(:)+C(:)*D(:)  

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized) 

 

 bS = 40 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

 

   I ∙ bS = 2.0 GF/s (1.2 % of peak performance) 

 

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz) 

 Pmax  = 8 x 7.2 Gflop/s =  57.6 Gflop/s (33% peak) 
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𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s 
= 2.0 GFlop s  
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Exercise: Dense matrix-vector multiplication 

 Assume N ≈ 5000 

 

 Applicable peak performance? 

 

 Relevant data path? 

 

 Computational Intensity? 
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do i=1,N 

 do j=1,N 

  c(i)=c(i)+A(j,i)*b(j) 

 enddo  

enddo 

do i=1,N 

tmp = c(i) 

 do j=1,N 

  tmp = tmp + A(j,i)* b(j) 

 enddo 

 c(i) = tmp  

enddo 
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Assumptions for the Roofline Model 

 The roofline formalism is based on some (crucial) assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 
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Typical code optimizations in the Roofline Model 

1. Hit the BW bottleneck by good 

serial code 

 

2. Increase intensity to make 

better use of BW bottleneck 

 

3. Increase intensity and go from 

memory-bound to core-bound 

 

4. Hit the core bottleneck by good 

serial code 

 

5. Shift Pmax by accessing 

additional hardware features or 

using a different 

algorithm/implementation 
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Case study:  

A 3D Jacobi smoother 

The basics in two dimensions 

Roofline performance analysis and modeling 



A Jacobi smoother 

 Laplace equation in 2D: 

 

 Solve with Dirichlet boundary conditions using Jacobi iteration 

scheme: 

Naive balance (incl. write allocate):  

phi(:,:,t0): 3 LD +  
phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 10 B/F  (= 40 B/LUP) 

Re-use when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 
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∆𝚽 = 𝟎 
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Analyzing the data flow 

(c) RRZE 2014 

cached 
Worst case: Cache not large enough to hold 3 
layers of grid 
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Analyzing the data flow 

(c) RRZE 2014 

Worst case: Cache not large enough to hold 3 
layers of grid 
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Analyzing the data flow 

(c) RRZE 2014 

Making the 
inner lop 
dimension 
successively 
smaller 

Best case: 3 
layers of grid fit 
into the cache! 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic 

 “layer conditions”  

If cache is large enough to hold at least 3 rows: 
Each phi(:,:,t0) is loaded once from main memory and re-used 3 times from 
cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 
 
BC = 3 W / 4 F = 24 B/LUP 
 
 
 
If cache is too small : 
phi(:,:,t0): 3 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 40 B/LUP 
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2D  3D 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 B/LUP) 

 

 No 3-layer condition but 3 rows fit:  BC = 5/6 W/F (40 B/LUP) 

 Worst case (3 rows do not fit):  BC = 7/6 W/F (56 B/LUP) 
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do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                           + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                           + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 

28 

Layer condition:   
nthreads*3*jmax*imax*8B < CS/2 

Performance Models 



Jacobi Stencil – Observed performance vs. problem size 

Validation: Measured data traffic 
from main memory [Bytes/LUP] 1 thread: Layer condition OK – but 

can not saturate bandwidth 
 

10 threads: performs starts to drop 
around  imax=230  
(3 layers = 13 MB, CS = 25 MB) 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 
problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 Hardware performance counters (likwid-perfctr) 

 Traffic volume per LUP measured using cache lines loaded/evicted from/to 
memory 

 Used for model validation 

 

 Optimization == reducing the code balance by code 
transformations 

 See below 

 

 (c) RRZE 2014 30 Performance Models 



Data access optimizations  
  

Case study: Optimizing the 3D Jacobi solver 



How can we re-establish the layer condition? 

(c) RRZE 2014 

Problem size: N3 

40 B/LUP model 

? 
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Enforcing the layer condition by blocking 
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Inner loop 
block size 
= 5 
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Enforcing the layer condition by blocking 

(c) RRZE 2014 

Inner loop 
block size 
= 5 
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Jacobi Stencil – simple spatial blocking 

 

 

 

 

 

 

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock 

 

!$OMP PARALLEL DO SCHEDULE(STATIC) 

  do k=1,kmax 

    do j=jb,(jb+jblock-1) ! Loop length jblock 

      do i=1,imax 

        phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                       + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                       + phi(i,j,k-1,t0) +phi(i,j,k+1,t0)) * 1/6.d0 

      enddo 

    enddo 

  enddo 

 

enddo    

“Layer condition” (j-Blocking)) 
 nthreads*3*jblock*imax*8B < CS/2 

Test system: Intel Xeon E5-2690 v2 (10 cores / 3 GHz) 
 

 bS = 48 GB/s , CS = 25 MB (L3)   

Ensure layer condition by choosing  jblock  appropriately (cubic domains): 
jblock < CS/(imax * nthreads * 48 B ) 

 P = 2000 MLUP/s 
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Spatial blocking 

Determine:  
jblock < CS/(2*nthreads*3*imax*8B) 

imax = jmax = kmax 

#blocks 

changes 

CS=10 MB:  

~ 90% of Roofline limit 

Validation: Measured data traffic from 
main memory [Bytes/LUP] 
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Conclusions from the Jacobi optimization example 

 “What part of the data comes from where” is a crucial question 

 

 Avoiding slow data paths == re-establishing the most favorable 

layer condition 

 

 Improved code showed the speedup predicted by the model 

 

 Optimal blocking factor can be estimated 

 Be guided by the cache size the layer condition 

 No need for exhaustive scan of “optimization space” 

 

 Non-temporal stores avoid the write-allocate and thus reduce 

memory traffic 

 But they may come at a price 
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Shortcomings of the roofline model 

 Saturation effects in multicore chips are not explained 

 Reason: “saturation assumption”  

 Cache line transfers and core execution do sometimes not overlap 

perfectly 

 Only increased “pressure” on the memory 

interface can saturate the bus 

 need more cores! 

 

 ECM model gives more insight 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts full 
socket BW 

(c) RRZE 2014 

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance 
and power properties of modern multicore chips via simple machine 
models. Accepted for publication in Concurrency and Computation: 
Practice and Experience. Preprint: arXiv:1208.2908 

Performance Models 38 

http://arxiv.org/abs/1208.2908


The Execution-Cache-Memory (ECM) 

model 

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance 
and power properties of modern multicore chips via simple machine 
models. Concurrency and Computation: Practice and 
Experience, DOI: 10.1002/cpe.3180 (2013). Preprint: arXiv:1208.2908 

J. Treibig and G. Hager: Introducing a Performance Model for 
Bandwidth-Limited Loop Kernels. Proc. PPAM 2009, Lecture 
Notes in Computer Science Volume 6067, 615-624 (2010).  
DOI: 10.1007/978-3-642-14390-8_64. Preprint: arXiv:0905.0792 

http://dx.doi.org/10.1002/cpe.3180
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ECM Model 

 ECM = “Execution-Cache-Memory” 

 

 Assumptions:  

 Single-core execution time is composed of 

1. In-core execution 

2. Data transfers in the memory hierarchy 

 Data transfers may or may not overlap with 

each other or with in-core execution 

 Scaling is linear until the relevant bottleneck 

is reached  

 

 Input: 

 Same as for Roofline 

 + data transfer times in hierarchy 
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Example: Schönauer Vector Triad in L2 cache 

 REPEAT[ A(:) = B(:) + C(:) * D(:)] @ double precision 

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line) 
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1 LD/cy + 0.5 ST/cy 

Registers 

L1 

L2 

32 B/cy (2 cy/CL) 

Machine characteristics: 

Arithmetic:  
1 ADD/cy+ 1 MULT/cy 

Registers 

L1 

L2 

Triad analysis (per CL): 

6 cy/CL 

10 cy/CL 

Arithmetic:  
AVX: 2 cy/CL 
 

LD LD 
ST/2 

LD 
ST/2 LD LD 

ST/2 
LD 

ST/2 

LD 

ADD 
MULT 

ADD 
MULT 

LD LD WA ST 

Roofline prediction: 16/10 F/cy 

Timeline: 

16 F/CL (AVX) 

Measurement: 16F / ≈17cy 



Example: ECM model for Schönauer Vector Triad 
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX  
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CL 
transfer 

Write-
allocate 
CL transfer 



Full vs. partial vs. no overlap 
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Results 
suggest no 
overlap! 



Multicore scaling in the ECM model 

 Identify relevant bandwidth bottlenecks 

 L3 cache 

 Memory interface 

 Scale single-thread performance until first bottleneck is hit: 
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𝑃 𝑡 = min(𝑡𝑃0, 𝐼 ∙ 𝑏𝑆) 

. . . Example: 
Scalable L3  

on Sandy 
Bridge 



ECM prediction vs. measurements for  A(:)=B(:)+C(:)*D(:)  

on a Sandy Bridge socket (no-overlap assumption) 

Model: Scales until saturation 

sets in  

 

Saturation point (# cores) well 

predicted 

 

Measurement: scaling not perfect 

 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel 

code 
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ECM prediction vs. measurements for  A(:)=B(:)+C(:)/D(:)  

on a Sandy Bridge socket (full overlap assumption) 
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In-core execution is dominated by 

divide operation  

(44 cycles with AVX, 22 scalar) 

 

Almost perfect agreement with    

    ECM model 

 

General observation: 

 If the L1 cache is 100% occupied 

by LD/ST, there is no overlap 

throughout the hierarchy 

 If there is “slack” at the L1, there is 

some overlap in the hierarchy 



Performance Modeling of Stencil Codes 

Applying the ECM model to a 2D Jacobi smoother 

 

(H. Stengel, RRZE) 

 
 

 



Example 1: 2D Jacobi in double precision  

with SSE2 on Sandy Bridge 
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Example 1: 2D Jacobi in DP with SSE2 on SNB 
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Instruction count 
- 13  LOAD 
- 4    STORE 
- 12  ADD 
- 4    MUL 

4-way unrolling 
 8 LUP / iteration  



Example 1: 2D Jacobi in DP with SSE2 on SNB 
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Code characteristics 
(SSE instructions per iteration) 
 
- 13  LOAD 
- 4    STORE 
- 12  ADD 
- 4    MUL 

 

Processor characteristics 
(SSE instructions per cycle) 
 
- 2 LOAD  ||  (1 LOAD + 1 STORE) 
- 1 ADD 
- 1 MUL 
 

LD LD LD LD 2LD 2LD 2LD 2LD L 

ST ST ST ST 

+ + + + + + + + + + + + 

* * * * 

core execution: 
12 cy 



Example 1: 2D Jacobi in DP with SSE2 on SNB 
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 Situation 1: Data set fits into L1 cache 

 ECM prediction:  

(8 LUP / 12 cy) * 3.5 GHz = 2.3 GLUP/s 

 Measurement: 2.2 GLUP/s 

 Situation 2: Data set fits into L2 cache (not into L1) 

 3 additional transfer streams from L2 to L1 (data delay) 

 ECM prediction:  

(8 LUP / (12+6) cy) * 3.5 GHz = 1.5 GLUP/s 

 Measurement: 1.9 GLUP/s 

Overlap? 

12 cy 

6 cy t0 RFO t1 



Example 1: 2D Jacobi in DP with SSE2 on SNB 

(c) RRZE 2014 52 Performance Models 

LD LD LD LD 2LD 2LD 2LD 2LD L 

ST ST ST ST 

+ + + + + + + + + + + + 

* * * * 

core execution: 12 cycles 

 ECM prediction w/ overlap:  

(8 LUP / (8.5+6) cy) * 3.5 GHz = 1.9 GLUP/s 

 Measurement: 1.9 GLUP/s 

L1 „single ported“  
 no overlap during LD/ST 

data delay: 6 cycles 

12 cy 

6 cy RFO t0 t1 

“If the model fails, we learn something”  



Conclusions 

 Performance models help us understand more about 

 Interaction of software with hardware 

 Optimization opportunities 

 

 Roofline Model 

 “Simple” bottleneck analysis 

 Good for “saturated” situations (full chip) 

 Benefit of blocking / traffic saving optimizations can be predicted 

 Shortcomings: Single data bottleneck, perfect overlap assumption 

 multicore scaling cannot be modeled 

 

 ECM Model 

 Multiple bottlenecks: Execution, Caches, Memory 

 1st shot: Assume no overlap in hierarchy 

 Good single-core predictions, converges to Roofline in saturated case  
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