=

Basics of performance modeling for
numerical applications:
Roofline model and beyond

Georg Hager, Jan Treibig, Gerhard Wellein

SPPEXA PhD Seminar
RRZE
April 30, 2014

Prelude:
Scalability 4 the win!

Scalability Myth: Code scalability is the key issue rr?:

Lore 1

In aworld of highly parallel computer architectures only highly
scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many
of them and use scalable codes

(c) RRZE 2014 Performance Models 3

Scalability Myth: Code scalability is the key issue rr?:

1SOMP PARALLEL DO
do k =1 Nk
do j = , Nj;, do i =1 , Ni
y(i,j, k)= b*(=x(i-1,3j,k)+ x(i+l,3 k)+ x(i,3-1,k)+
x(i,j+1,k)+ x(i,),k-1)+ x(i,j,k+1))
enddo; enddo | | | | | | |
enddo L i}

1SOMP END PARALLEL DO . 3D Stencil Update
7+ ("Jacobi")

Il_l = ~

Changing only a the compile

options makes this code AN B Version 1 N
scalable on an 8-core chip % 5_— &8 Version 2 ~ Prepared for]
4 the highly —
............................... - | -
ﬂﬂg i parallel era!)

i i |
5 | -03 -xAVX

[— B N
[Memory] l_]

#cores

(c) RRZE 2014 Performance Models 4

Scalability Myth: Code scalability is the key issue rr?:

1 SOMP PARALLEL DO
do k =1, Nk
do j=1, Nj; doi=1, Ni
y(i,j, k)= b*(x(i-1,3,k)+ x(i+l,j, k)+ x(i,j-1,k)+
x(i,3+1,k)+ x(i,3,k-1)+ x(i,3,k+1))

enddo; enddo 1500 L A A S A
enddo -
L

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

n?2

=
=

3D Stencil Update
("Jacobi")

|

[e o] [I]] [
! I
PP |FPIFP PP IR P
1| Lo L1D Lo |}
: L2 L2 L2 L2 L2 L2 L2 [TH
- |
1

a ||

Single core/socket efficiency —
is key issue!

500

@nauce [M@

L3
' s
i Memory Interface

(c) RRZE 2014 Performance Models 5

Questions to ask in high performance computing rr?:

Do | understand the performance behavior of my code?
= Does the performance match a model | have made®?

What is the optimal performance for my code on a given machine?
= High Performance Computing == Computing at the bottleneck

= Can | change my code so that the “optimal performance” gets
higher?

= Circumventing/ameliorating the impact of the bottleneck

= My model does not work — what’s wrong?
= This is the good case, because you learn something

= Performance monitoring / microbenchmarking may help clear up the
situation

(c) RRZE 2014 Performance Models 6

An example from physics

Newtonian mechanics Nonrelativistic
guantum
mechanics

ih%t/)(?, t) = HY (7, t)

Fails @ even smaller scales!

Fails @ small scales!

Relativistic
guantum
field theory

Consequences
= If models fail, we learn more

= A simple model can get us very far
before we need to refine

U(1)y @ SU(2), ® SU(3),

(c) RRZE 2014 Performance Models 7

A little bit of
modern computer architecture

Core

Data transfer
Topology
Bottlenecks

A typical modern processor core

= Similar design on all
modern systems

(c) RRZE 2014

L1 Icache

Py -

[T ==

pr—

Control flow

> Reorder buffer / Register renaming
jub]
=3 ;,i—_J Scheduler
@
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
AW | | A | Vroan | ‘toan’| ‘stome| A
“ADD ADRS | ADRS JMP
DIV I
h 4
| l l - Data flow
L1 Dcache 4+’ Memory control

Performance Models

-

Pot. bottleneck

Registers and caches: Data transfers in a memory hierarchy rr?:
= How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes)

= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

FHIT

write| |evict
allocate| [(delayed)

3CL
transfers

= Example: Array copy A(:)=C(:)

(c) RRZE 2014 Performance Models 10

Parallelism in a modern compute node rr7|:

. ; , ; . Py #1
| & PFP| P oP|PIP|P| o

O

Other 1/0

‘ Memory ‘ { Memory }

Parallel resources: Shared resources (“bottlenecks”):
= Execution/SIMD units € Outer cache level per socket @

= Cores @ Memory bus per socket @)

= Inner cache levels 6 Intersocket link Q

= Sockets / ccNUMA domains @) PCle bus(es) ©

= Multiple accelerators @ Other 1/0 resources @

Where is the bottleneck for your application?

(c) RRZE 2014 Performance Models 11

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer
Example: A 3D Jacobi solver
Model-guided optimization

Prelude: Modeling customer dispatch in a bank

Revolving door
throughput:
b [customers/sec]

j"%&%’*%")

Processing
capability:
P .. [tasks/sec]

Intensity:
| [tasks/customer]

(c) RRZE 2014 Performance Models 13

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? P [tasks/sec]

= The bottleneck is either

= The service desks (max. tasks/sec)
= The revolving door (max. customers/sec)

P = min(Ppax, [- bs)

= This is the “Roofline Model”

= High intensity: P limited by “execution”
= Low intensity: P limited by “bottleneck”

(c) RRZE 2014

Performance

Performance Models

max

09

Intensity

14

The Roofline Model for loop code execution!? rr?:

1. P,,ax =Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppq)

2. | = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (“the bottleneck”)

= Code balance B, =11

3. bg=Applicable peak bandwidth of the slowest data path utilized

[F/B]| |[B/s]

\

P = min(Ppax, I - bs)

Expected performance:

1W. Schonauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
28, Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

(c) RRZE 2014 Performance Models 15

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Example: Estimate P, of vector triad on SandyBridge [T =»'—

double *A, *B, *C, *D;
for (int 1i=0; i<N; i++) {
A[i] = B[i] + C[i] * D[1i]

How many cycles to process one 64-byte cache line (one core)?

64byte = equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and % store and mult and add
Cycle 2: load and % store

Cycle 3: load Answer: 6 cycles

(c) RRZE 2014 Performance Models 16

Example: Estimate P,,, of vector triad on SandyBridge rrEE
double *A, *B, *C, *D;

for (int 1=0; i<N; i++) {
A[i] = B[i] + C[i] * D[1i]

What is the performance in GFlops/s and the bandwidth in MBytes/s?

One AVX iteration (3 cycles) performs 4 x 2 = 8 flops.

(2.7 GHz / 3 cycles) * 4 updates * 2 flops/update = 7.2 GFlops/s
4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

(c) RRZE 2014 Performance Models 17

P.ax T bandwidth limitations: The vector triad rrEE
Example: Vector triad A(:)=B(:)+C(:)*D(:)
on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

" b =40 GB/s
= B. = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)
2> 1=04FW=0.05F/B

-2 /- bg=2.0GF/s (1.2 % of peak performance)

* Poeac = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)
=P .. =8x7.2Gflop/s = 57.6 Gflop/s (33% peak)

max

P = min(Pyax, I - bs) = min(57.6,2.0) GFlop/s
= 2.0 GFlop/s

(c) RRZE 2014 Performance Models 18

Exercise: Dense matrix-vector multiplication rr?:

—_—
do i=1,N do i=1,N
. tmp = c(1)
do j=1,N do j=1,N
c(i)=c(i)+A(j,i)*b(j) W tmp = tmp + A(J,i)* b(j)
enddo
enddo c(i) = tmp
enddo enddo

= Assume N = 5000

Applicable peak performance?

Relevant data path?

Computational Intensity?

(c) RRZE 2014 Performance Models 19

Assumptions for the Roofline Model rr?:

* The roofline formalism is based on some (crucial) assumptions:
= There is a clear concept of “work™ vs. “traffic”
= “work” = flops, updates, iterations...
= “traffic” = required data to do “work”

= Attainable bandwidth of code = input parameter! Determine effective
bandwidth via simple streaming benchmarks to model more complex
kernels and applications

= Data transfer and core execution overlap perfectly!

= Slowest data path is modeled only; all others are assumed to be infinitely
fast

= If data transfer is the limiting factor, the bandwidth of the slowest data path
can be utilized to 100% (“saturation”)

= Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 Performance Models 20

Typical code optimizations in the Roofline Model rr.__

1. Hit the BW bottleneck by good

serial code
_ _ 16 0o
2. Increase intensity to make AN
better use of BW bottleneck 8
o A E RN E
3. Increase intensity and go from & |........ FrCRIPR 00—
memory-bound to core-bound = |- /g
. 5 V
4. Hit the core bottleneck by good ~
serial code 0.5 ’[1
) i 0.25 @
5. Shift P, by accessing o

additional hardware features or /64 1732 1/16 18 14 172 |
- . Computational intensity / [F/B]

using a different

algorithm/implementation

(c) RRZE 2014 Performance Models

I3 —

21

Case study:
A 3D Jacobi smoother

The basics in two dimensions
Roofline performance analysis and modeling

A Jacobi smoother FFEE

= Laplace equation in 2D: AP =0

= Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:
double precision, dimensicon(0O:imax+1l,0:kmax+1,0:1) :: phi
integer :: t0,tl
t0 =0 ; tl =1
do it = 1,itmax ! choose suitable number of sweeps
do k = 1,kmax Re-use when computing
do 1 = 1, 1imax phi (i+2,k, tl)
!' four flops, one store, fourrigigﬁ//////////
phi(i, k,tl) = (phi(i+l,k,t0®* + phi(i-1,k,t0)
+ phi (i, k+1,t0) + phi(i,k-1,t0)) * 0.25
enddo
enddo Naive balance (incl. write allocate):

arrays
j t0=tl ; tl=i phi(:,:,t0):3LD+
endd phi(:,:,tl):1ST+1LD

WRITE ALLOCATE: -> Bc=5W / 4 FLOPs = 10 B/F (= 40 B/LUP)

LD +ST phi(i,k, tl)

(c) RRZE 2014 Performance Models 23

Analyzing the data flow

Worst case: Cache not large enough to hold 3
layers of grid cached

(c) RRZE 2014 Performance Models 24

Analyzing the data flow

Worst case: Cache not large enough to hold 3
layers of grid

(c) RRZE 2014 Performance Models

25

Analyzing the data flow rr?:

Making the
inner lop
dimension
successively
smaller

Best case: 3
layers of grid fit
into the cache!

(c) RRZE 2014 Performance Models 26

Balance metric: 2 D Jacobi rr?:

= Modern cache subsystems may further reduce memory traffic
-> “layer conditions”

If cache is large enough to hold at least 3 rows:
Eachphi (:, :,t0) isloaded once from main memory and re-used 3 times from

cache:

phi(:,:,t0):1LD+phi(:,:,tl):1ST+1LD

2>B.=3W /4F=24B/LUP

If cache is too small :
phi(:,:,t0):3LlD+phi(:,:,tl):1ST+1LD
2>B.=5W /4F=40B/LUP

(c) RRZE 2014 Performance Models 27

2D > 3D rrEE

. :
3D sweep: Layer condition:

do k=1, kmax nthreads*3*jmax*imax*8B < CS/2
do j=1, jmax
do i=1,imax
phi(i,j,k,tl) = 1/6. *(phi(i-1,j,k,t0)+phi(i+l,5,k,t0) &
+ phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &
+ phi(i,j,k-1,t0)+phi (i,j,k+1,t0))

enddo
enddo
enddo
= Best case balance: 1LD phi (i, j,k+1,t0)
1 ST + 1 write allocate phi(i,j,k,tl)
6 flops

- B. =0.5W/F (24 B/LUP)

= No 3-layer condition but 3 rows fit: B, =5/6 W/F (40 B/LUP)
= Worst case (3 rows do not fit): B =7/6 W/F (56 B/LUP)

(c) RRZE 2014 Performance Models 28

Jacobi Stencil — Observed performance vs. problem size

3000

2500

1 thread

2 threads
4 threads
6 threads
8 threads

[[o=

10 threads: performs starts to drop
around imax=230

(3 layers =13 MB, CS = 25 MB)

2000 N\[~—==--mm--mmmm e m S
@ i
[l
= 1500 -
E 50 1 I I 1 1 I 1 1 | 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
B B — 1 thread
45+ 2 threads —
- B 4 thread
100{] 40+ — 6 thr:gd:
| 8 threads
i 350 10 threads .
"_‘-l-u...‘_.hh-‘__ RE— |
500
30 =
B % B
2 B L pgmm———————— =
? TN TR N . IR A NI - R Roofline assumption: 24 B/LUP
00 / 200 250 | 20 g

Cubic Domain Size

1 thread: Layer condition OK — but
can not saturate bandwidth

(c) RRZE 2014

Validation: Measured data traffic

5 from main memory [Bytes/LUP] .
L 1 L | L 1 L L | L L II L | 1 L L L I 1 L L L I 1 L L L
P00 150 200 250 300 350 400
Cubic Domain Size
Performance Models 29

Conclusions from the Jacobi example rr?:

= We have made sense of the memory-bound performance vs.
problem size

= “Layer conditions” lead to predictions of code balance
= Achievable memory bandwidth is input parameter

The model works only if the bandwidth is “saturated”
= In-cache modeling is more involved

= Hardware performance counters (likwid-perfctr)

= Traffic volume per LUP measured using cache lines loaded/evicted from/to
memory

= Used for model validation

= Optimization ==reducing the code balance by code
transformations

= See below

(c) RRZE 2014 Performance Models 30

Data access optimizations

Case study: Optimizing the 3D Jacobi solver

How can we re-establish the layer condition? rr?:

30‘0‘0||||

2500

— | thread P
2 threads
4 threads

— 6 threads
8 threads

— 10 threads

roblem size: N3

Roothline limat (48 GB/s; 24 B/LU P}

1500 \
i ~ 40 B/LUP model

1000 [~ —

s00f T -]

| | 1 | | 1 1 | 1 | | | 1 | | 1 1 | 1 | | | 1 | | | | 1 |
?UU 150 200 250 300 350 400
Cubic Domain Size

(c) RRZE 2014 Performance Models 32

Enforcing the layer condition by blocking

Inner loop
block size
=5

(c) RRZE 2014

Performance Models

33

Enforcing the layer condition by blocking

Inner loop
block size
=5

(c) RRZE 2014

Performance Models

34

Jacobi Stencil — simple spatial blocking rr?:

do jb=1, jmax, jblock ! Assume jmax is multiple of jblock

1SOMP PARALLEL DO SCHEDULE (STATIC)
do k=1, kmax
do j=jb, (jb+jblock-1) ! Loop length jblock
do i=1l,imax
phi(i,j,k,tl) = (phi(i-1,3j,k,t0)+phi(i+l1l,j,k,t0) &
+ phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &
+ phi(i,j,k-1,t0) +phi(i,j,k+1,t0)) * 1/6.d0

enddo
enddo “Layer condition” (j-Blocking))
enddo nthreads*3*jblock*imax*8B < CS/2

enddo
Ensure layer condition by choosing jblock appropriately (cubic domains):

jblock < CS/(imax * nthreads * 48 B)

Test system: Intel Xeon E5-2690 v2 (10 cores / 3 GHz)

b, = 48 GB/s , CS = 25 MB (L3)
> P = 2000 MLUP/s

(c) RRZE 2014 Performance Models 35

Spatial blocking rr?:

h_
3000 1 1 T 1 T T 1 T 1 T 1T 1 1 T 1T T 7T T 711 T 1 T 1
- Determine: .
2500 jblock < CS/ (2*nthreads*3*imax*8B) |_ CS=-10 MB:
- - 1 [~ 90% of Roofline limit
Roofline limit (48 GB/s; 24 B/LUP)
2000F —¢—-—————"——"—"—"—" "~ ———————————— —
i TR -~
N/ T
1500 ’ —
B '"'|""|""|""y\'l""
| —— 10 threads (No Blocking)
1000 —— 10 threads (No Blocking) - — 10 threads [CS:ZSMB;; #blocks
— — — 10 threads (CS=10 MB
i — — 10 threads (CS=25 MB) Ky lDthrcadstCS:éMB)) Changes .
— — 10 threads (CS=10 MB)
5001 10 threads (CS=2 MB) i /
o A
I 3 28f Al e
AR R T TN N T T N N AN TR TR Y N NN SO S a2 i __,/-F b
P00 150 200 250 D A P g
_— Cubic Domain Siz S eEEE
I e LSl =
imax = jmax = kmax Validation: Measured data traffic from
I main memory [Bytes/LUP]
PRI RN R SN TR SR NN SN SR ST SR (NN SR T ST SR AN SR HT ST S ST S
2000 150 200 250 300 350 400

Cubic Domain Size

(c) RRZE 2014 Performance Models 36

Conclusions from the Jacobi optimization example rr?:

= “What part of the data comes from where” is a crucial question

= Avoiding slow data paths ==re-establishing the most favorable
layer condition

= Improved code showed the speedup predicted by the model

= Optimal blocking factor can be estimated
= Be guided by the cache size the layer condition
= No need for exhaustive scan of “optimization space”

= Non-temporal stores avoid the write-allocate and thus reduce
memory traffic

= But they may come at a price

(c) RRZE 2014 Performance Models 37

Shortcomings of the roofline model rrEE

= Saturation effects in multicore chips are not explained
= Reason: “saturation assumption”

= Cache line transfers and core execution do sometimes not overlap
perfectly

= Only increased “pressure” on the memory A(:)=B(:)+C(:)*D(:)
interface can saturate the bus Orr—T—T T T T T
- need more cores! '

o
N

fad
=

= ECM model gives more insight

J
n

]
=

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Accepted for publication in Concurrency and Computation:
Practice and Experience. Preprint: arXiv:1208.2908

—_—
h
I
l

Memory bandwidth [GB/s]

,_.
=]
|

i Roofline predicts_full
socket BW

n
|

o]
T
|

(c) RRZE 2014 Performance Models 38

http://arxiv.org/abs/1208.2908

Al

The Execution-Cache-Memory (ECM)
model

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Concurrency and Computation: Practice and

Experience, DOI: 10.1002/cpe.3180 (2013). Preprint: arXiv:1208.2908

J. Treibig and G. Hager: Introducing a Performance Model for
Bandwidth-Limited Loop Kernels. Proc. PPAM 2009, Lecture
Notes in Computer Science Volume 6067, 615-624 (2010).

DOI: 10.1007/978-3-642-14390-8 64. Preprint: arXiv:0905.0792

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64

ECM Model rr?:

= ECM = “Execution-Cache-Memory”

Core 206 cycles
per cacheline
= Assumptions: TV
= Single-core execution time is composed of
: L1
1. In-core execution
2. Data transfers in the memory hierarchy N{ 4 cycles
] 2x64 b 32 b/cycle
= Datatransfers may or may not overlap with
each other or with in-core execution L2
= Scaling is linear until the relevant bottleneck 4 cycles
iS reached 2x64 b 32 b/cycle
=
o . ‘ 5.3 mem cycles
Input: 2%64 b Tl = ca. 12 cycles
= Same as for Roofline 24 b/mem cycle
= + datatransfer times in hierarchy MEM

(c) RRZE 2014 Performance Models 40

Example: Schdénauer Vector Triad in L2 cache rr?:

= REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision
= Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

Machine characteristics: Triad analysis (per CL): Timeline:
. . 16 F/CL (AVX
Registers Registers e —
ADD | ADD
| MULT|MULT]
T | 1LD/cy +0.5ST/cy TTT l 6 cy/CL LD 2, | s | LD | [o0,
Y
L1 L1
AAAA
I 32 B/cy (2 cy/CL) 10 cy/CL LD | LD | LD | WA | ST
Y
L2 L2 .~ Roofline prediction: 16/10 F/cy |

Arithmetic: Arithmetic:
1 ADD/cy+ 1 MULT/cy AVX: 2 cy/CL

Measurement: 16F / z17cy,

(c) RRZE 2014 Performance Models 41

Example: ECM model for Schdnauer Vector Triad ——
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX rri:
Registers
7 256 bit LD A max(2(B) + 2(C) + 2(D). 4(A)) cy =6 ¢y - f
& 128 bit ST Bl c| o transter
L1D
=
= - . A
:g 256 bit l T BT CT DT (2(B) +2(C) +2(D)+ 4(A) cy = 10cy Twrite'
s Lo allocate
P R CL transfer
o o A
E‘ 256 bit l T BT CT DT (2(B) + 2(C) + 2(D) + 4A)) cy = 10 cy
A
L3
107 bit A
_ (@ 2.7 GHz) sl o o (5-64B-2.7Gey/s)/ (36 GB/s)= 24 cy

(c) RRZE 2014 Performance Models 42

Full vs. partial vs. no overlap _

All caches Full overlap

No overlap single—ported beyond L2 Measured
— 0
L6 804)
— 16 172
——————— —]2
— 20
— 24
3 263 Results
““““ - L3 suggest no

overlap!
— 34
- 52.3
,—,-SD---— Memory /
(a) (b) (c) cycles (d)

(c) RRZE 2014 Performance Models 43

Multicore scaling in the ECM model

= |dentify relevant bandwidth bottlenecks
= L3 cache
= Memory interface

= Scale single-thread performance until first bottleneck is hit:

P(t) = min(tP,, ! - bs)

| Registers ‘ ‘ Registers | ‘ Registers ‘ | Registers
A A A A A A A A A A A A
A A A A
v B [D v B| [+ D v B c D v B| [D
Example:
L1D L1D L1D L1D
Scalable L3 al A A A A 2 A A A A 2[4 A 4 A Al A A A [] [] []
Y Bj [} D \ J Bj o D A J B (o D \ J B [D
on Sandy
L2 L2 L2 L2
Brldge aAlA A A A a[A A A A 2[4 A A A a[4A & 4 &
¥ Bl ¢ b ¥ Bl ¢ b ¥ Bl ¢] o y Bl ¢ b
IE3 L3 L3 L3
A
B C| D|
Memory

(c) RRZE 2014 Performance Models

44

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:) rr?_

on a Sandy Bridge socket (no-overlap assumption) ==
Or—T—TT T T T Model: Scales until saturation
I sets in
35

L
=

— Saturation point (# cores) well
predicted

]
N

[~ Measurement: scaling not perfect

Memory bandwidth [GB/s]
-2
-]

15 —
10 @—® Schonaver triad | Caveat: This is specific for this
- = = ECM Model |1 architecture and this benchmark!
5 | —
oL | | Check: Use “overlappable” kernel

code

(c) RRZE 2014 Performance Models 45

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)
on a Sandy Bridge socket (full overlap assumption)

Memory bandwidth [GB/s]
-2
S

@@ DIV triad (AVX)
O—0 DIV triad (scalar) -

ECM Model (AVX) _|
ECM Model (scalar) |

I 2 3

(c) RRZE 2014

4 5 6 7 8§
cores

In-core execution is dominated by
divide operation

(44 cycles with AVX, 22 scalar)

— Almost perfect agreement with
ECM model

General observation:

= |f the L1 cache is 100% occupied
by LD/ST, there is no overlap
throughout the hierarchy

= |f there is “slack” at the L1, there is
some overlap in the hierarchy

Performance Models 46

Performance Modeling of Stencil Codes

Applying the ECM model to a 2D Jacobi smoother

(H. Stengel, RRZE)

Example 1. 2D Jacobi in double precision
with SSE2 on Sandy Bridge

(c) RRZE 2014 Performance Models 48

Example 1: 2D Jacobi in DP with SSE2 on SNB

S I R o DY - S B % B S

ff Jacobi 2D line update

for(int j=start:
EI[II[3]1= ¢

oyt

(c) RRZE 2014

J<end; j++){
tOfi-1]1103]
tO[i4+1][31]
c0[i][3-1]
tO[L][3+11)

-

0.25;

4-way unrolling
> 8 LUP / iteration

Instruction count
- 13 LOAD

- 4 STORE

- 12 ADD

- 4 MUL

I

H W N)

wn

o

]

O W oW

}
» W N =

] OO in

[

O W

w N -

o

o in

N NN NN NN
)

Performance Models

[T ==

($rbp, $r15,8), S$xmml
16 ($xbp, $r15,8),
32 ($xbp, $xr15,8), %$xmmS
48 ($xbp, $rl5,8), %xmm?7
($r9,%r15,8), $xmml
16(%xr9,%r15,8), %xmm3
32 ($r9,%r15,8), %xmmS
48 ($xr9,%xr15,8 $ xmm7

$xmm3

-8 ($r10,%r15,8), %xmml |

8 (%rio, $ri5,8), [$xmm2
movups 24 (%$r10,%r15,8) $xmm4
movups 40 (%r10,%r15,8) $xXmmo

ddpd txmm2, | txmm3 |
ddpd £xmm4, | $xmmS
ddpd $xmmé, | $xmm7
addpd TExmm2, | $xmml
addpd $xmm4, | $xmm3
addpd $xmmé, | $xmmS
addpd 56 (%$r10,%x15,8), %$xmm7
mulpd $xmm0, $xmml
mulpd $xmm0, $xmm3
nulpd $xmm0, $xmmS
mulpd $xmm0, $xmm7
movups $xmml, (%$rll,%$rls5,8)
movups $xmm3, 16(%$rll,$ris5,8)
movups $xmmS, 32(%$ril, $ris5,8)
movups $xmm7, 48 (%rll, $ris5,8)

49

Example 1: 2D Jacobi in DP with SSE2 on SNB

Processor characteristics

(SSE instructions per cycle)

Code characteristics

(SSE instructions per iteration)

- 2LOAD || (1 LOAD + 1 STORE) - 13 LOAD
- 1ADD - 4 STORE
- 1MUL - 12 ADD
- 4 MUL
ID |b | D | LD |2tD| 2D | 2D | 2LD
ST |sT |[sT |sT
+ + + + + + + + + + + core execution:
(c) RRZE 2014 Performance Models 50

Example 1: 2D Jacobi in DP with SSE2 on SNB rr?:

= Sjtuation 1: Data set fits into L1 cache

= ECM prediction:
(8 LUP /12 cy) *3.5 GHz = 2.3 GLUP/s

= Measurement: 2.2 GLUP/s Registers

$ 12 cy

= Situation 2: Data set fits into L2 cache (not into L1)
= 3 additional transfer streams from L2 to L1 (data delay)

= ECM prediction:
(8 LUP/ (12+6) cy) * 3.5 GHz = 1.5 GLUPI/s

= Measurement: 1.9 GLUP/s

Overlap?

(c) RRZE 2014 Performance Models 51

Example 1: 2D Jacobi in DP with SSE2 on SNB rr?:

LD LD LD LD 2LD | 2LD | 2LD | 2LD | L

ST ST ST ST

i
+ + + + + + + + +; + + +
1
* * * * |
|
|
« | » core execution: 12 cycles
:
|
le » data delay: 6 cycles
L1 ,single ported”
-> no overlap during LD/ST
= ECM prediction w/ overlap: Registers
(8 LUP / (8.5+6) cy) * 3.5 GHz = 1.9 GLUP/s ’vl‘ 12 ¢y

= Measurement: 1.9 GLUP/s

L1
F

tl RFO tO 6 cy

L2

“If the model fails, we learn something”

(c) RRZE 2014 Performance Models 52

Conclusions rr?:

= Performance models help us understand more about
= Interaction of software with hardware
= Optimization opportunities

= Roofline Model
= “Simple” bottleneck analysis
= Good for “saturated” situations (full chip)
= Benefit of blocking / traffic saving optimizations can be predicted

= Shortcomings: Single data bottleneck, perfect overlap assumption
—> multicore scaling cannot be modeled

= ECM Model
= Multiple bottlenecks: Execution, Caches, Memory
= 18t shot: Assume no overlap in hierarchy
= Good single-core predictions, converges to Roofline in saturated case

(c) RRZE 2014 Performance Models 53

