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Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Node-level performance modeling (part I) 

 The Roofline Model 

 Lunch break 

 Node-level performance modeling (part II) 

 Case study: 3D Jacobi solver and model-guided optimization 

 DEMO 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 
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Prelude: 

Scalability 4 the win! 



Scalability Myth: Code scalability is the key issue 

 

 

 

Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 

(c) RRZE 2014 Node-Level Performance Engineering 4 



Scalability Myth: Code scalability is the key issue 
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Prepared for  
the highly  
parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

 

Changing only the compile 
options makes this code 
scalable on an 8-core chip 

–O3 -xAVX 



Scalability Myth: Code scalability is the key issue 
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!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

Single core/socket efficiency  
is key issue! 

Upper limit from simple 
performance model: 
35 GB/s & 24 Byte/update 



Questions to ask in high performance computing 

 Do I understand the performance behavior of my code? 

 Does the performance match a model I have made? 

 

 What is the optimal performance for my code on a given machine? 

 High Performance Computing == Computing at the bottleneck 

 

 Can I change my code so that the “optimal performance” gets 

higher? 

 Circumventing/ameliorating the impact of the bottleneck 

 

 My model  does not work – what’s wrong? 

 This is the good case, because you learn something 

 Performance monitoring / microbenchmarking may help clear up the 

situation 
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How model-building works: Physics 
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Newtonian mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

Fails @ small scales! 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  
quantum  
mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 
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The Rules™ 

There is no alternative to knowing what is going on 

between your code and the hardware 

 

Without performance modeling, 

optimizing code is like stumbling in the dark 
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Introduction: 

Modern node architecture 

Multi- and manycore chips and nodes 

A glance at basic core fatures 

Caches and data transfers through the memory hierarchy 

Memory organization 

Accelerators 

Programming models 

 

 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAA 



Multi-Core: Intel Xeon 2600 (2012) 

 Xeon 2600 “Sandy Bridge EP”: 

8 cores running at 2.7 GHz (max 3.2 GHz)   

 

 Simultaneous Multithreading 

 reports as 16-way chip 

 

 2.3 Billion Transistors / 32 nm 

 

 Die size: 435 mm2  

 

2-socket server 

(c) RRZE 2014 Node-Level Performance Engineering 11 



General-purpose cache based microprocessor core 

 (Almost) the same basic design in all modern systems 
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Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,… 
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Pipelining of arithmetic/functional units  

 Idea: 
 Split complex instruction into several simple / fast steps (stages) 

 Each step takes the same amount of time, e.g. a single cycle 

 Execute different steps on different instructions at the same time (in parallel) 

 

 Allows for shorter cycle times (simpler logic circuits), e.g.:  
 floating point multiplication takes 5 cycles, but  

 processor can work on 5 different multiplications simultaneously 

 one result at each cycle after the pipeline is full 

 

 Drawback:  
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps) 

 Efficient use of pipelines requires large number of independent instructions  
instruction level parallelism 

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order 

 

 Pipelining is widely used in modern computer architectures 
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5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N 

Wind-up/-down phases: Empty pipeline stages 

First result is available after 5 cycles (=latency of pipeline)! 
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Pipelining: The Instruction pipeline 

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps: 

Fetch Instruction 

from L1I 

Decode  

instruction 

Execute 

Instruction 

 Hardware Pipelining on processor (all units can run concurrently): 
Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

t 

… 

 Branches can stall this pipeline! (Speculative Execution, Predication) 

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline) 

1 

2 

3 

4 

(c) RRZE 2014 Node-Level Performance Engineering 15 



 Multiple units enable use of Instrucion Level Parallelism (ILP): 

Instruction stream is “parallelized” on the fly 

 

 

 

 

 

 

 

 

 

 Issuing m concurrent instructions per cycle: m-way superscalar 

 Modern processors are 3- to 6-way superscalar &  

can perform 2 or 4 floating point operations per cycles 

Superscalar Processors – Instruction Level Parallelism 

Fetch Instruction 4 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 3 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 5 

from L1I 

Decode  

Instruction 5 

Decode  

Instruction 9 

Execute 

Instruction 5 

Fetch Instruction 9 

from L1I 

Fetch Instruction 13 

from L1I 

4-way 

„superscalar“ 

t 
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Core details: Simultaneous multi-threading (SMT) 
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Core details: SIMD processing 

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point 

operands  
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Registers and caches: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 

 Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

 Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 MISS: Load or store instruction does 

not find the data in a cache level 

 CL transfer required 

 

 

 Example: Array copy A(:)=C(:) 
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CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 
allocate 

evict 
(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 
ST A(2..Ncl) 

 

HIT 

C(:) A(:) 
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Today: ccNUMA 

Yesterday (2006): UMA 

Commodity cluster nodes: From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

 
Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at the 

price of ccNUMA architectures: Where 

does my data finally end up? 
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Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

There is no single driving force for chip performance! 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s (dp) for serial, non-SIMD code  

TOP500 rank 1 (1995) 

Node-Level Performance Engineering 



Challenges of modern compute nodes 
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GPU #1 

GPU #2 

PCIe link 

Other I/O 

Core: 

SIMD vectorization  

SMT  

Socket: 

Parallelization 

Shared Resources 

Node: 

ccNUMA/data locality  
Accelerators: 

Data transfer to/from host 

Heterogeneous programming is here to stay! 

SIMD + OpenMP  + MPI +   CUDA, OpenCL,…  

Where is the data? 
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Interlude: 

A glance at current accelerator technology 
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NVIDIA Kepler GK110 Block Diagram 

Architecture 

 7.1B Transistors 

 15 “SMX” units 

 192 (SP) “cores” each 

 > 1 TFLOP DP peak 

 1.5 MB L2 Cache 

 384-bit GDDR5 

 PCI Express Gen3 

 

 3:1 SP:DP performance 

 

© NVIDIA Corp. Used with permission. 
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Intel Xeon Phi block diagram 
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Architecture 

 3B Transistors 

 60+ cores 

 512 bit SIMD 

 ≈ 1 TFLOP DP 

peak 

 0.5 MB  

L2/core 

 GDDR5 

 

 2:1 SP:DP 

performance 

 

64 byte/cy 
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Comparing accelerators 

 Intel Xeon Phi 

 60+ IA32 cores each with 512 Bit SIMD  

FMA unit  480/960 SIMD DP/SP tracks 

 

 Clock Speed: ~1000 MHz 

 Transistor count: ~3 B (22nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1 TF/s 

 Memory BW: ~250 GB/s (GDDR5) 

 

 Threads to execute: 60-240+ 

 Programming: 

Fortran/C/C++ +OpenMP + SIMD 

 

 TOP7: “Stampede” at Texas Center  

for Advanced Computing 
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 NVIDIA Kepler K20 

 15 SMX units each with  

192 “cores”   

960/2880 DP/SP “cores”  

 Clock Speed: ~700 MHz 

 Transistor count: 7.1 B (28nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1.3 TF/s 

 Memory BW:  ~ 250 GB/s (GDDR5) 

 

 Threads to execute: 10,000+ 

 Programming:  

CUDA, OpenCL, (OpenACC) 

 

 TOP1: “Titan” at Oak Ridge National 

Laboratory 

TOP500 

rankings 

Nov 2012  
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-10x 

2. Memory Bandwidth: 1-5x 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA K20x  

(“Kepler”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s 

Threads@STREAM <4 <16 >8000? 

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s 

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 
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Node topology and  

programming models 
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Parallelism in a modern compute node 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 
PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / ccNUMA domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 
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Parallel programming models 

on modern compute nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 3.0) 

 OpenMP (current standard: 4.0) 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk+, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 3.0) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

 MPI (+OpenMP) + CUDA/OpenCL/… 

All models require 

awareness of topology 

and affinity issues for 

getting best 

performance out of the 

machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: Lots of choices 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 
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Conclusions about architecture 

 Modern computer architecture has a rich “topology” 

 

 Node-level hardware parallelism takes many forms 

 Sockets/devices – CPU: 1-8, GPGPU: 1-6 

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s) 

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)  

 Superscalarity (CPU: 2-6) 

 

 Exploiting performance: parallelism + bottleneck awareness 

 “High Performance Computing” == computing at a bottleneck 

 

 Performance of programming models is sensitive to architecture 

 Topology/affinity influences overheads 

 Standards do not contain (many) topology-aware features 

 Apart from overheads, performance features are largely independent of the 
programming model 
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Multicore Performance and Tools 

 

Probing node topology 

 Standard tools 

 likwid-topology 

11:00 (nach 1. 

Pause) 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 

(c) RRZE 2014 Node-Level Performance Engineering 
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How do we figure out the node topology? 

 

 LIKWID tool suite: 

 

Like 

I 

Knew 

What 

I’m 

Doing 

 

 Open source tool collection  

(developed at RRZE): 

 

http://code.google.com/p/likwid 

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite 

for x86 multicore environments. 

PSTI2010, Sep 13-16, 2010, San Diego, CA 

http://arxiv.org/abs/1004.4431 



40 (c) RRZE 2014 Node-Level Performance Engineering 

Likwid Tool Suite 

 Command line tools for Linux: 

 easy to install  

 works with standard linux 2.6 kernel 

 simple and clear to use  

 supports Intel and AMD CPUs 

 

 

 

 

 Current tools: 

 likwid-topology: Print thread and cache topology 

 likwid-pin: Pin threaded application without touching code 

 likwid-perfctr: Measure performance counters 

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration 

 likwid-bench: Low-level bandwidth benchmark generator tool 

 … some more 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 

(c) RRZE 2014 Node-Level Performance Engineering 

------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 
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************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 



Enforcing thread/process-core affinity 

under the Linux OS 

 Standard tools and OS affinity facilities 

under program control 

 likwid-pin 
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Example: STREAM benchmark on 16-core Sandy Bridge: 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

first socket first) 

There are several reasons for caring 

about affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity() 

   Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 All modern compilers with OpenMP support 

 PLPA  hwloc 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 OpenMP 4.0 (see OpenMP tutorial) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 
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Likwid-pin 
Overview 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 Supports logical core numbering within a node and within an existing CPU 

set 

 Useful for running inside CPU sets defined by someone else, e.g., the MPI 

start mechanism or a batch system 

 

 Usage examples: 

 likwid-pin -c 0,2,4-6  ./myApp parameters  

 likwid-pin –c S0:0-3 ./myApp parameters 
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Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Likwid-pin 
Using logical core numbering 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 

(c) RRZE 2014 Node-Level Performance Engineering 

Chipset 

Memory 

Default if –c is not 

specified! 
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Advanced options for pinning: Expressions 

 Expressions are more powerful in situations where the pin mask  

would be very long or clumsy 

 

Compact pinning: 
likwid-pin -c E:<thread domain>:<number of threads>\ 

    [:<chunk size>:<stride>] ... 

 

Scattered pinning across all domains of the designated type : 
likwid-pin -c <domaintype>:scatter 

 

 Examples: 

 
likwid-pin -c E:N:8 ...        # equivalent to N:0-7 

 
likwid-pin -c E:N:120:2:4 ...  # Phi: 120 threads, 2 per core 

 

 Scatter across all NUMA domains: 
likwid-pin -c M:scatter 

(c) RRZE 2014 Node-Level Performance Engineering 



Multicore performance tools: 

Probing performance behavior 

likwid-perfctr 
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likwid-perfctr 

Basic approach to performance analysis 

1. Runtime profile / Call graph (gprof) 

2. Instrument those parts which consume a significant part of 

runtime 

3. Find performance signatures 

 

Possible signatures: 

 Bandwidth saturation 

 Instruction throughput limitation (real or language-induced) 

 Latency impact (irregular data access, high branch ratio) 

 Load imbalance 

 ccNUMA issues (data access across ccNUMA domains) 

 Pathologic cases (false cacheline sharing, expensive operations) 

 

(c) RRZE 2014 Node-Level Performance Engineering 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 “Marker” API for starting/stopping  

counters 

 Multiple measurement region  

support 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 

Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 

(c) RRZE 2014 Node-Level Performance Engineering 
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likwid-perfctr 

Marker API 

 A marker API is available to restrict measurements to code regions 

 The API only turns counters on/off. The configuration of the counters is 

still done by likwid-perfctr 

 Multiple named regions support, accumulation over multiple calls 

 Inclusive and overlapping regions allowed 

(c) RRZE 2014 

#include <likwid.h> 

. . . 

LIKWID_MARKER_INIT;  // must be called from serial region 

#pragma omp parallel 

{ 

  LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads 

} 

. . . 

LIKWID_MARKER_START(“Compute”); 

. . . 

LIKWID_MARKER_STOP(“Compute”); 

. . . 

LIKWID_MARKER_START(“Postprocess”); 

. . . 

LIKWID_MARKER_STOP(“Postprocess”); 

. . . 

LIKWID_MARKER_CLOSE;    // must be called from serial region 

 

Node-Level Performance Engineering 

Activate macros with  
-DLIKWID_PERFMON 



Measuring energy consumption 

with LIKWID 
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Measuring  energy consumption 

likwid-powermeter  and  likwid-perfctr -g ENERGY 

 Implements Intel RAPL interface (Sandy Bridge) 

 RAPL = “Running average power limit” 
------------------------------------------------------------- 

CPU name:       Intel Core SandyBridge processor  

CPU clock:      3.49 GHz  

------------------------------------------------------------- 

Base clock:     3500.00 MHz  

Minimal clock:  1600.00 MHz  

Turbo Boost Steps: 

C1 3900.00 MHz  

C2 3800.00 MHz  

C3 3700.00 MHz  

C4 3600.00 MHz  

------------------------------------------------------------- 

Thermal Spec Power: 95 Watts  

Minimum  Power: 20 Watts  

Maximum  Power: 95 Watts  

Maximum  Time Window: 0.15625 micro sec  

------------------------------------------------------------- 

(c) RRZE 2014 Node-Level Performance Engineering 
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Example: 
A medical image reconstruction code on Sandy Bridge 

(c) RRZE 2014 Node-Level Performance Engineering 

Test case Runtime [s] Power [W] Energy [J] 

8 cores, plain C 90.43 90 8110 

8 cores, SSE 29.63 93 2750 

8 cores (SMT), SSE 22.61 102 2300 

8 cores (SMT), AVX 18.42 111 2040 

Sandy Bridge EP (8 cores, 2.7 GHz base freq.) 

F
a
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Microbenchmarking for 

architectural exploration 

Probing of the memory hierarchy 

Saturation effects in cache and memory 

Typical OpenMP overheads 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

(c) RRZE 2014 Node-Level Performance Engineering 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Recap: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

(c) RRZE 2014 Node-Level Performance Engineering 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

(c) RRZE 2014 Node-Level Performance Engineering 

L1D cache (32k) 

L2 cache (256k) 

L3 cache (20M) 

Memory 

4 W / iteration 

 128 GB/s 

5 W / it. 

 18 GB/s 

(incl. write 

allocate) 

Are the 

performance 

levels 

plausible? 

 

What about 

multiple cores?  

 

Do the 

bandwidths 

scale? 
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Throughput capabilities of the Intel Sandy Bridge 

 Per cycle with AVX 

 1 load instruction (256 bits) AND ½ store instruction 

(128 bits) 

 1 AVX MULT and 1 AVX ADD instruction  

(4 DP / 8 SP flops each) 

 Overall maximum of 4 micro-ops  

 

 Per cycle with SSE or scalar 

 2 load instruction OR 1 load and 1 store instruction 

 1 MULT and 1 ADD instruction 

 Overall maximum of 4 micro-ops  

 

 Data transfer between cache levels  

(L3 ↔ L2, L2 ↔ L1) 

 256 bits per cycle, half-duplex (i.e., full CL transfer == 2 

cy) 

 

(c) RRZE 2014 Node-Level Performance Engineering 

Registers 

L1 

L2 

L3 

Memory 

32 B/cy 

32 B/cy 

XX GB/s 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

(c) RRZE 2014 Node-Level Performance Engineering 

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t 

Theoretical limit 

4 W / iteration 

 128 GB/s 

Theoretical limit 

4 W / iteration 

 48 GB/s 

See later for 

more on SIMD 

benefits 

Max. LD/ST throughput: 

1 AVX Load & ½ AVX Store per cycle  

 3 cy / 8 Flops  8 Flops/3 cy 

(2 LD or 1 LD & 1 ST) / cy  

 2 Flops/2 cy 
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The throughput-parallel vector triad benchmark 

Every core runs its own, independent triad benchmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pure hardware probing, no impact from OpenMP overhead 

(c) RRZE 2014 Node-Level Performance Engineering 

double precision, dimension(:), allocatable :: A,B,C,D 

 

!$OMP PARALLEL private(i,j,A,B,C,D) 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 
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Throughput vector triad on Sandy Bridge socket (3 GHz) 

(c) RRZE 2014 Node-Level Performance Engineering 

Saturation effect 

in memory 

Scalable BW in 

L1, L2, L3 cache 
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Attainable memory bandwidth: Comparing architectures 

Intel Sandy Bridge AMD Interlagos 

NVIDIA K20 Intel Xeon Phi 5110P 

ECC=on ECC=on 

2-socket 

CPU node 

(c) RRZE 2014 Node-Level Performance Engineering 
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Bandwidth limitations: Outer-level cache 

Scalability of shared data paths in L3 cache 
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The OpenMP-parallel vector triad benchmark 

OpenMP work sharing in the benchmark loop 
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double precision, dimension(:), allocatable :: A,B,C,D 

 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

!$OMP PARALLEL private(i,j) 

do j=1,NITER 

!$OMP DO 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

!$OMP END DO 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 

Implicit barrier 
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OpenMP vector triad on Sandy Bridge socket (3 GHz) 

(c) RRZE 2014 Node-Level Performance Engineering 

sync 

overhead 

grows with # 

of threads 

bandwidth 

scalability 

across 

memory 

interfaces 

L1 core limit 



OpenMP performance issues  

on multicore 

Synchronization (barrier) overhead 
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Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slides: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on SandyBridge-EP  
Barrier overhead in CPU cycles 

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1 

Shared L3 384 5242 4616 

SMT threads 2509 3726 3399 

Other socket 1375 5959 4909 

Gcc still not very competitive 

     Intel compiler 

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1 

Socket 1497 14546 14418 

Node 3401 34667 29788 

Node +SMT 6881 59038 58898 
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Thread synchronization overhead on Intel Xeon Phi  
Barrier overhead in CPU cycles 

SMT1 SMT2 SMT3 SMT4 

One core n/a 1597 2825 3557 

Full chip 10604 12800 15573 18490 

That does not look bad for 240 threads! 

 

Still the pain may be much larger, as more work can be done in 

one cycle on Phi compared to a full Sandy Bridge node 

 

3.75 x cores (16 vs 60) on Phi 

2 x more operations per cycle on Phi 

2.7 x more barrier penalty (cycles) on Phi 

 

                                   7.5 x more work done on Xeon Phi per cycle 

 

One barrier causes  2.7 x 7.5 = 20x more pain . 

2 threads on 

distinct cores: 

1936 
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Conclusions from the microbenchmarks 

 Affinity matters! 

 Almost all performance properties depend on the position of 

 Data 

 Threads/processes 

 Consequences 

 Know where your threads are running 

 Know where your data is 

 

 

 Bandwidth bottlenecks are ubiquitous 

 

 

 Synchronization overhead may be an issue 

 … and also depends on affinity! 

 Many-core poses new challenges in terms of synchronization 

 

 
(c) RRZE 2014 Node-Level Performance Engineering 



“Simple” performance modeling: 

The Roofline Model(1) 

 
Loop-based performance modeling: Execution vs. data transfer 

Example: array summation 

Example: A 3D Jacobi solver 

Model-guided optimization  

 

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785 

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext 

 

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
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The Roofline Model1,2 

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache (this is not necessarily Ppeak) 

 

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (“the bottleneck”) 

 Code balance BC = I -1 

 

3. bS = Applicable peak bandwidth of the slowest data path utilized 

 

 

Expected performance: 

(c) RRZE 2014 Node-Level Performance Engineering 

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008) 

[B/s] [F/B] 

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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Preliminary: Estimating Pmax 

How to perform a instruction throughput analysis on the example of Intel’s 

port based scheduler model 

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 

ALU ALU ALU 

FMUL FADD FSHUF 

JUMP 

LOAD LOAD 

AGU AGU 

STORE 

Retire 4 uops 

SandyBridge 

16b 16b 16b 

(c) RRZE 2014 Node-Level Performance Engineering 

First-order assumption: All instructions in a loop are fed independently to the 

various ports/pipelines 

 

Complex cases (dependencies, hazards): Add penalty cycles / use tools 

 (Intel IACA, Intel Amplifier) 
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Preliminary: Estimating Pmax 

Every new CPU generation provides incremental improvements. 

 

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 Port 6 Port 7 

ALU ALU ALU 

FMA FMA FSHUF 

JUMP 

LOAD LOAD 

AGU AGU 

STORE 

Retire 4 uops 

32b 32b 32b 

AGU 

Haswell 

FMUL 

ALU 

JUMP 

(c) RRZE 2014 Node-Level Performance Engineering 
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Example: Estimate Pmax of vector triad on SandyBridge 

double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

How many cycles to process one AVX-vectorized iteration 

(one core)? 

 Equivalent to 4 scalar iterations 

 

Cycle 1:  LOAD + ½ STORE + MULT + ADD 

Cycle 2:  LOAD + ½ STORE 

Cycle 3:  LOAD                                       Answer:  3 cycles                

(c) RRZE 2014 Node-Level Performance Engineering 
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Example: Estimate Pmax of vector triad on SandyBridge 

double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

What is the performance in GFlops/s and the bandwidth in MBytes/s? 

One AVX iteration (3 cycles) performs 4 x 2 = 8 flops. 

 

(2.7 GHz / 3 cycles) * 4 updates * 2 flops/update = 7.2 GFlops/s 

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s 

(c) RRZE 2014 Node-Level Performance Engineering 
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Pmax + bandwidth limitations: The vector triad 

Example: Vector triad A(:)=B(:)+C(:)*D(:)  

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized) 

 

 bS = 40 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

 

   I ∙ bS = 2.0 GF/s (1.2 % of peak performance) 

 

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz) 

 Pmax  = 8 x 7.2 Gflop/s =  57.6 Gflop/s (33% peak) 

 
 

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s 
= 2.0 GFlop s  

(c) RRZE 2014 Node-Level Performance Engineering 
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A not so simple Roofline example 

Example:     do i=1,N; s=s+a(i); enddo 

in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N 

 

(c) RRZE 2014 Node-Level Performance Engineering 

 

ADD peak   

(best possible code) 

no SIMD 

 

3-cycle latency per ADD  

if not unrolled 

 

 

P = 5 Gflop/s 

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

How do we get 

these? 

 See next! 

I = 1 Flop / 8 byte (in DP) 

86.4 GF/s 

21.6 GF/s 

7.2 GF/s 
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Applicable peak for the summation loop 

Plain scalar code, no SIMD 

 

 

LOAD r1.0  0 

i  1 

loop:  

  LOAD r2.0  a(i) 

  ADD r1.0  r1.0+r2.0 

  ++i ? loop 

result  r1.0 

 

(c) RRZE 2014 Node-Level Performance Engineering 

ADD pipes utilization: 

 1/12 of ADD peak 

S
IM

D
 l
a

n
e

s
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Applicable peak for the summation loop 

Scalar code, 3-way unrolling 
LOAD r1.0  0 

LOAD r2.0  0 

LOAD r3.0  0 

i  1 

 

loop:  

  LOAD r4.0  a(i) 

  LOAD r5.0  a(i+1) 

  LOAD r6.0  a(i+2) 

 

  ADD r1.0  r1.0+r4.0 

  ADD r2.0  r2.0+r5.0 

  ADD r3.0  r3.0+r6.0 

 

  i+=3 ? loop 

result  r1.0+r2.0+r3.0 

 

(c) RRZE 2014 Node-Level Performance Engineering 

ADD pipes utilization: 

 1/4 of ADD peak 
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Applicable peak for the summation loop 

SIMD-vectorized, 3-way unrolled 
LOAD [r1.0,…,r1.3]  [0,0] 

LOAD [r2.0,…,r2.3]  [0,0] 

LOAD [r3.0,…,r3.3]  [0,0] 

i  1 

 

loop:  

  LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)] 

  LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)] 

  LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)] 

 

  ADD r1  r1+r4 

  ADD r2  r2+r5 

  ADD r3  r3+r6 

 

  i+=12 ? loop 

result  r1.0+r1.1+...+r3.2+r3.3 

 

(c) RRZE 2014 Node-Level Performance Engineering 

ADD pipes utilization: 

 ADD peak 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

(c) RRZE 2014 Node-Level Performance Engineering 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 3 cy (ADD) 

4-way SIMD, 8 cores 

measurement 

Maximum memory 

bandwidth 40 GB/s 

Memory-bound @ large N! 

P = 5 GF/s 

7.2 … 86.4 GF/s 

5 GF/s 
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Assumptions for the Roofline Model 

 The roofline formalism is based on some (crucial) assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 

(c) RRZE 2014 Node-Level Performance Engineering 
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Exercise: Dense matrix-vector multiplication 

 Assume N ≈ 5000 

 

 Applicable peak performance? 

 

 Relevant data path? 

 

 Computational Intensity? 

do i=1,N 

 do j=1,N 

  c(i)=c(i)+A(j,i)*b(j) 

 enddo  

enddo 

do i=1,N 

tmp = c(i) 

 do j=1,N 

  tmp = tmp + A(j,i)* b(j) 

 enddo 

 c(i) = tmp  

enddo 

(c) RRZE 2014 Node-Level Performance Engineering 
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Typical code optimizations in the Roofline Model 

1. Hit the BW bottleneck by good 

serial code 

 

2. Increase intensity to make 

better use of BW bottleneck 

 

3. Increase intensity and go from 

memory-bound to core-bound 

 

4. Hit the core bottleneck by good 

serial code 

 

5. Shift Pmax by accessing 

additional hardware features or 

using a different 

algorithm/implementation 

(c) RRZE 2014 Node-Level Performance Engineering 
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Shortcomings of the roofline model 

 Saturation effects in multicore chips are not explained 

 Reason: “saturation assumption”  

 Cache line transfers and core execution do sometimes not overlap 

perfectly 

 Only increased “pressure” on the memory 

interface can saturate the bus 

 need more cores! 

 

 ECM model gives more insight: 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 

(c) RRZE 2014 Node-Level Performance Engineering 

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring 

performance and power properties of modern multicore chips via 

simple machine models. Concurrency and Computation: 

Practice and Experience (2013). DOI: 10.1002/cpe.3180 

Preprint: arXiv:1208.2908 

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908


Case study: 

Sparse Matrix Vector Multiplication 



Sparse Matrix Vector Multiplication (spMVM) 

 Key ingredient in some matrix diagonalization algorithms 

 Lanczos, Davidson, Jacobi-Davidson 

 

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries 

 “Sparse”: Nnz ~ Nr  

 

(c) RRZE 2014 Node-Level Performance Engineering 

= + • Nr 

General case: 
some indirect 
addressing 
required! 
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SpMVM characteristics 

 For large problems, spMVM is inevitably memory-bound 

 Intra-socket saturation effect on modern multicores 

 

 SpMVM is easily parallelizable in shared and distributed memory 

 

 Data storage format is crucial for performance properties 

 Most useful general format on CPUs:  

Compressed Row Storage (CRS) 

 Depending on compute architecture 

 

(c) RRZE 2014 Node-Level Performance Engineering 100 



… 

CRS matrix storage scheme 

(c) RRZE 2014 Node-Level Performance Engineering 

column index 

ro
w

 in
d

ex
 

1 2 3 4 … 
1 
2 
3 
4 
… 

val[] 

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[] 

1 5 15 19 8 12 … row_ptr[] 

 val[] stores all the nonzeros (length 
Nnz) 

 col_idx[] stores the column index 
of each nonzero (length Nnz) 

 row_ptr[] stores the starting index 
of each new row in val[] (length: Nr) 

101 
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Case study: Sparse matrix-vector multiply 

 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across NUMA 

domains 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 
Parallelization 

overhead 

dominates 



Example: SpMVM node performance model 

 Sparse MVM in 

double precision  

w/ CRS data storage: 

 

 

 

 DP CRS comp. intensity 

 α quantifies traffic 

for loading RHS 

 α = 0  RHS is in cache 

 α = 1/Nnzr  RHS loaded once 

 α = 1  no cache 

 α > 1  Houston, we have a problem! 

 “Expected” performance = bS x ICRS 

 Determine α  by measuring performance and actual memory traffic 

 Maximum memory BW may not be achieved with spMVM 

 

 (c) RRZE 2014 Node-Level Performance Engineering 

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
 

106 



Determine RHS traffic 

 𝑽𝒎𝒆𝒂𝒔 is the measured overall memory data traffic (using, e.g., 

likwid-perfctr) 

 Solve for 𝜶: 

 

 

 Example: kkt_power matrix from the UoF collection 

on one Intel SNB socket 

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1 

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB 

  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1 

  RHS is loaded 3.1 times from memory 

 and:  
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𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=

𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠
 

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟
 

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic  
optimization potential! 

107 



Roofline analysis for spMVM 

 Conclusion from Roofline analysis 

 The roofline model does not work 100% for spMVM due to the RHS 

traffic uncertainties 

We have “turned the model around” and measured the actual 

memory traffic to determine the RHS overhead 

  Result indicates: 

1. how much actual traffic the RHS generates 

2. how efficient the RHS access is (compare BW with max. BW) 

3. how much optimization potential we have with matrix reordering 

 

 

 Consequence: Modeling is not always 100% predictive. It‘s 

all about learning more about performance properties! 

(c) RRZE 2014 Node-Level Performance Engineering 110 



Case study: A Jacobi smoother 

The basics in two dimensions 

Layer conditions 

Validating the model in 3D 

Optimization by spatial blocking in 3D 
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Stencil schemes 

 Stencil schemes frequently occur in PDE solvers on regular lattice 

structures 

 Basically it is a sparse matrix vector multiply (spMVM) embedded 

in an iterative scheme (outer loop)  

 but the regular access structure allows for matrix free coding 

 

 

 

 

 

 

 

 Complexity of implementation and performance depends on 

 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, …  

 spatial extent, e.g. 7-pt or 25-pt in 3D,… 

(c) RRZE 2014 Node-Level Performance Engineering 

do iter = 1, max_iterations 

 

 Perform sweep over regular grid: y(:)  x(:) 

 

 Swap y  x  

 

enddo 
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Jacobi-type 5-pt stencil in 2D 

 

 

(c) RRZE 2014 Node-Level Performance Engineering 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * ( x(j-1,k) + x(j+1,k) & 

                   + x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo 

j 

k 

s
w
e
e
p
 

Lattice 

Update 

(LUP) 

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1) 

Appropriate performance metric: “Lattice Updates per second” [LUP/s] 
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate) 
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Jacobi 5-pt stencil in 2D: data transfer analysis 

(c) RRZE 2014 Node-Level Performance Engineering 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * ( x(j-1,k) + x(j+1,k) & 

                   + x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo 

S
W
E
E
P
 

 LD+ST y(j,k) 

(incl. write 

allocate) 
LD x(j+1,k) 

Available in cache  

(used 2 updates before) 

LD x(j,k+1) LD x(j,k-1) 
Naive balance (incl. write allocate):  

x( :, :) : 3 LD +  

y( :, :) : 1 ST+ 1LD 

 BC = 5 Words / LUP = 40 B / LUP  (assuming double precision)  
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Jacobi 5-pt stencil in 2D: Single core performance 

(c) RRZE 2014 Node-Level Performance Engineering 

jmax=kmax jmax*kmax = const 

L
3

 C
a

c
h

e
 

Intel Xeon E5-2690 v2 

(“IvyBridge”@3 GHz) 

~24 B / LUP ~40 B / LUP 

Code balance  (BC) 

measured with LIKWID  

Intel Compiler  

ifort V13.1 

jmax 

Questions: 

 

1. How to achieve 

24 B/LUP also 
for large jmax? 

 

2. How to sustain  

>600 MLUP/s for 
jmax > 104 ? 

 



Case study: A Jacobi smoother 

The basics in two dimensions 

Layer conditions 

Validating the model in 3D 

Optimization by spatial blocking in 3D 
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Analyzing the data flow 

(c) RRZE 2014 Node-Level Performance Engineering 

cached 
Worst case: Cache not large enough to hold 3 layers (rows) of grid 

(assume „Least Recently Used“ replacement strategy) 

j 

k 

x(0:jmax+1,0:kmax+1) 

H
a
lo

 c
e
ll

s
 

H
a
lo

 c
e
ll

s
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Analyzing the data flow 

(c) RRZE 2014 Node-Level Performance Engineering 

j 

k 

Worst case: Cache not large enough to hold 3 layers (rows) of grid 

(+assume „Least Recently Used“ replacement strategy) 

x(0:jmax+1,0:kmax+1) 
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Analyzing the data flow 

(c) RRZE 2014 Node-Level Performance Engineering 

Reduce inner (j-) 

loop dimension 

successively 

Best case: 3 

„layers“ of grid fit 

into the cache! 

j 

k 

x(0:jmax2+1,0:kmax+1) 

x(0:jmax1+1,0:kmax+1) 
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Analyzing the data flow: Layer condition 

2D 5-pt Jacobi-type stencil 

(c) RRZE 2014 Node-Level Performance Engineering 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * (x(j-1,k) + x(j+1,k) & 

                   +   x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo 3 * jmax * 8B < CacheSize/2 

“Layer condition”  

double 

precision 

3 rows of 
jmax  Safety margin 

(Rule of thumb) 

Layer condition: 
• Does not depend on outer loop length (kmax) 

• No strict guideline (cache associativity – data traffic for y not included) 

• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)   
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Analyzing the data flow: Layer condition (2D 5-pt Jacobi) 

(c) RRZE 2014 Node-Level Performance Engineering 

3 * jmax * 8B < CacheSize/2 

“Layer condition” fulfilled?  

y: (1 LD + 1 ST) / LUP x: 1 LD / LUP 

BC = 24 B / LUP 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * (x(j-1,k) + x(j+1,k) & 

                   +  x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo 

YES 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * (x(j-1,k) + x(j+1,k) & 

                   +  x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo BC = 40 B / LUP 

y: (1 LD + 1 ST) / LUP 

NO 

x: 3 LD / LUP 
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Analyzing the data flow: Layer condition (2D 5-pt Jacobi) 

 Establish layer condition for all domain sizes  

 Idea: Spatial blocking 

 Reuse elements of x() as long as they stay in cache 

 Sweep can be executed in any order, e.g. compute blocks in j-direction 

 

“Spatial Blocking” of j-loop: 

 

 

 

 

 

 
 

 

Determine for given CacheSize an appropriate jblock value: 

(c) RRZE 2014 Node-Level Performance Engineering 

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock 

  do k=1,kmax 

    do j= jb, (jb+jblock-1) ! Length of inner loop: jblock 

      y(j,k) = const * (x(j-1,k) + x(j+1,k) & 

                     +  x(j,k-1) + x(j,k+1) ) 

    enddo 

  enddo 

enddo New layer condition (blocking) 
3 * jblock * 8B < CacheSize/2 

jblock < CacheSize / 48 B 



124 

Establish the layer condition by blocking 

(c) RRZE 2014 Node-Level Performance Engineering 

Split up 

domain into 

subblocks: 

e.g. block 

size = 5 
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Establish the layer condition by blocking 

(c) RRZE 2014 Node-Level Performance Engineering 

Additional data 

transfers (overhead) 

at block boundaries! 
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Establish layer condition by spatial blocking 

(c) RRZE 2014 Node-Level Performance Engineering 

jmax=kmax jmax*kmax = const 

L
3

 C
a

c
h

e
 

L1: 32 KB 

L2: 256 KB 

L3: 25 MB jmax 

Which cache to block for? 

Intel Xeon E5-2690 v2 

(“IvyBridge”@3 GHz) 

Intel Compiler  

ifort V13.1 

jblock < CacheSize / 48 B 

L2: CS=256 KB 
jblock=min(jmax,5333) L3: CS=25 MB 

jblock=min(jmax,533333) 
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Layer condition & spatial blocking: Memory code balance 

(c) RRZE 2014 Node-Level Performance Engineering 

jmax 

Measured main memory 

code balance (BC) 

24 B / LUP 

40 B / LUP 

Intel Xeon E5-2690 v2 

(“IvyBridge”@3 GHz) 

Intel Compiler  

ifort V13.1 

Blocking factor 

(CS=25 MB) too large 

Main memory access is not 

reason for different performance 

jmax 
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Layer condition & spatial blocking: L3 cache balance 

(c) RRZE 2014 Node-Level Performance Engineering 

Measured L3 cache 

code balance (BC) 

40 B / LUP 

24 B / LUP 

jmax 

Intel Xeon E5-2690 v2 

(“IvyBridge”@3 GHz) 

Intel Compiler  

ifort V13.1 

Main memory (via L3) L1 cache 

L2 or L3 cache 

Data accesses to L3 cache (blocking) 

Impact of total L3 traffic: 

24 B/LUP vs. 40 B/LUP 

jmax 
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Socket scaling – Validate Roofline model 

(c) RRZE 2014 Node-Level Performance Engineering 

Intel Xeon E5-2690 v2 

(“IvyBridge”@3 GHz) 

Intel Compiler  

ifort V13.1 

OpenMP Parallel 

bS = 48 GB/s 

BC= 24 B/LUP 

BC= 40 B/LUP 

Layer condition changes for #cores>1 (see later) 

𝑃 = min(𝑃𝑚𝑎𝑥 , 𝑏𝑆 𝐵𝐶 ) 
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From 2D to 3D 

 2D 

 

 

 

 

 

 

 

 

Towards 3D understanding 

 Picture can be considered as 2D cut of 3D domain for (new) fixed 
i-coordinate:  

 
x(0:jmax+1,0:kmax+1) x(i, 0:jmax+1,0:kmax+1) 

 

(c) RRZE 2014 Node-Level Performance Engineering 

x(0:jmax+1,0:kmax+1) j 

k 
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From 2D to 3D 

 

 

 

 

 

 

 

 

 

 

 

 x(0:imax+1, 0:jmax+1,0:kmax+1) – Assume i-direction 

contiguous in main memory (Fortran notation) 

 Stay at 2D picture and consider one cell of j-k plane as a 

contiguous slab of elements in i-direction: x(0:imax,j,k) 

(c) RRZE 2014 Node-Level Performance Engineering 

j 

k 

i 

j, k 
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Layer condition: From 2D 5-pt to 3D 7-pt Jacobi-type stencil 

(c) RRZE 2014 Node-Level Performance Engineering 

3 * jmax * 8B < CacheSize/2  

BC = 24 B / LUP 

do k=1,kmax 

  do j=1,jmax 

    y(j,k) = const * (x(j-1,k) + x(j+1,k) & 

                   +  x(j,k-1) + x(j,k+1) ) 

  enddo 

enddo 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      y(i,j,k) = const * (x(i-1,j,k) + x(i+1,j,k)  

          +  x(i,j-1,k) + x(i,j+1,k) & 

                       +  x(i,j,k-1) + x(i,j,k+1) ) 

    enddo 

  enddo 

enddo 

3 * jmax *imax * 8B < CacheSize/2  BC = 24 B / LUP 

2D 

3D 
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3D 7-pt Jacobi-type Stencil (sequential) 

 

 

 

 

 

 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      y(i,j,k) =const.*(x(i-1,j,k)  +x(i+1,j,k) & 

                      + x(i,j-1,k)  +x(i,j+1,k) & 

                      + x(i,j,k-1)  +x(i,j,k+1) ) 

    enddo 

  enddo 

enddo 

“Layer condition”  
3*jmax*imax*8B < CS/2  “Layer condition” OK  

 5 accesses to  x() served by cache 

Question:  

Does parallelization/multi-threading change the layer condition? 

(c) RRZE 2014 Node-Level Performance Engineering 
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Jacobi Stencil – OpenMP parallelization (I) 

 

 

 

 

 

 

!$OMP PARALLEL DO SCHEDULE(STATIC) 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      y(i,j,k) = 1/6.  *(x(i-1,j,k)  +x(i+1,j,k) & 

                      + x(i,j-1,k)  +x(i,j+1,k)  

    + x(i,j,k-1) +x(i,j,k+1) ) 

    enddo 

  enddo 

enddo 

“Layer condition”: nthreads * 3 * jmax*imax * 8B < CS/2 

Layer condition (cubic domain; CacheSize=25 MB) 

    1 thread:  imax=jmax < 720  10 threads:     imax=jmax < 230 

Basic guideline: 

Parallelize outermost loop  

Equally large chunks in k-direction 

 “Layer condition” for each thread 
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Jacobi Stencil – OpenMP parallelization (II) 

 

 

 

 

 

 

!$OMP PARALLEL DO SCHEDULE(STATIC) 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      y(i,j,k) = 1/6. *(x(i-1,j,k)   +x(i+1,j,k) & 

                      + x(i,j-1,k)   +x(i,j+1,k) & 

                      + x(i,j,k-1)   +x(i,j,k+1) ) 

    enddo 

  enddo 

enddo 

Intel® Xeon® Processor E5-2690 v2 

10 cores@3 GHz 
CacheSize = 25 MB (L3)     

MemBW     = 48 GB/s   

Roofline model:   
maxMLUPs= MemBW / (24 B/LUP) 

“Layer condition”: nthreads *3*jmax*imax*8B < CS/2 

BC = 24 B / LUP 
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Best performance:  

P = 2000 MLUPs 



Case study: A Jacobi smoother 

The basics in two dimensions 

Layer conditions 

Validating the model in 3D 

Optimization by spatial blocking in 3D 
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Jacobi Stencil – OpenMP parallelization (I) 

Validation: Measured data traffic 

from main memory [Bytes/LUP] 1 thread: Layer condition OK – 

but can not saturate bandwidth 

 

10 threads: performance drops 
around imax=230 
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Layer condition 

violated  40 B/LUP 

 



Case study: A Jacobi smoother 

The basics in two dimensions 

Layer conditions 

Validating the model in 3D 

Spatial blocking in 3D 
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Jacobi Stencil – simple spatial blocking 

 

 

 

 

 

 

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock 

 

!$OMP PARALLEL DO SCHEDULE(STATIC) 

  do k=1,kmax 

    do j=jb, (jb+jblock-1) ! Loop length jblock 

      do i=1,imax 

        y(i,j,k) = 1/6. *(x(i-1,j,k) +x(i+1,j,k) & 

                     +    x(i,j-1,k) +x(i,j+1,k)  

        +    x(i,j,k-1) +x(i,j,k+1)) 

      enddo 

    enddo 

  enddo 

enddo    

“Layer condition” (j-Blocking) 
 nthreads*3*jblock*imax*8B < CS/2 

Testsystem: Intel® Xeon® Processor E5-2690 v2 (10 cores / 3 GHz) 
 

 MemBW = 48 GB/s,  CS = 25 MB (L3)   

Ensure layer condition by choosing jblock approriately (Cubic Domains): 

jblock < CS/(imax* nthreads* 48B ) 

maxMLUPs = 2000 MLUPs 
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Jacobi Stencil – simple spatial blocking 

Determine:  
jblock < CS/(2*nthreads*3*imax*8B) 

imax = jmax = kmax 

#blocks 

changes 

CS=10 MB:  

~ 90+ % roofline limit 

Validation: Measured data traffic 

from main memory [Bytes/LUP] 

(c) RRZE 2014 Node-Level Performance Engineering 
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Impact of blocking factor jblock 

(c) RRZE 2014 Node-Level Performance Engineering 

jblock 

CS=25 MB 

nthreads=10 

imax=400 

Layer condition estimates appropriate jblock:  

jblock < CS/(2*nthreads*3*imax*8B) 

jblock < 130 

Layer condition a bit too 

optimistic 

jblock=32,…,64 

useful choices 
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Impact of jblock: Data traffic from L3 & main memory 
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Layer condition estimates appropriate jblock:  

jblock < CS/(2*nthreads*3*imax*8B) 
jblock < 130 

Blocking for L2 cache  

(CS=256 KB/thread) 

Increased memory traffic: 

Overhead at block 

boundaries 

jblock 

Layer condition a bit too 

optimistic 
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Jacobi Stencil – can we further improve? 

 

 

 

 

 

 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      y(i,j,k) =const. *(x(i-1,j,k)  +x(i+1,j,k) & 

                      + x(i,j-1,k)   +x(i,j+1,k) & 

                      + x(i,j,k-1)   +x(i,j,k+1) ) 

    enddo 

  enddo 

enddo 
Total data transfer / LUP: 
 (8+8) B/LUP for y() (ST+WriteAllocate) 

+   8  B/LUP for x(i,j,k+1) 

 24  B/LUP 

Use NT-stores to  

avoid “Write Allocate” 

Total data transfer / LUP: 
    8 B/LUP for y() (NT-STore) 

+   8  B/LUP for x(i,j,k+1) 

 16  B/LUP 

 “Layer condition” OK  
 5 accesses to  x() served by cache 
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150 

Jacobi Stencil – Blocking + NT-stores 

(c) RRZE 2014 Node-Level Performance Engineering 

blocking 

16 B/LUP  

NT stores 

Intel® Xeon® „Sandy Bridge“ 

8 cores@2,7 GHz 
L3 CacheSize   = 20 MB     

Memory Bandwidth   = 33 GB/s   

24 B/LUP 

40 B/LUP 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 “What part of the data comes from where” is a crucial question 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 Avoiding slow data paths == re-establishing the most favorable 

layer condition 

 

 Improved code showed the speedup predicted by the model 

 Optimal blocking factor can be estimated 

 Be guided by the cache size the layer condition 

 No need for exhaustive scan of “optimization space” 

 

 

 
(c) RRZE 2014 Node-Level Performance Engineering 
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DEMO 

(c) RRZE 2014 Node-Level Performance Engineering 



Coding for  

SingleInstructionMultipleData processing 
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SIMD processing – Basics  

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers.  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point operands  
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R0 R1 R2 R0 R1 R2 

Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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SIMD processing – Basics  

 Steps (done by the compiler) for “SIMD processing” 
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for(int i=0; i<n;i++) 

 C[i]=A[i]+B[i]; 

for(int i=0; i<n;i+=4){ 

  C[i]  =A[i]  +B[i]; 

 C[i+1]=A[i+1]+B[i+1]; 

 C[i+2]=A[i+2]+B[i+2]; 

 C[i+3]=A[i+3]+B[i+3];} 

//remainder loop handling 

LABEL1:  

 VLOAD R0  A[i] 

 VLOAD R1  B[i] 

 V64ADD[R0,R1]  R2 

 VSTORE R2  C[i] 

 ii+4 

 i<(n-4)? JMP LABEL1  

//remainder loop handling 

“Loop unrolling” 

Load 256 Bits starting from address of A[i] to 

register R0 

Add the corresponding 64 Bit entries in  R0 and 

R1 and store the 4 results to R2 

Store R2 (256 Bit) to address  

starting at C[i] 
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SIMD processing – Basics  

 No SIMD vectorization  for loops with data dependencies: 

 

 

 

 “Pointer aliasing” may prevent  SIMDfication 

 

 

 

 

 C/C++ allows that A  &C[-1] and B  &C[-2] 

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD 

 

 If “pointer aliasing” is not used, tell it to the compiler: 

 –fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc) 

 restrict keyword (C only!): 

void f(double restrict *a, double restrict *b) {…} 
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for(int i=0; i<n;i++) 

 A[i]=A[i-1]*s; 

void scale_shift(double *A, double *B, double *C, int n) { 

 for(int i=0; i<n; ++i)   

    C[i] = A[i] + B[i]; 

} 



Reading x86 assembly code and exploting 

SIMD parallelism 

Understanding SIMD execution by inspecting   

    assembly code 

SIMD vectorization how-to 

Intel compiler options and features for SIMD 
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Why and how? 

Why check the assembly code? 

 Sometimes the only way to make sure the compiler  “did the right 

thing” 

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads & 

Stores may still be scalar!  

 

 Get the assembler code (Intel compiler): 

 icc –S –O3  -xHost  triad.c  -o a.out 

 Disassemble Executable: 

    objdump –d  ./a.out | less 

 

 

The x86 ISA is documented in: 

Intel Software Development Manual (SDM) 2A and 2B 

AMD64 Architecture Programmer's Manual Vol. 1-5 
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Basics of the x86-64 ISA 

16 general Purpose Registers (64bit):   

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15 

alias with eight  32 bit register set: 

eax, ebx, ecx, edx, esi, edi, esp, ebp 

 

Floating Point SIMD Registers: 

xmm0-xmm15  SSE (128bit)   alias with 256-bit registers 

ymm0-ymm15  AVX (256bit) 

 

SIMD instructions are distinguished by: 

AVX (VEX) prefix:   v 

Operation:    mul, add, mov 

Modifier:   nontemporal (nt), unaligned (u), aligned (a), high (h) 

Width:    scalar (s), packed (p) 

Data type:   single (s),  double  (d) 
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Case Study: Simplest code for the summation of 

the elements of a vector (single precision) 

float sum = 0.0; 

 

for (int j=0; j<size; j++){ 

    sum += data[j]; 

} 

 

 

Instruction code: 

401d08:   f3 0f 58 04 82          addss  xmm0,[rdx + rax * 4] 

401d0d:   48 83 c0 01             add    rax,1 

401d11:   39 c7                   cmp    edi,eax 

401d13:   77 f3                   ja     401d08 
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Instruction 

address 
Opcodes Assembly 

code 

To get  object code use 
objdump –d on object file or 

executable or compile with -S 

AT&T syntax: 
addss 0(%rdx,%rax,4),%xmm0 

(final sum 

across xmm0 

omitted) 
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Summation code (single precision): Improvements 

1: 

addss  xmm0, [rsi + rax * 4] 

add    rax, 1 

cmp    eax,edi 

js 1b 
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1: 

addss xmm0, [rsi + rax * 4] 

addss xmm1, [rsi + rax * 4 + 4] 

addss xmm2, [rsi + rax * 4 + 8] 

addss xmm3, [rsi + rax * 4 + 12] 

add   rax, 4 

cmp   eax,edi 

js 1b 

1: 

vaddps ymm0,…,[rsi + rax * 4] 

vaddps ymm1,…,[rsi + rax * 4 + 32] 

vaddps ymm2,…,[rsi + rax * 4 + 64] 

vaddps ymm3,…,[rsi + rax * 4 + 96] 

add rax, 32 

cmp   eax,edi 

js 1b 

Unrolling with sub-sums to break up 

register dependency 

AVX SIMD vectorization  

3 cycles add 

pipeline 

latency 



166 

How to leverage SIMD 

Alternatives: 

 The compiler does it for you (but: aliasing, alignment, language) 

 Compiler directives (pragmas) 

 Alternative programming models for compute kernels (OpenCL, ispc) 

 Intrinsics (restricted to C/C++) 

 Implement directly in  assembler 

 

To use intrinsics the following headers are available: 

 xmmintrin.h  (SSE) 

 pmmintrin.h (SSE2) 

 immintrin.h  (AVX) 

 

 x86intrin.h (all instruction set extensions) 

 See next slide for an example 
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Example: array summation using C intrinsics  

(SSE, single precision) 
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__m128 sum0, sum1, sum2, sum3; 

__m128 t0, t1, t2, t3; 

float scalar_sum; 

sum0 =  _mm_setzero_ps(); 

sum1 =  _mm_setzero_ps(); 

sum2 =  _mm_setzero_ps(); 

sum3 =  _mm_setzero_ps(); 

 

for (int j=0; j<size; j+=16){ 

    t0 = _mm_loadu_ps(data+j); 

    t1 = _mm_loadu_ps(data+j+4); 

    t2 = _mm_loadu_ps(data+j+8); 

    t3 = _mm_loadu_ps(data+j+12); 

    sum0 = _mm_add_ps(sum0, t0); 

    sum1 = _mm_add_ps(sum1, t1); 

    sum2 = _mm_add_ps(sum2, t2); 

    sum3 = _mm_add_ps(sum3, t3); 

} 

  

 

sum0 = _mm_add_ps(sum0, sum1); 

sum0 = _mm_add_ps(sum0, sum2); 

sum0 = _mm_add_ps(sum0, sum3); 

sum0 = _mm_hadd_ps(sum0, sum0); 

sum0 = _mm_hadd_ps(sum0, sum0); 

 

_mm_store_ss(&scalar_sum, sum0); 

 

core loop 

(bulk) 

summation of 

partial results 
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Example: array summation from intrinsics, instruction code 

14:   0f 57 c9                xorps  %xmm1,%xmm1 

17:   31 c0                   xor    %eax,%eax 

19:   0f 28 d1                movaps %xmm1,%xmm2 

1c:   0f 28 c1                movaps %xmm1,%xmm0 

1f:   0f 28 d9                movaps %xmm1,%xmm3 

22:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1) 

28:   0f 10 3e                movups (%rsi),%xmm7 

2b:   0f 10 76 10             movups 0x10(%rsi),%xmm6 

2f:   0f 10 6e 20             movups 0x20(%rsi),%xmm5 

33:   0f 10 66 30             movups 0x30(%rsi),%xmm4 

37:   83 c0 10                add    $0x10,%eax 

3a:   48 83 c6 40             add    $0x40,%rsi 

3e:   0f 58 df                addps  %xmm7,%xmm3 

41:   0f 58 c6                addps  %xmm6,%xmm0 

44:   0f 58 d5                addps  %xmm5,%xmm2 

47:   0f 58 cc                addps  %xmm4,%xmm1 

4a:   39 c7                   cmp    %eax,%edi 

4c:   77 da                   ja     28 <compute_sum_SSE+0x18> 

4e:   0f 58 c3                addps  %xmm3,%xmm0 

51:   0f 58 c2                addps  %xmm2,%xmm0 

54:   0f 58 c1                addps  %xmm1,%xmm0 

57:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5b:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5f:   c3                      retq  
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Loop body 
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Vectorization and the Intel compiler 

 Intel compiler will try to use SIMD instructions when enabled 

to do so 

 “Poor man’s vector computing” 

 Compiler can emit messages about vectorized loops (not by default): 

 
plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED. 

 

 Use option -vec_report3 to get full compiler output about which 

loops were vectorized and which were not and why (data 

dependencies!) 

 Some obstructions will prevent the compiler from applying 

vectorization even if it is possible 

 

 You can use source code directives to provide more 

information to the compiler  
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Vectorization compiler options 

 The compiler will vectorize starting with –O2. 

 To enable specific SIMD extensions use the –x option: 

 -xSSE2 vectorize for SSE2 capable machines 

Available SIMD extensions: 

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX 

 

 -xAVX on Sandy Bridge processors 

 

Recommended option: 

 -xHost will optimize for the architecture you compile on 

 

On AMD Opteron: use plain –O3 as the  -x options may involve CPU 
type  checks. 
   



171 (c) RRZE 2014 Node-Level Performance Engineering 

Vectorization compiler options 

 Controlling non-temporal stores  (part of the SIMD extensions) 

 

 -opt-streaming-stores always|auto|never 

 
always use NT stores, assume application is memory 

  bound (use with caution!) 

 
auto compiler decides when to use NT stores 

 
never do not use NT stores unless activated by 

  source code directive 
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Rules for vectorizable loops 

1. Countable 

2. Single entry and single exit 

3. Straight line code 

4. No function calls (exception intrinsic math functions) 

 

Better performance with: 

1. Simple inner loops with unit stride 

2. Minimize indirect addressing 

3. Align data structures (SSE 16 bytes, AVX 32 bytes) 

4. In C use the restrict keyword for pointers to rule out aliasing  

 

Obstacles for vectorization: 

 Non-contiguous memory access 

 Data dependencies 
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Vectorization source code directives 

 Fine-grained control of loop vectorization 

 Use !DEC$  (Fortran)  or  #pragma  (C/C++) sentinel to start a compiler 

directive 

 

 #pragma vector always 

vectorize even if it seems inefficient (hint!) 

 

 #pragma novector 

do not vectorize even if possible 

 

 #pragma vector nontemporal 

use NT stores when allowed (i.e. alignment conditions are met) 

 

 #pragma vector aligned 

specifies that all array accesses are aligned to 16-byte boundaries 

(DANGEROUS! You must not lie about this!) 
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User mandated vectorization 

 Since Intel Compiler 12.0 the simd pragma is available 

 #pragma simd enforces vectorization where the other pragmas fail 

 Prerequesites: 

 Countable loop 

 Innermost loop 

 Must conform to for-loop style of OpenMP worksharing constructs 

 There are additional clauses:  reduction, vectorlength, private 

 Refer to the compiler manual for further details 

 

 

 

 

 

 

 NOTE: Using the #pragma simd the compiler may generate incorrect code if 

the loop violates the vectorization rules! 

#pragma simd reduction(+:x) 

  for (int i=0; i<n; i++) { 

     x = x + A[i]; 

  } 
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x86 Architecture: 

SIMD and Alignment 

 Alignment  issues 

 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte) 

boundaries to allow packed aligned loads and NT stores (for Intel 

processors) 

 AMD has a scalar nontemporal store instruction 

 Otherwise the compiler will revert to unaligned loads and not use NT 
stores – even if you say vector nontemporal 

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but 

Xeon Phi relies heavily on it! 

 How is manual alignment accomplished? 

 Dynamic allocation of aligned memory (align = alignment 
boundary): 
 

#define _XOPEN_SOURCE 600 

#include <stdlib.h> 

 

int posix_memalign(void **ptr, 

    size_t align, 

    size_t size); 



Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

C++ issues 

ccNUMA locality and dynamic scheduling 

ccNUMA locality beyond first touch 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  
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numactl as a simple ccNUMA locality tool : 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 
 

numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                              # all <nodes> 

 Examples: 

 
for m in `seq 0 3`; do 

  for c in `seq 0 3`; do  

    env OMP_NUM_THREADS=8 \ 

        numactl --membind=$m --cpunodebind=$c ./stream 

  enddo 

enddo 

 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 
 

 But what is the default without numactl? 

ccNUMA map scan 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 See below 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 C++: Arrays of objects and std::vector<> are by default 

initialized sequentially 

 STL allocators provide an elegant solution 
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Coding for Data Locality: 

Placement of static arrays or arrays of objects 

 Don't forget that constructors tend to touch the data members of 

an object. Example: 

 

 class D { 
  double d; 

public: 

  D(double _d=0.0) throw() : d(_d) {} 

  inline D operator+(const D& o) throw() { 

    return D(d+o.d); 

  } 

  inline D operator*(const D& o) throw() { 

    return D(d*o.d); 

  } 

... 

}; 

→ placement problem with  
     D* array = new D[1000000]; 
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Coding for Data Locality: 

Parallel first touch for arrays of objects 

 Solution: Provide overloaded D::operator new[] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Placement of objects is then done automatically by the C++ runtime via 

“placement new” 

void* D::operator new[](size_t n) { 

  char *p = new char[n];    // allocate 

 

  size_t i,j; 

#pragma omp parallel for private(j) schedule(...) 

  for(i=0; i<n; i += sizeof(D)) 

    for(j=0; j<sizeof(D); ++j) 

      p[i+j] = 0; 

  return p; 

} 

 

void D::operator delete[](void* p) throw() { 

  delete [] static_cast<char*>p; 

} 

parallel first 

touch 
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Coding for Data Locality: 
NUMA allocator for parallel first touch in std::vector<> 

template <class T> class NUMA_Allocator { 

public: 

  T* allocate(size_type numObjects, const void   

              *localityHint=0) { 

    size_type ofs,len = numObjects * sizeof(T); 

    void *m = malloc(len); 

    char *p = static_cast<char*>(m); 

    int i,pages = len >> PAGE_BITS; 

#pragma omp parallel for schedule(static) private(ofs) 

    for(i=0; i<pages; ++i) { 

      ofs = static_cast<size_t>(i) << PAGE_BITS; 

      p[ofs]=0; 

    } 

    return static_cast<pointer>(m); 

  } 

... 

}; Application: 
vector<double,NUMA_Allocator<double> > x(10000000) 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Running with  numactl --interleave might give you a hint 

 See later 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Westmere dual-socket system (Core i7, hex-core): 

 
env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out 
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Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Westmere EP node (2x6 cores): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only one memory BW 

per socket (“Uncore”) 

Half of BW comes from 

other socket! 

+-----------------------------+----------+----------+     +----------+----------+ 

|           Metric            |  core 0  |  core 1  |     |  core 6  |  core 7  | 

+-----------------------------+----------+----------+     +----------+----------+ 

|         Runtime [s]         | 0.730168 | 0.733754 |     | 0.732808 | 0.732943 | 

|             CPI             | 10.4164  | 10.2654  |     | 10.5002  | 10.7641  | 

| Memory bandwidth [MBytes/s] | 11880.9  |    0     | ... | 11732.4  |    0     | ... 

|  Remote Read BW [MBytes/s]  |   4219   |    0     |     | 4163.45  |    0     | 

| Remote Write BW [MBytes/s]  | 1706.19  |    0     |     | 1705.09  |    0     | 

|    Remote BW [MBytes/s]     | 5925.19  |    0     |     | 5868.54  |    0     | 

+-----------------------------+----------+----------+     +----------+----------+ 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 
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ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
C 

P2 
C 

C C 

MI 

P3 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

installed in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 

(Cray only) 



193 (c) RRZE 2014 Node-Level Performance Engineering 

ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM on a Cray XE6 Interlagos node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 
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The curse and blessing of interleaved placement:  

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 

0
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Summary on ccNUMA issues 

 Identify the problem 

 Is ccNUMA an issue in your code? 

 Simple test: run with numactl --interleave  

 

 Apply first-touch placement 

 Look at initialization loops 

 Consider loop lengths and static scheduling 

 C++ and global/static objects may require special care 

 

 If dynamic scheduling cannot be avoided 

 Consider round-robin placement 

 

 Buffer cache may impact proper placement 

 Kick your admins 

 or apply sweeper code 

 If available, use runtime options to force local placement 

 

 
(c) RRZE 2014 Node-Level Performance Engineering 



Simultaneous multithreading (SMT) 

Principles and performance impact 

SMT vs. independent instruction streams 

Facts and fiction 
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SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 

S
ta
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SMT impact 

 SMT is primarily suited for increasing processor throughput 

 With multiple threads/processes running concurrently 

 Scientific codes tend to utilize chip resources quite well 

 Standard optimizations (loop fusion, blocking, …)  

 High data and instruction-level parallelism 

 Exceptions do exist 

 

 SMT is an important topology issue 

 SMT threads share almost all core 

resources 

 Pipelines, caches, data paths 

 Affinity matters! 

 If SMT is not needed 

 pin threads to physical cores 

 or switch it off via BIOS etc. 
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SMT impact 

 SMT adds another layer of topology  

(inside the physical core) 

 Caveat: SMT threads share all caches! 

 Possible benefit: Better pipeline throughput 

 Filling otherwise unused pipelines 

 Filling pipeline bubbles with other thread’s executing instructions: 

 

 

 

 

 

 

 

 Beware: Executing it all in a single thread  

(if possible) may reach the same goal  

without SMT: 

 

Thread 0: 
do i=1,N 

  a(i) = a(i-1)*c 

enddo  

Dependency  pipeline 

stalls until previous MULT 

is over 

Westmere EP  
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Thread 1: 
do i=1,N 

  b(i) = s*b(i-2)+d 

enddo  

Unrelated work in other 

thread can fill the pipeline 

bubbles 

do i=1,N 

  a(i) = a(i-1)*c 

  b(i) = s*b(i-2)+d  

enddo  
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a(2)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

a(2)*c 

a(7)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

Thread 1: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

Fill bubbles via: 
 SMT 

 Multiple streams 

M
U

L
T

 p
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e
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Simultaneous recursive updates with SMT  

(c) RRZE 2014 Node-Level Performance Engineering 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

5 independent updates on a single thread do the same job! 

B(2)*s 

A(2)*s 

E(1)*s 

D(1)*s 

C(1)*s 

Thread 0: 
do i=1,N 

 A(i)=A(i-1)*s 

 B(i)=B(i-1)*s 

 C(i)=C(i-1)*s 

 D(i)=D(i-1)*s 

 E(i)=E(i-1)*s 

enddo  

M
U

L
T

 p
ip

e
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Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

Pure update benchmark can be vectorized  2 F / cycle (store limited) 

Recursive update: 
 

 SMT can fill pipeline 

bubles 

 

 A single thread can 

do so as well 

 

 Bandwidth does not 

increase through 

SMT 

 

 SMT can not 

replace SIMD! 
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SMT myths: Facts and fiction (1) 

 Myth: “If the code is compute-bound, then the functional units 

should be saturated and SMT should show no improvement.” 

 

 

 

 Truth 

1. A compute-bound loop does not  

necessarily saturate the pipelines;  

dependencies can cause a lot of bubbles,  

which may be filled by SMT threads. 

 

2. If a pipeline is already full, SMT will not improve its 

utilization 
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B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  
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SMT myths: Facts and fiction (2) 

 Myth: “If the code is memory-bound, SMT should help because it 

can fill the bubbles left by waiting for data from memory.” 

 Truth:  

1. If the maximum memory bandwidth is already reached, SMT will not 

help since the relevant  

resource (bandwidth)  

is exhausted. 

 

2. If the relevant  

bottleneck is not  

exhausted, SMT may  

help since it can fill  

bubbles in the LOAD  

pipeline. 

 

This applies also to other 

“relevant bottlenecks!” 
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SMT myths: Facts and fiction (3) 

 Myth: “SMT can help bridge the latency to 

memory (more outstanding references).” 

 

 Truth:  
Outstanding references may or may not be 

bound to SMT threads; they may be a resource 

of the memory interface and shared by all 

threads. The benefit of SMT with memory-bound 

code is usually due to better utilization of the 

pipelines so that less time gets “wasted” in the 

cache hierarchy. 

 

 

See also the “ECM Performance Model” 

later on. 
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Things to remember 

Goals for optimization: 

 

1. Map your work to an instruction mix with highest throughput 

using the most effective instructions. 

 

2. Reduce data volume over slow data paths fully utilizing available 

bandwidth. 

 

3. Avoid possible hazards/overhead which prevent reaching goals 

one and two. 
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Multicore Scaling: 

The ECM Model 

Improving the Roofline Model 



Recap: Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 In-core execution is sometimes hard to 

model 

 

 

 Saturation effects in multicore  

chips are not explained 

 ECM model gives more insight 

 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts full 
socket BW 
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G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance 
and power properties of modern multicore chips via simple machine 
models. Concurrency and Computation: Practice and Experience 
(2013). DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908 

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908


ECM Model 

 ECM = “Execution-Cache-Memory” 

 

 Assumptions:  

 Single-core execution time is composed of 

1. In-core execution 

2. Data transfers in the memory hierarchy 

 Data transfers may or may not overlap with 

each other or with in-core execution 

 Scaling is linear until the relevant bottleneck 

is reached  

 

 Input: 

 Same as for Roofline 

 + data transfer times in hierarchy 
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Example: Schönauer Vector Triad in L2 cache 

 REPEAT[ A(:) = B(:) + C(:) * D(:)] @ double precision 

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line) 
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1 LD/cy + 0.5 ST/cy 

Registers 

L1 

L2 

32 B/cy (2 cy/CL) 

Machine characteristics: 

Arithmetic:  
1 ADD/cy+ 1 MULT/cy 

Registers 

L1 

L2 

Triad analysis (per CL): 

6 cy/CL 

10 cy/CL 

Arithmetic:  
AVX: 2 cy/CL 
 

LD LD 
ST/2 

LD 
ST/2 LD LD 

ST/2 
LD 

ST/2 

LD 

ADD 
MULT 

ADD 
MULT 

LD LD WA ST 

Roofline prediction: 16/10 F/cy 

Timeline: 

16 F/CL (AVX) 

Measurement: 16F / ≈17cy 



Example: ECM model for Schönauer Vector Triad 
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX  
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CL 
transfer 

Write-
allocate 
CL transfer 



Full vs. partial vs. no overlap 
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Results 
suggest no 
overlap! 



Multicore scaling in the ECM model 

 Identify relevant bandwidth bottlenecks 

 L3 cache 

 Memory interface 

 Scale single-thread performance until first bottleneck is hit: 
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𝑃 𝑛 = min(𝑛𝑃0, 𝐼 ∙ 𝑏𝑆) 

. . . Example: 
Scalable L3  

on Sandy 
Bridge 



ECM prediction vs. measurements for  A(:)=B(:)+C(:)*D(:)  

on a Sandy Bridge socket (no-overlap assumption) 

Model: Scales until saturation 

sets in  

 

Saturation point (# cores) well 

predicted 

 

Measurement: scaling not perfect 

 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel 

code 

(c) RRZE 2014 216 Node-Level Performance Engineering 



ECM prediction vs. measurements for  A(:)=B(:)+C(:)/D(:)  

on a Sandy Bridge socket (full overlap assumption) 
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In-core execution is dominated by 

divide operation  

(44 cycles with AVX, 22 scalar) 

 

 Almost perfect agreement with    

    ECM model 

 

 



Summary: The ECM Model 

 Saturation effects are ubiquitous; understanding them gives us 

opportunity to 

 Find out about optimization opportunities 

 Save energy by letting cores idle  see power model later on 

 Putting idle cores to better use  asynchronous communication, functional 

parallelism 

 

 Simple models work best. Do not try to complicate things unless it 

is really necessary! 

 

 Possible extensions to the ECM model 

 Accommodate latency effects 

 Model simple “architectural hazards” 
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Tutorial conclusion 

 Multicore architecture == multiple complexities 

 Affinity matters  pinning/binding is essential 

 Bandwidth bottlenecks  inefficiency is often made on the chip level 

 Topology dependence of performance features  know your hardware! 

 Put cores to good use 

 Bandwidth bottlenecks  surplus cores  functional parallelism!? 

 Shared caches  fast communication/synchronization  better 

implementations/algorithms? 

 

 Simple modeling techniques help us 

 … understand the limits of our code on the given hardware 

 … identify optimization opportunities 

 … learn more, especially when they do not work! 

 

 Simple tools get you 95% of the way 

 e.g., with the LIKWID tool suite 
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Most 

powerful 

tool? 
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THANK YOU. 
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Moritz Kreutzer 

Markus Wittmann 

Thomas Zeiser 

Michael Meier 

Holger Stengel 
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Abstract 

 ISC14 tutorial: Node-Level Performance Engineering 

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein 

 

 ABSTRACT: 

 
This tutorial covers performance engineering approaches on the compute node level. 

“Performance engineering” is more than employing tools to identify hotspots and blindly 

applying textbook optimizations. It is about developing a thorough understanding of the 

interactions between software and hardware. This process starts at the core, socket, and 

node level, where the code gets executed that does the actual “work.” Once the 

architectural requirements of a code are understood and correlated with performance 

measurements, the potential benefit of optimizations can often be predicted. We start by 

giving an overview of modern processor and node architectures, including accelerators 

such as GPGPUs and Xeon Phi. Typical bottlenecks such as instruction throughput and 

data transfers are identified using kernel benchmarks and put into the architectural 

context. The impact of optimizations like SIMD vectorization, ccNUMA placement, and 

cache blocking is shown, and different aspects of a “holistic” node-level performance 

engineering strategy are demonstrated. Using the LIKWID multicore tools we show the 

importance of topology awareness, affinity enforcement, and hardware metrics. The latter 

are used to support the performance engineering process by supplying information that 

can validate or falsify performance models.  
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