
Node-Level Performance Engineering

Georg Hager, Jan Treibig, Gerhard Wellein

Erlangen Regional Computing Center (RRZE)
and Department of Computer Science

University of Erlangen-Nuremberg

ISC14 full-day tutorial
June 22, 2014

Leipzig, Germany

For final slides see:

http://goo.gl/3pSrVL

http://goo.gl/3pSrVL
http://goo.gl/3pSrVL
http://goo.gl/3pSrVL

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Node-level performance modeling (part I)

 The Roofline Model

 Lunch break

 Node-level performance modeling (part II)

 Case study: 3D Jacobi solver and model-guided optimization

 DEMO

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

(c) RRZE 2014 2 Node-Level Performance Engineering

G
W

JT

JT

G

W

JT

11:00

13:00

16:00

18:00

14:00

16:30

11:30

09:00

G
H

a
G

H
a

Prelude:

Scalability 4 the win!

Scalability Myth: Code scalability is the key issue

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

(c) RRZE 2014 Node-Level Performance Engineering 4

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 5 Node-Level Performance Engineering

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile
options makes this code
scalable on an 8-core chip

–O3 -xAVX

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 6 Node-Level Performance Engineering

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the

situation

(c) RRZE 2014 7 Node-Level Performance Engineering

How model-building works: Physics

(c) RRZE 2014
Node-Level

Performance

Engineering

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic
quantum
mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

8

The Rules™

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

(c) RRZE 2014 Node-Level Performance Engineering 9

Introduction:

Modern node architecture

Multi- and manycore chips and nodes

A glance at basic core fatures

Caches and data transfers through the memory hierarchy

Memory organization

Accelerators

Programming models

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Multi-Core: Intel Xeon 2600 (2012)

 Xeon 2600 “Sandy Bridge EP”:

8 cores running at 2.7 GHz (max 3.2 GHz)

 Simultaneous Multithreading

 reports as 16-way chip

 2.3 Billion Transistors / 32 nm

 Die size: 435 mm2

2-socket server

(c) RRZE 2014 Node-Level Performance Engineering 11

General-purpose cache based microprocessor core

 (Almost) the same basic design in all modern systems

(c) RRZE 2014 Node-Level Performance Engineering

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,…

1
6

6
 M

H
z

 *
 2

 (
D

D
R

)
*

4
 I

n
te

rl
e
a

v
in

g

12

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2014 Node-Level Performance Engineering 13

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2014 Node-Level Performance Engineering 14

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

 Hardware Pipelining on processor (all units can run concurrently):
Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2014 Node-Level Performance Engineering 15

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 or 4 floating point operations per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2014 Node-Level Performance Engineering 16

Core details: Simultaneous multi-threading (SMT)

(c) RRZE 2014 Node-Level Performance Engineering

St
an

d
ar

d
 c

o
re

2

-w
ay

 S
M

T

SMT principle (2-way example):

17

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2014 Node-Level Performance Engineering
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

18

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2014 Node-Level Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

19

20

Today: ccNUMA

Yesterday (2006): UMA

Commodity cluster nodes: From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

(c) RRZE 2014 Node-Level Performance Engineering

23 (c) RRZE 2014

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

There is no single driving force for chip performance!

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code

TOP500 rank 1 (1995)

Node-Level Performance Engineering

Challenges of modern compute nodes

(c) RRZE 2014 Node-Level Performance Engineering

GPU #1

GPU #2

PCIe link

Other I/O

Core:

SIMD vectorization

SMT

Socket:

Parallelization

Shared Resources

Node:

ccNUMA/data locality
Accelerators:

Data transfer to/from host

Heterogeneous programming is here to stay!

SIMD + OpenMP + MPI + CUDA, OpenCL,…

Where is the data?

24

Interlude:

A glance at current accelerator technology

26

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

(c) RRZE 2014 Node-Level Performance Engineering

27

Intel Xeon Phi block diagram

(c) RRZE 2014 Node-Level Performance Engineering

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP

peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

28

Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit 480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center

for Advanced Computing

(c) RRZE 2014 Node-Level Performance Engineering

 NVIDIA Kepler K20

 15 SMX units each with

192 “cores”

960/2880 DP/SP “cores”

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10,000+

 Programming:

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National

Laboratory

TOP500

rankings

Nov 2012

29

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

(c) RRZE 2014 Node-Level Performance Engineering

Node topology and

programming models

31

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2014 Node-Level Performance Engineering

32 (c) RRZE 2014 Node-Level Performance Engineering

Parallel programming models

on modern compute nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 3.0)

 OpenMP (current standard: 4.0)

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 3.0)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

All models require

awareness of topology

and affinity issues for

getting best

performance out of the

machine!

33 (c) RRZE 2014 Node-Level Performance Engineering

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

34 (c) RRZE 2014 Node-Level Performance Engineering

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

35

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2014 Node-Level Performance Engineering

Conclusions about architecture

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

 Performance of programming models is sensitive to architecture

 Topology/affinity influences overheads

 Standards do not contain (many) topology-aware features

 Apart from overheads, performance features are largely independent of the
programming model

 (c) RRZE 2014 Node-Level Performance Engineering 36

Multicore Performance and Tools

Probing node topology

 Standard tools

 likwid-topology

11:00 (nach 1.

Pause)

38

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

(c) RRZE 2014 Node-Level Performance Engineering

39 (c) RRZE 2014 Node-Level Performance Engineering

How do we figure out the node topology?

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite

for x86 multicore environments.

PSTI2010, Sep 13-16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431

40 (c) RRZE 2014 Node-Level Performance Engineering

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux 2.6 kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more

41 (c) RRZE 2014 Node-Level Performance Engineering

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

42

Output of likwid-topology continued

(c) RRZE 2014 Node-Level Performance Engineering

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

43

Output of likwid-topology continued

(c) RRZE 2014 Node-Level Performance Engineering

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Enforcing thread/process-core affinity

under the Linux OS

 Standard tools and OS affinity facilities

under program control

 likwid-pin

45 (c) RRZE 2014 Node-Level Performance Engineering

Example: STREAM benchmark on 16-core Sandy Bridge:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

first socket first)

There are several reasons for caring

about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

46 (c) RRZE 2014 Node-Level Performance Engineering

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity()

 Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 All modern compilers with OpenMP support

 PLPA hwloc

 Generic Linux: taskset, numactl, likwid-pin (see below)

 OpenMP 4.0 (see OpenMP tutorial)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

47 (c) RRZE 2014 Node-Level Performance Engineering

Likwid-pin
Overview

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread

library binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node and within an existing CPU

set

 Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Usage examples:

 likwid-pin -c 0,2,4-6 ./myApp parameters

 likwid-pin –c S0:0-3 ./myApp parameters

48 (c) RRZE 2014 Node-Level Performance Engineering

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

49 (c) RRZE 2014 Node-Level Performance Engineering

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

50

Likwid-pin
Using logical core numbering

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

(c) RRZE 2014 Node-Level Performance Engineering

Chipset

Memory

Default if –c is not

specified!

51

Advanced options for pinning: Expressions

 Expressions are more powerful in situations where the pin mask

would be very long or clumsy

Compact pinning:
likwid-pin -c E:<thread domain>:<number of threads>\

 [:<chunk size>:<stride>] ...

Scattered pinning across all domains of the designated type :
likwid-pin -c <domaintype>:scatter

 Examples:

likwid-pin -c E:N:8 ... # equivalent to N:0-7

likwid-pin -c E:N:120:2:4 ... # Phi: 120 threads, 2 per core

 Scatter across all NUMA domains:
likwid-pin -c M:scatter

(c) RRZE 2014 Node-Level Performance Engineering

Multicore performance tools:

Probing performance behavior

likwid-perfctr

53

likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof)

2. Instrument those parts which consume a significant part of

runtime

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive operations)

(c) RRZE 2014 Node-Level Performance Engineering

54 (c) RRZE 2014 Node-Level Performance Engineering

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

55 (c) RRZE 2014 Node-Level Performance Engineering

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

56

likwid-perfctr

Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

(c) RRZE 2014 Node-Level Performance Engineering

57

likwid-perfctr

Marker API

 A marker API is available to restrict measurements to code regions

 The API only turns counters on/off. The configuration of the counters is

still done by likwid-perfctr

 Multiple named regions support, accumulation over multiple calls

 Inclusive and overlapping regions allowed

(c) RRZE 2014

#include <likwid.h>

. . .

LIKWID_MARKER_INIT; // must be called from serial region

#pragma omp parallel

{

 LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}

. . .

LIKWID_MARKER_START(“Compute”);

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

Node-Level Performance Engineering

Activate macros with
-DLIKWID_PERFMON

Measuring energy consumption

with LIKWID

59

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor

CPU clock: 3.49 GHz

Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz

Turbo Boost Steps:

C1 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts

Minimum Power: 20 Watts

Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

(c) RRZE 2014 Node-Level Performance Engineering

60

Example:
A medical image reconstruction code on Sandy Bridge

(c) RRZE 2014 Node-Level Performance Engineering

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
a
s
te

r c
o

d
e

 le

s
s
 e

n
e
rg

y

Microbenchmarking for

architectural exploration

Probing of the memory hierarchy

Saturation effects in cache and memory

Typical OpenMP overheads

62

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2014 Node-Level Performance Engineering

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

63

Recap: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

(c) RRZE 2014 Node-Level Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

64 (c) RRZE 2014 Node-Level Performance Engineering

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

65

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2014 Node-Level Performance Engineering

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

4 W / iteration

 128 GB/s

5 W / it.

 18 GB/s

(incl. write

allocate)

Are the

performance

levels

plausible?

What about

multiple cores?

Do the

bandwidths

scale?

66

Throughput capabilities of the Intel Sandy Bridge

 Per cycle with AVX

 1 load instruction (256 bits) AND ½ store instruction

(128 bits)

 1 AVX MULT and 1 AVX ADD instruction

(4 DP / 8 SP flops each)

 Overall maximum of 4 micro-ops

 Per cycle with SSE or scalar

 2 load instruction OR 1 load and 1 store instruction

 1 MULT and 1 ADD instruction

 Overall maximum of 4 micro-ops

 Data transfer between cache levels

(L3 ↔ L2, L2 ↔ L1)

 256 bits per cycle, half-duplex (i.e., full CL transfer == 2

cy)

(c) RRZE 2014 Node-Level Performance Engineering

Registers

L1

L2

L3

Memory

32 B/cy

32 B/cy

XX GB/s

67

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2014 Node-Level Performance Engineering

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t

Theoretical limit

4 W / iteration

 128 GB/s

Theoretical limit

4 W / iteration

 48 GB/s

See later for

more on SIMD

benefits

Max. LD/ST throughput:

1 AVX Load & ½ AVX Store per cycle

 3 cy / 8 Flops 8 Flops/3 cy

(2 LD or 1 LD & 1 ST) / cy

 2 Flops/2 cy

68

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2014 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

69

Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2014 Node-Level Performance Engineering

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

71

Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20 Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket

CPU node

(c) RRZE 2014 Node-Level Performance Engineering

72 (c) RRZE 2014 Node-Level Performance Engineering

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

73

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

(c) RRZE 2014 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP END DO

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

Implicit barrier

74

OpenMP vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2014 Node-Level Performance Engineering

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

L1 core limit

OpenMP performance issues

on multicore

Synchronization (barrier) overhead

76 (c) RRZE 2014 Node-Level Performance Engineering

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slides: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

77 (c) RRZE 2014 Node-Level Performance Engineering

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

 Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

78 (c) RRZE 2014 Node-Level Performance Engineering

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

That does not look bad for 240 threads!

Still the pain may be much larger, as more work can be done in

one cycle on Phi compared to a full Sandy Bridge node

3.75 x cores (16 vs 60) on Phi

2 x more operations per cycle on Phi

2.7 x more barrier penalty (cycles) on Phi

 7.5 x more work done on Xeon Phi per cycle

One barrier causes 2.7 x 7.5 = 20x more pain .

2 threads on

distinct cores:

1936

79

Conclusions from the microbenchmarks

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Synchronization overhead may be an issue

 … and also depends on affinity!

 Many-core poses new challenges in terms of synchronization

(c) RRZE 2014 Node-Level Performance Engineering

“Simple” performance modeling:

The Roofline Model(1)

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

Example: A 3D Jacobi solver

Model-guided optimization

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

81

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

(c) RRZE 2014 Node-Level Performance Engineering

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

82

Preliminary: Estimating Pmax

How to perform a instruction throughput analysis on the example of Intel’s

port based scheduler model

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

SandyBridge

16b 16b 16b

(c) RRZE 2014 Node-Level Performance Engineering

First-order assumption: All instructions in a loop are fed independently to the

various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools

 (Intel IACA, Intel Amplifier)

83

Preliminary: Estimating Pmax

Every new CPU generation provides incremental improvements.

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

(c) RRZE 2014 Node-Level Performance Engineering

84

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

How many cycles to process one AVX-vectorized iteration

(one core)?

 Equivalent to 4 scalar iterations

Cycle 1: LOAD + ½ STORE + MULT + ADD

Cycle 2: LOAD + ½ STORE

Cycle 3: LOAD Answer: 3 cycles

(c) RRZE 2014 Node-Level Performance Engineering

85

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

What is the performance in GFlops/s and the bandwidth in MBytes/s?

One AVX iteration (3 cycles) performs 4 x 2 = 8 flops.

(2.7 GHz / 3 cycles) * 4 updates * 2 flops/update = 7.2 GFlops/s

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

(c) RRZE 2014 Node-Level Performance Engineering

86

Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.2 % of peak performance)

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

 Pmax = 8 x 7.2 Gflop/s = 57.6 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s
= 2.0 GFlop s

(c) RRZE 2014 Node-Level Performance Engineering

87

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2014 Node-Level Performance Engineering

ADD peak

(best possible code)

no SIMD

3-cycle latency per ADD

if not unrolled

P = 5 Gflop/s

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we get

these?

 See next!

I = 1 Flop / 8 byte (in DP)

86.4 GF/s

21.6 GF/s

7.2 GF/s

88

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0

i 1

loop:

 LOAD r2.0 a(i)

 ADD r1.0 r1.0+r2.0

 ++i ? loop

result r1.0

(c) RRZE 2014 Node-Level Performance Engineering

ADD pipes utilization:

 1/12 of ADD peak

S
IM

D
 l
a

n
e

s

89

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0 0

LOAD r2.0 0

LOAD r3.0 0

i 1

loop:

 LOAD r4.0 a(i)

 LOAD r5.0 a(i+1)

 LOAD r6.0 a(i+2)

 ADD r1.0 r1.0+r4.0

 ADD r2.0 r2.0+r5.0

 ADD r3.0 r3.0+r6.0

 i+=3 ? loop

result r1.0+r2.0+r3.0

(c) RRZE 2014 Node-Level Performance Engineering

ADD pipes utilization:

 1/4 of ADD peak

90

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.3] [0,0]

LOAD [r2.0,…,r2.3] [0,0]

LOAD [r3.0,…,r3.3] [0,0]

i 1

loop:

 LOAD [r4.0,…,r4.3] [a(i),…,a(i+3)]

 LOAD [r5.0,…,r5.3] [a(i+4),…,a(i+7)]

 LOAD [r6.0,…,r6.3] [a(i+8),…,a(i+11)]

 ADD r1 r1+r4

 ADD r2 r2+r5

 ADD r3 r3+r6

 i+=12 ? loop

result r1.0+r1.1+...+r3.2+r3.3

(c) RRZE 2014 Node-Level Performance Engineering

ADD pipes utilization:

 ADD peak

91

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

(c) RRZE 2014 Node-Level Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architecture Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

4-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Memory-bound @ large N!

P = 5 GF/s

7.2 … 86.4 GF/s

5 GF/s

92

Assumptions for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 Node-Level Performance Engineering

93

Exercise: Dense matrix-vector multiplication

 Assume N ≈ 5000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

do i=1,N

 do j=1,N

 c(i)=c(i)+A(j,i)*b(j)

 enddo

enddo

do i=1,N

tmp = c(i)

 do j=1,N

 tmp = tmp + A(j,i)* b(j)

 enddo

 c(i) = tmp

enddo

(c) RRZE 2014 Node-Level Performance Engineering

96

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code

2. Increase intensity to make

better use of BW bottleneck

3. Increase intensity and go from

memory-bound to core-bound

4. Hit the core bottleneck by good

serial code

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation

(c) RRZE 2014 Node-Level Performance Engineering

97

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 ECM model gives more insight:

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

(c) RRZE 2014 Node-Level Performance Engineering

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring

performance and power properties of modern multicore chips via

simple machine models. Concurrency and Computation:

Practice and Experience (2013). DOI: 10.1002/cpe.3180

Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

Case study:

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

(c) RRZE 2014 Node-Level Performance Engineering

= + • Nr

General case:
some indirect
addressing
required!

99

SpMVM characteristics

 For large problems, spMVM is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMVM is easily parallelizable in shared and distributed memory

 Data storage format is crucial for performance properties

 Most useful general format on CPUs:

Compressed Row Storage (CRS)

 Depending on compute architecture

(c) RRZE 2014 Node-Level Performance Engineering 100

…

CRS matrix storage scheme

(c) RRZE 2014 Node-Level Performance Engineering

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

101

102 (c) RRZE 2014 Node-Level Performance Engineering

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

103 (c) RRZE 2014 Node-Level Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across NUMA

domains

104 (c) RRZE 2014 Node-Level Performance Engineering

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

105 (c) RRZE 2014 Node-Level Performance Engineering

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck
Parallelization

overhead

dominates

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 DP CRS comp. intensity

 α quantifies traffic

for loading RHS

 α = 0 RHS is in cache

 α = 1/Nnzr RHS loaded once

 α = 1 no cache

 α > 1 Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring performance and actual memory traffic

 Maximum memory BW may not be achieved with spMVM

 (c) RRZE 2014 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte

106

Determine RHS traffic

 𝑽𝒎𝒆𝒂𝒔 is the measured overall memory data traffic (using, e.g.,

likwid-perfctr)

 Solve for 𝜶:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

 𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

 RHS is loaded 3.1 times from memory

 and:

(c) RRZE 2014 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=

𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic
optimization potential!

107

Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model does not work 100% for spMVM due to the RHS

traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: Modeling is not always 100% predictive. It‘s

all about learning more about performance properties!

(c) RRZE 2014 Node-Level Performance Engineering 110

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Validating the model in 3D

Optimization by spatial blocking in 3D

112

Stencil schemes

 Stencil schemes frequently occur in PDE solvers on regular lattice

structures

 Basically it is a sparse matrix vector multiply (spMVM) embedded

in an iterative scheme (outer loop)

 but the regular access structure allows for matrix free coding

 Complexity of implementation and performance depends on

 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, …

 spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2014 Node-Level Performance Engineering

do iter = 1, max_iterations

 Perform sweep over regular grid: y(:) x(:)

 Swap y x

enddo

113

Jacobi-type 5-pt stencil in 2D

(c) RRZE 2014 Node-Level Performance Engineering

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo

j

k

s
w
e
e
p

Lattice

Update

(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

114

Jacobi 5-pt stencil in 2D: data transfer analysis

(c) RRZE 2014 Node-Level Performance Engineering

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo

S
W
E
E
P

 LD+ST y(j,k)

(incl. write

allocate)
LD x(j+1,k)

Available in cache

(used 2 updates before)

LD x(j,k+1) LD x(j,k-1)
Naive balance (incl. write allocate):

x(:, :) : 3 LD +

y(:, :) : 1 ST+ 1LD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

116

Jacobi 5-pt stencil in 2D: Single core performance

(c) RRZE 2014 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (BC)

measured with LIKWID

Intel Compiler

ifort V13.1

jmax

Questions:

1. How to achieve

24 B/LUP also
for large jmax?

2. How to sustain

>600 MLUP/s for
jmax > 104 ?

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Validating the model in 3D

Optimization by spatial blocking in 3D

118

Analyzing the data flow

(c) RRZE 2014 Node-Level Performance Engineering

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid

(assume „Least Recently Used“ replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
a
lo

 c
e
ll

s

H
a
lo

 c
e
ll

s

119

Analyzing the data flow

(c) RRZE 2014 Node-Level Performance Engineering

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid

(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)

120

Analyzing the data flow

(c) RRZE 2014 Node-Level Performance Engineering

Reduce inner (j-)

loop dimension

successively

Best case: 3

„layers“ of grid fit

into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

121

Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

(c) RRZE 2014 Node-Level Performance Engineering

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo 3 * jmax * 8B < CacheSize/2

“Layer condition”

double

precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)

• No strict guideline (cache associativity – data traffic for y not included)

• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)

122

Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

(c) RRZE 2014 Node-Level Performance Engineering

3 * jmax * 8B < CacheSize/2

“Layer condition” fulfilled?

y: (1 LD + 1 ST) / LUP x: 1 LD / LUP

BC = 24 B / LUP

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo

YES

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo BC = 40 B / LUP

y: (1 LD + 1 ST) / LUP

NO

x: 3 LD / LUP

123

Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

 Establish layer condition for all domain sizes

 Idea: Spatial blocking

 Reuse elements of x() as long as they stay in cache

 Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2014 Node-Level Performance Engineering

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

 do k=1,kmax

 do j= jb, (jb+jblock-1) ! Length of inner loop: jblock

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

 enddo

enddo New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B

124

Establish the layer condition by blocking

(c) RRZE 2014 Node-Level Performance Engineering

Split up

domain into

subblocks:

e.g. block

size = 5

125

Establish the layer condition by blocking

(c) RRZE 2014 Node-Level Performance Engineering

Additional data

transfers (overhead)

at block boundaries!

127

Establish layer condition by spatial blocking

(c) RRZE 2014 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

L1: 32 KB

L2: 256 KB

L3: 25 MB jmax

Which cache to block for?

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333) L3: CS=25 MB

jblock=min(jmax,533333)

128

Layer condition & spatial blocking: Memory code balance

(c) RRZE 2014 Node-Level Performance Engineering

jmax

Measured main memory

code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

Blocking factor

(CS=25 MB) too large

Main memory access is not

reason for different performance

jmax

129

Layer condition & spatial blocking: L3 cache balance

(c) RRZE 2014 Node-Level Performance Engineering

Measured L3 cache

code balance (BC)

40 B / LUP

24 B / LUP

jmax

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

Main memory (via L3) L1 cache

L2 or L3 cache

Data accesses to L3 cache (blocking)

Impact of total L3 traffic:

24 B/LUP vs. 40 B/LUP

jmax

130

Socket scaling – Validate Roofline model

(c) RRZE 2014 Node-Level Performance Engineering

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

OpenMP Parallel

bS = 48 GB/s

BC= 24 B/LUP

BC= 40 B/LUP

Layer condition changes for #cores>1 (see later)

𝑃 = min(𝑃𝑚𝑎𝑥 , 𝑏𝑆 𝐵𝐶)

133

From 2D to 3D

 2D

Towards 3D understanding

 Picture can be considered as 2D cut of 3D domain for (new) fixed
i-coordinate:

x(0:jmax+1,0:kmax+1) x(i, 0:jmax+1,0:kmax+1)

(c) RRZE 2014 Node-Level Performance Engineering

x(0:jmax+1,0:kmax+1) j

k

134

From 2D to 3D

 x(0:imax+1, 0:jmax+1,0:kmax+1) – Assume i-direction

contiguous in main memory (Fortran notation)

 Stay at 2D picture and consider one cell of j-k plane as a

contiguous slab of elements in i-direction: x(0:imax,j,k)

(c) RRZE 2014 Node-Level Performance Engineering

j

k

i

j, k

135

Layer condition: From 2D 5-pt to 3D 7-pt Jacobi-type stencil

(c) RRZE 2014 Node-Level Performance Engineering

3 * jmax * 8B < CacheSize/2

BC = 24 B / LUP

do k=1,kmax

 do j=1,jmax

 y(j,k) = const * (x(j-1,k) + x(j+1,k) &

 + x(j,k-1) + x(j,k+1))

 enddo

enddo

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 y(i,j,k) = const * (x(i-1,j,k) + x(i+1,j,k)

 + x(i,j-1,k) + x(i,j+1,k) &

 + x(i,j,k-1) + x(i,j,k+1))

 enddo

 enddo

enddo

3 * jmax *imax * 8B < CacheSize/2 BC = 24 B / LUP

2D

3D

136

3D 7-pt Jacobi-type Stencil (sequential)

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 y(i,j,k) =const.*(x(i-1,j,k) +x(i+1,j,k) &

 + x(i,j-1,k) +x(i,j+1,k) &

 + x(i,j,k-1) +x(i,j,k+1))

 enddo

 enddo

enddo

“Layer condition”
3*jmax*imax*8B < CS/2 “Layer condition” OK

 5 accesses to x() served by cache

Question:

Does parallelization/multi-threading change the layer condition?

(c) RRZE 2014 Node-Level Performance Engineering

137

Jacobi Stencil – OpenMP parallelization (I)

!$OMP PARALLEL DO SCHEDULE(STATIC)

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 y(i,j,k) = 1/6. *(x(i-1,j,k) +x(i+1,j,k) &

 + x(i,j-1,k) +x(i,j+1,k)

 + x(i,j,k-1) +x(i,j,k+1))

 enddo

 enddo

enddo

“Layer condition”: nthreads * 3 * jmax*imax * 8B < CS/2

Layer condition (cubic domain; CacheSize=25 MB)

 1 thread: imax=jmax < 720 10 threads: imax=jmax < 230

Basic guideline:

Parallelize outermost loop

Equally large chunks in k-direction

 “Layer condition” for each thread

(c) RRZE 2014 Node-Level Performance Engineering

138

Jacobi Stencil – OpenMP parallelization (II)

!$OMP PARALLEL DO SCHEDULE(STATIC)

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 y(i,j,k) = 1/6. *(x(i-1,j,k) +x(i+1,j,k) &

 + x(i,j-1,k) +x(i,j+1,k) &

 + x(i,j,k-1) +x(i,j,k+1))

 enddo

 enddo

enddo

Intel® Xeon® Processor E5-2690 v2

10 cores@3 GHz
CacheSize = 25 MB (L3)

MemBW = 48 GB/s

Roofline model:
maxMLUPs= MemBW / (24 B/LUP)

“Layer condition”: nthreads *3*jmax*imax*8B < CS/2

BC = 24 B / LUP

(c) RRZE 2014 Node-Level Performance Engineering

Best performance:

P = 2000 MLUPs

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Validating the model in 3D

Optimization by spatial blocking in 3D

140

Jacobi Stencil – OpenMP parallelization (I)

Validation: Measured data traffic

from main memory [Bytes/LUP] 1 thread: Layer condition OK –

but can not saturate bandwidth

10 threads: performance drops
around imax=230

(c) RRZE 2014 Node-Level Performance Engineering

Layer condition

violated 40 B/LUP

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Validating the model in 3D

Spatial blocking in 3D

143

Jacobi Stencil – simple spatial blocking

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

!$OMP PARALLEL DO SCHEDULE(STATIC)

 do k=1,kmax

 do j=jb, (jb+jblock-1) ! Loop length jblock

 do i=1,imax

 y(i,j,k) = 1/6. *(x(i-1,j,k) +x(i+1,j,k) &

 + x(i,j-1,k) +x(i,j+1,k)

 + x(i,j,k-1) +x(i,j,k+1))

 enddo

 enddo

 enddo

enddo

“Layer condition” (j-Blocking)
 nthreads*3*jblock*imax*8B < CS/2

Testsystem: Intel® Xeon® Processor E5-2690 v2 (10 cores / 3 GHz)

 MemBW = 48 GB/s, CS = 25 MB (L3)

Ensure layer condition by choosing jblock approriately (Cubic Domains):

jblock < CS/(imax* nthreads* 48B)

maxMLUPs = 2000 MLUPs

(c) RRZE 2014 Node-Level Performance Engineering

144

Jacobi Stencil – simple spatial blocking

Determine:
jblock < CS/(2*nthreads*3*imax*8B)

imax = jmax = kmax

#blocks

changes

CS=10 MB:

~ 90+ % roofline limit

Validation: Measured data traffic

from main memory [Bytes/LUP]

(c) RRZE 2014 Node-Level Performance Engineering

145

Impact of blocking factor jblock

(c) RRZE 2014 Node-Level Performance Engineering

jblock

CS=25 MB

nthreads=10

imax=400

Layer condition estimates appropriate jblock:

jblock < CS/(2*nthreads*3*imax*8B)

jblock < 130

Layer condition a bit too

optimistic

jblock=32,…,64

useful choices

146

Impact of jblock: Data traffic from L3 & main memory

(c) RRZE 2014 Node-Level Performance Engineering

Layer condition estimates appropriate jblock:

jblock < CS/(2*nthreads*3*imax*8B)
jblock < 130

Blocking for L2 cache

(CS=256 KB/thread)

Increased memory traffic:

Overhead at block

boundaries

jblock

Layer condition a bit too

optimistic

149

Jacobi Stencil – can we further improve?

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 y(i,j,k) =const. *(x(i-1,j,k) +x(i+1,j,k) &

 + x(i,j-1,k) +x(i,j+1,k) &

 + x(i,j,k-1) +x(i,j,k+1))

 enddo

 enddo

enddo
Total data transfer / LUP:
 (8+8) B/LUP for y() (ST+WriteAllocate)

+ 8 B/LUP for x(i,j,k+1)

 24 B/LUP

Use NT-stores to

avoid “Write Allocate”

Total data transfer / LUP:
 8 B/LUP for y() (NT-STore)

+ 8 B/LUP for x(i,j,k+1)

 16 B/LUP

 “Layer condition” OK
 5 accesses to x() served by cache

(c) RRZE 2014 Node-Level Performance Engineering

150

Jacobi Stencil – Blocking + NT-stores

(c) RRZE 2014 Node-Level Performance Engineering

blocking

16 B/LUP

NT stores

Intel® Xeon® „Sandy Bridge“

8 cores@2,7 GHz
L3 CacheSize = 20 MB

Memory Bandwidth = 33 GB/s

24 B/LUP

40 B/LUP

151

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 “What part of the data comes from where” is a crucial question

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable

layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

(c) RRZE 2014 Node-Level Performance Engineering

152

DEMO

(c) RRZE 2014 Node-Level Performance Engineering

Coding for

SingleInstructionMultipleData processing

154

SIMD processing – Basics

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers.

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point operands

(c) RRZE 2014 Node-Level Performance Engineering
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

155

SIMD processing – Basics

 Steps (done by the compiler) for “SIMD processing”

(c) RRZE 2014 Node-Level Performance Engineering

for(int i=0; i<n;i++)

 C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

 C[i] =A[i] +B[i];

 C[i+1]=A[i+1]+B[i+1];

 C[i+2]=A[i+2]+B[i+2];

 C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

 VLOAD R0 A[i]

 VLOAD R1 B[i]

 V64ADD[R0,R1] R2

 VSTORE R2 C[i]

 ii+4

 i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to

register R0

Add the corresponding 64 Bit entries in R0 and

R1 and store the 4 results to R2

Store R2 (256 Bit) to address

starting at C[i]

156

SIMD processing – Basics

 No SIMD vectorization for loops with data dependencies:

 “Pointer aliasing” may prevent SIMDfication

 C/C++ allows that A &C[-1] and B &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency No SIMD

 If “pointer aliasing” is not used, tell it to the compiler:

 –fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

 restrict keyword (C only!):

void f(double restrict *a, double restrict *b) {…}

 (c) RRZE 2014 Node-Level Performance Engineering

for(int i=0; i<n;i++)

 A[i]=A[i-1]*s;

void scale_shift(double *A, double *B, double *C, int n) {

 for(int i=0; i<n; ++i)

 C[i] = A[i] + B[i];

}

Reading x86 assembly code and exploting

SIMD parallelism

Understanding SIMD execution by inspecting

 assembly code

SIMD vectorization how-to

Intel compiler options and features for SIMD

158 (c) RRZE 2014 Node-Level Performance Engineering

Why and how?

Why check the assembly code?

 Sometimes the only way to make sure the compiler “did the right

thing”

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads &

Stores may still be scalar!

 Get the assembler code (Intel compiler):

 icc –S –O3 -xHost triad.c -o a.out

 Disassemble Executable:

 objdump –d ./a.out | less

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

160 (c) RRZE 2014 Node-Level Performance Engineering

Basics of the x86-64 ISA

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256-bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

161

Case Study: Simplest code for the summation of

the elements of a vector (single precision)

float sum = 0.0;

for (int j=0; j<size; j++){

 sum += data[j];

}

Instruction code:

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]

401d0d: 48 83 c0 01 add rax,1

401d11: 39 c7 cmp edi,eax

401d13: 77 f3 ja 401d08

(c) RRZE 2014 Node-Level Performance Engineering

Instruction

address
Opcodes Assembly

code

To get object code use
objdump –d on object file or

executable or compile with -S

AT&T syntax:
addss 0(%rdx,%rax,4),%xmm0

(final sum

across xmm0

omitted)

162

Summation code (single precision): Improvements

1:

addss xmm0, [rsi + rax * 4]

add rax, 1

cmp eax,edi

js 1b

(c) RRZE 2014 Node-Level Performance Engineering

1:

addss xmm0, [rsi + rax * 4]

addss xmm1, [rsi + rax * 4 + 4]

addss xmm2, [rsi + rax * 4 + 8]

addss xmm3, [rsi + rax * 4 + 12]

add rax, 4

cmp eax,edi

js 1b

1:

vaddps ymm0,…,[rsi + rax * 4]

vaddps ymm1,…,[rsi + rax * 4 + 32]

vaddps ymm2,…,[rsi + rax * 4 + 64]

vaddps ymm3,…,[rsi + rax * 4 + 96]

add rax, 32

cmp eax,edi

js 1b

Unrolling with sub-sums to break up

register dependency

AVX SIMD vectorization

3 cycles add

pipeline

latency

166

How to leverage SIMD

Alternatives:

 The compiler does it for you (but: aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in assembler

To use intrinsics the following headers are available:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all instruction set extensions)

 See next slide for an example

(c) RRZE 2014 Node-Level Performance Engineering

167

Example: array summation using C intrinsics

(SSE, single precision)

(c) RRZE 2014 Node-Level Performance Engineering

__m128 sum0, sum1, sum2, sum3;

__m128 t0, t1, t2, t3;

float scalar_sum;

sum0 = _mm_setzero_ps();

sum1 = _mm_setzero_ps();

sum2 = _mm_setzero_ps();

sum3 = _mm_setzero_ps();

for (int j=0; j<size; j+=16){

 t0 = _mm_loadu_ps(data+j);

 t1 = _mm_loadu_ps(data+j+4);

 t2 = _mm_loadu_ps(data+j+8);

 t3 = _mm_loadu_ps(data+j+12);

 sum0 = _mm_add_ps(sum0, t0);

 sum1 = _mm_add_ps(sum1, t1);

 sum2 = _mm_add_ps(sum2, t2);

 sum3 = _mm_add_ps(sum3, t3);

}

sum0 = _mm_add_ps(sum0, sum1);

sum0 = _mm_add_ps(sum0, sum2);

sum0 = _mm_add_ps(sum0, sum3);

sum0 = _mm_hadd_ps(sum0, sum0);

sum0 = _mm_hadd_ps(sum0, sum0);

_mm_store_ss(&scalar_sum, sum0);

core loop

(bulk)

summation of

partial results

168

Example: array summation from intrinsics, instruction code

14: 0f 57 c9 xorps %xmm1,%xmm1

17: 31 c0 xor %eax,%eax

19: 0f 28 d1 movaps %xmm1,%xmm2

1c: 0f 28 c1 movaps %xmm1,%xmm0

1f: 0f 28 d9 movaps %xmm1,%xmm3

22: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

28: 0f 10 3e movups (%rsi),%xmm7

2b: 0f 10 76 10 movups 0x10(%rsi),%xmm6

2f: 0f 10 6e 20 movups 0x20(%rsi),%xmm5

33: 0f 10 66 30 movups 0x30(%rsi),%xmm4

37: 83 c0 10 add $0x10,%eax

3a: 48 83 c6 40 add $0x40,%rsi

3e: 0f 58 df addps %xmm7,%xmm3

41: 0f 58 c6 addps %xmm6,%xmm0

44: 0f 58 d5 addps %xmm5,%xmm2

47: 0f 58 cc addps %xmm4,%xmm1

4a: 39 c7 cmp %eax,%edi

4c: 77 da ja 28 <compute_sum_SSE+0x18>

4e: 0f 58 c3 addps %xmm3,%xmm0

51: 0f 58 c2 addps %xmm2,%xmm0

54: 0f 58 c1 addps %xmm1,%xmm0

57: f2 0f 7c c0 haddps %xmm0,%xmm0

5b: f2 0f 7c c0 haddps %xmm0,%xmm0

5f: c3 retq

(c) RRZE 2014 Node-Level Performance Engineering

Loop body

169 (c) RRZE 2014 Node-Level Performance Engineering

Vectorization and the Intel compiler

 Intel compiler will try to use SIMD instructions when enabled

to do so

 “Poor man’s vector computing”

 Compiler can emit messages about vectorized loops (not by default):

plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED.

 Use option -vec_report3 to get full compiler output about which

loops were vectorized and which were not and why (data

dependencies!)

 Some obstructions will prevent the compiler from applying

vectorization even if it is possible

 You can use source code directives to provide more

information to the compiler

170 (c) RRZE 2014 Node-Level Performance Engineering

Vectorization compiler options

 The compiler will vectorize starting with –O2.

 To enable specific SIMD extensions use the –x option:

 -xSSE2 vectorize for SSE2 capable machines

Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX

 -xAVX on Sandy Bridge processors

Recommended option:

 -xHost will optimize for the architecture you compile on

On AMD Opteron: use plain –O3 as the -x options may involve CPU
type checks.

171 (c) RRZE 2014 Node-Level Performance Engineering

Vectorization compiler options

 Controlling non-temporal stores (part of the SIMD extensions)

 -opt-streaming-stores always|auto|never

always use NT stores, assume application is memory

 bound (use with caution!)

auto compiler decides when to use NT stores

never do not use NT stores unless activated by

 source code directive

172 (c) RRZE 2014 Node-Level Performance Engineering

Rules for vectorizable loops

1. Countable

2. Single entry and single exit

3. Straight line code

4. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:

 Non-contiguous memory access

 Data dependencies

173 (c) RRZE 2014 Node-Level Performance Engineering

Vectorization source code directives

 Fine-grained control of loop vectorization

 Use !DEC$ (Fortran) or #pragma (C/C++) sentinel to start a compiler

directive

 #pragma vector always

vectorize even if it seems inefficient (hint!)

 #pragma novector

do not vectorize even if possible

 #pragma vector nontemporal

use NT stores when allowed (i.e. alignment conditions are met)

 #pragma vector aligned

specifies that all array accesses are aligned to 16-byte boundaries

(DANGEROUS! You must not lie about this!)

174 (c) RRZE 2014 Node-Level Performance Engineering

User mandated vectorization

 Since Intel Compiler 12.0 the simd pragma is available

 #pragma simd enforces vectorization where the other pragmas fail

 Prerequesites:

 Countable loop

 Innermost loop

 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses: reduction, vectorlength, private

 Refer to the compiler manual for further details

 NOTE: Using the #pragma simd the compiler may generate incorrect code if

the loop violates the vectorization rules!

#pragma simd reduction(+:x)

 for (int i=0; i<n; i++) {

 x = x + A[i];

 }

175 (c) RRZE 2014 Node-Level Performance Engineering

x86 Architecture:

SIMD and Alignment

 Alignment issues

 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte)

boundaries to allow packed aligned loads and NT stores (for Intel

processors)

 AMD has a scalar nontemporal store instruction

 Otherwise the compiler will revert to unaligned loads and not use NT
stores – even if you say vector nontemporal

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but

Xeon Phi relies heavily on it!

 How is manual alignment accomplished?

 Dynamic allocation of aligned memory (align = alignment
boundary):

#define _XOPEN_SOURCE 600

#include <stdlib.h>

int posix_memalign(void **ptr,

 size_t align,

 size_t size);

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling

ccNUMA locality beyond first touch

177 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

178

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain 4x4 combinations

 STREAM triad benchmark using nontemporal stores

(c) RRZE 2014 Node-Level Performance Engineering

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

180 (c) RRZE 2014 Node-Level Performance Engineering

numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

for m in `seq 0 3`; do

 for c in `seq 0 3`; do

 env OMP_NUM_THREADS=8 \

 numactl --membind=$m --cpunodebind=$c ./stream

 enddo

enddo

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

ccNUMA map scan

181 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

182 (c) RRZE 2014 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

183 (c) RRZE 2014 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

184 (c) RRZE 2014 Node-Level Performance Engineering

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 See below

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 C++: Arrays of objects and std::vector<> are by default

initialized sequentially

 STL allocators provide an elegant solution

185 (c) RRZE 2014 Node-Level Performance Engineering

Coding for Data Locality:

Placement of static arrays or arrays of objects

 Don't forget that constructors tend to touch the data members of

an object. Example:

 class D {
 double d;

public:

 D(double _d=0.0) throw() : d(_d) {}

 inline D operator+(const D& o) throw() {

 return D(d+o.d);

 }

 inline D operator*(const D& o) throw() {

 return D(d*o.d);

 }

...

};

→ placement problem with
 D* array = new D[1000000];

186 (c) RRZE 2014 Node-Level Performance Engineering

Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via

“placement new”

void* D::operator new[](size_t n) {

 char *p = new char[n]; // allocate

 size_t i,j;

#pragma omp parallel for private(j) schedule(...)

 for(i=0; i<n; i += sizeof(D))

 for(j=0; j<sizeof(D); ++j)

 p[i+j] = 0;

 return p;

}

void D::operator delete[](void* p) throw() {

 delete [] static_cast<char*>p;

}

parallel first

touch

187 (c) RRZE 2014 Node-Level Performance Engineering

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

 T* allocate(size_type numObjects, const void

 *localityHint=0) {

 size_type ofs,len = numObjects * sizeof(T);

 void *m = malloc(len);

 char *p = static_cast<char*>(m);

 int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

 for(i=0; i<pages; ++i) {

 ofs = static_cast<size_t>(i) << PAGE_BITS;

 p[ofs]=0;

 }

 return static_cast<pointer>(m);

 }

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)

188 (c) RRZE 2014 Node-Level Performance Engineering

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Running with numactl --interleave might give you a hint

 See later

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Westmere dual-socket system (Core i7, hex-core):

env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out

189 (c) RRZE 2014 Node-Level Performance Engineering

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Westmere EP node (2x6 cores):

Only one memory BW

per socket (“Uncore”)

Half of BW comes from

other socket!

+-----------------------------+----------+----------+ +----------+----------+

| Metric | core 0 | core 1 | | core 6 | core 7 |

+-----------------------------+----------+----------+ +----------+----------+

| Runtime [s] | 0.730168 | 0.733754 | | 0.732808 | 0.732943 |

| CPI | 10.4164 | 10.2654 | | 10.5002 | 10.7641 |

| Memory bandwidth [MBytes/s] | 11880.9 | 0 | ... | 11732.4 | 0 | ...

| Remote Read BW [MBytes/s] | 4219 | 0 | | 4163.45 | 0 |

| Remote Write BW [MBytes/s] | 1706.19 | 0 | | 1705.09 | 0 |

| Remote BW [MBytes/s] | 5925.19 | 0 | | 5868.54 | 0 |

+-----------------------------+----------+----------+ +----------+----------+

190 (c) RRZE 2014 Node-Level Performance Engineering

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

191 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

 non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

192 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

installed in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

(Cray only)

193 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

194 (c) RRZE 2014 Node-Level Performance Engineering

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

195

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

(c) RRZE 2014 Node-Level Performance Engineering

196

The curse and blessing of interleaved placement:

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a
n

d
w

id
th

 [
M

b
y
te

/s
]

(c) RRZE 2014 Node-Level Performance Engineering

197

Summary on ccNUMA issues

 Identify the problem

 Is ccNUMA an issue in your code?

 Simple test: run with numactl --interleave

 Apply first-touch placement

 Look at initialization loops

 Consider loop lengths and static scheduling

 C++ and global/static objects may require special care

 If dynamic scheduling cannot be avoided

 Consider round-robin placement

 Buffer cache may impact proper placement

 Kick your admins

 or apply sweeper code

 If available, use runtime options to force local placement

(c) RRZE 2014 Node-Level Performance Engineering

Simultaneous multithreading (SMT)

Principles and performance impact

SMT vs. independent instruction streams

Facts and fiction

199 (c) RRZE 2014 Node-Level Performance Engineering

SMT Makes a single physical core appear as two or more

“logical” cores multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

200 (c) RRZE 2014 Node-Level Performance Engineering

SMT impact

 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently

 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)

 High data and instruction-level parallelism

 Exceptions do exist

 SMT is an important topology issue

 SMT threads share almost all core

resources

 Pipelines, caches, data paths

 Affinity matters!

 If SMT is not needed

 pin threads to physical cores

 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T

h
re

a
d

 1

T
h

re
a

d
 2

201 (c) RRZE 2014 Node-Level Performance Engineering

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may reach the same goal

without SMT:

Thread 0:
do i=1,N

 a(i) = a(i-1)*c

enddo

Dependency pipeline

stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

 b(i) = s*b(i-2)+d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

 a(i) = a(i-1)*c

 b(i) = s*b(i-2)+d

enddo

202

a(2)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

Thread 1:
do i=1,N

a(i)=a(i-1)*c

enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Simultaneous recursive updates with SMT

(c) RRZE 2014 Node-Level Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

Fill bubbles via:
 SMT

 Multiple streams

M
U

L
T

 p
ip

e

203

Simultaneous recursive updates with SMT

(c) RRZE 2014 Node-Level Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N

 A(i)=A(i-1)*s

 B(i)=B(i-1)*s

 C(i)=C(i-1)*s

 D(i)=D(i-1)*s

 E(i)=E(i-1)*s

enddo

M
U

L
T

 p
ip

e

204

Simultaneous recursive updates with SMT

(c) RRZE 2014 Node-Level Performance Engineering

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

Pure update benchmark can be vectorized 2 F / cycle (store limited)

Recursive update:

 SMT can fill pipeline

bubles

 A single thread can

do so as well

 Bandwidth does not

increase through

SMT

 SMT can not

replace SIMD!

205

SMT myths: Facts and fiction (1)

 Myth: “If the code is compute-bound, then the functional units

should be saturated and SMT should show no improvement.”

 Truth

1. A compute-bound loop does not

necessarily saturate the pipelines;

dependencies can cause a lot of bubbles,

which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its

utilization

(c) RRZE 2014 Node-Level Performance Engineering

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

M
U

L
T

 p
ip

e

206

SMT myths: Facts and fiction (2)

 Myth: “If the code is memory-bound, SMT should help because it

can fill the bubbles left by waiting for data from memory.”

 Truth:

1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant

resource (bandwidth)

is exhausted.

2. If the relevant

bottleneck is not

exhausted, SMT may

help since it can fill

bubbles in the LOAD

pipeline.

This applies also to other

“relevant bottlenecks!”

(c) RRZE 2014 Node-Level Performance Engineering

207

SMT myths: Facts and fiction (3)

 Myth: “SMT can help bridge the latency to

memory (more outstanding references).”

 Truth:
Outstanding references may or may not be

bound to SMT threads; they may be a resource

of the memory interface and shared by all

threads. The benefit of SMT with memory-bound

code is usually due to better utilization of the

pipelines so that less time gets “wasted” in the

cache hierarchy.

See also the “ECM Performance Model”

later on.

(c) RRZE 2014 Node-Level Performance Engineering

208

Things to remember

Goals for optimization:

1. Map your work to an instruction mix with highest throughput

using the most effective instructions.

2. Reduce data volume over slow data paths fully utilizing available

bandwidth.

3. Avoid possible hazards/overhead which prevent reaching goals

one and two.

(c) RRZE 2014 Node-Level Performance Engineering

Multicore Scaling:

The ECM Model

Improving the Roofline Model

Recap: Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled pure data streaming assumed

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

 ECM model gives more insight

A(:)=B(:)+C(:)*D(:)

Roofline predicts full
socket BW

(c) RRZE 2014 Node-Level Performance Engineering 210

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Concurrency and Computation: Practice and Experience
(2013). DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

ECM Model

 ECM = “Execution-Cache-Memory”

 Assumptions:

 Single-core execution time is composed of

1. In-core execution

2. Data transfers in the memory hierarchy

 Data transfers may or may not overlap with

each other or with in-core execution

 Scaling is linear until the relevant bottleneck

is reached

 Input:

 Same as for Roofline

 + data transfer times in hierarchy

(c) RRZE 2014 211 Node-Level Performance Engineering

Example: Schönauer Vector Triad in L2 cache

 REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

(c) RRZE 2014 212 Node-Level Performance Engineering

1 LD/cy + 0.5 ST/cy

Registers

L1

L2

32 B/cy (2 cy/CL)

Machine characteristics:

Arithmetic:
1 ADD/cy+ 1 MULT/cy

Registers

L1

L2

Triad analysis (per CL):

6 cy/CL

10 cy/CL

Arithmetic:
AVX: 2 cy/CL

LD LD
ST/2

LD
ST/2 LD LD

ST/2
LD

ST/2

LD

ADD
MULT

ADD
MULT

LD LD WA ST

Roofline prediction: 16/10 F/cy

Timeline:

16 F/CL (AVX)

Measurement: 16F / ≈17cy

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX

(c) RRZE 2014 213 Node-Level Performance Engineering

CL
transfer

Write-
allocate
CL transfer

Full vs. partial vs. no overlap

(c) RRZE 2014 214 Node-Level Performance Engineering

Results
suggest no
overlap!

Multicore scaling in the ECM model

 Identify relevant bandwidth bottlenecks

 L3 cache

 Memory interface

 Scale single-thread performance until first bottleneck is hit:

(c) RRZE 2014 215 Node-Level Performance Engineering

𝑃 𝑛 = min(𝑛𝑃0, 𝐼 ∙ 𝑏𝑆)

. . . Example:
Scalable L3

on Sandy
Bridge

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:)

on a Sandy Bridge socket (no-overlap assumption)

Model: Scales until saturation

sets in

Saturation point (# cores) well

predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel

code

(c) RRZE 2014 216 Node-Level Performance Engineering

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)

on a Sandy Bridge socket (full overlap assumption)

(c) RRZE 2014 217 Node-Level Performance Engineering

In-core execution is dominated by

divide operation

(44 cycles with AVX, 22 scalar)

 Almost perfect agreement with

 ECM model

Summary: The ECM Model

 Saturation effects are ubiquitous; understanding them gives us

opportunity to

 Find out about optimization opportunities

 Save energy by letting cores idle see power model later on

 Putting idle cores to better use asynchronous communication, functional

parallelism

 Simple models work best. Do not try to complicate things unless it

is really necessary!

 Possible extensions to the ECM model

 Accommodate latency effects

 Model simple “architectural hazards”

(c) RRZE 2014 218 Node-Level Performance Engineering

219

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters pinning/binding is essential

 Bandwidth bottlenecks inefficiency is often made on the chip level

 Topology dependence of performance features know your hardware!

 Put cores to good use

 Bandwidth bottlenecks surplus cores functional parallelism!?

 Shared caches fast communication/synchronization better

implementations/algorithms?

 Simple modeling techniques help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Simple tools get you 95% of the way

 e.g., with the LIKWID tool suite

(c) RRZE 2014 Node-Level Performance Engineering

Most

powerful

tool?

220

THANK YOU.

(c) RRZE 2014 Node-Level Performance Engineering

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

Holger Stengel

221 (c) RRZE 2014 Node-Level Performance Engineering

Presenter Biographies

 Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance systems since

1995, and is now a senior research scientist in the HPC group at Erlangen Regional

Computing Center (RRZE). Recent research includes architecture-specific optimization

for current microprocessors, performance modeling on processor and system levels,

and the efficient use of hybrid parallel systems. See his blog at http://blogs.fau.de/hager

for current activities, publications, and talks.

 Jan Treibig holds a PhD in Computer Science from the University of Erlangen. He is

now a postdoctoral researcher in the HPC Services group at Erlangen Regional

Computing Center (RRZE). His current research revolves around architecture-specific

and low-level optimization for current processor architectures, performance modeling on

processor and system levels, and programming tools. He is the developer of LIKWID, a

collection of lightweight performance tools. In his daily work he is involved in all aspects

of user support in High Performance Computing: training, code parallelization, profiling

and optimization, and the evaluation of novel computer architectures.

 Gerhard Wellein holds a PhD in solid state physics from the University of Bayreuth and

is a professor at the Department for Computer Science at the University of Erlangen. He

leads the HPC group at Erlangen Regional Computing Center (RRZE) and has more

than ten years of experience in teaching HPC techniques to students and scientists

from computational science and engineering programs. His research interests include

solving large sparse eigenvalue problems, novel parallelization approaches,

performance modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

222 (c) RRZE 2014 Node-Level Performance Engineering

Abstract

 ISC14 tutorial: Node-Level Performance Engineering

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein

 ABSTRACT:

This tutorial covers performance engineering approaches on the compute node level.

“Performance engineering” is more than employing tools to identify hotspots and blindly

applying textbook optimizations. It is about developing a thorough understanding of the

interactions between software and hardware. This process starts at the core, socket, and

node level, where the code gets executed that does the actual “work.” Once the

architectural requirements of a code are understood and correlated with performance

measurements, the potential benefit of optimizations can often be predicted. We start by

giving an overview of modern processor and node architectures, including accelerators

such as GPGPUs and Xeon Phi. Typical bottlenecks such as instruction throughput and

data transfers are identified using kernel benchmarks and put into the architectural

context. The impact of optimizations like SIMD vectorization, ccNUMA placement, and

cache blocking is shown, and different aspects of a “holistic” node-level performance

engineering strategy are demonstrated. Using the LIKWID multicore tools we show the

importance of topology awareness, affinity enforcement, and hardware metrics. The latter

are used to support the performance engineering process by supplying information that

can validate or falsify performance models.

223

References

Books:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and
Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power
properties of modern multicore chips via simple machine models. Concurrency and
Computation: Practice and Experience (2013).
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on
modern multicore processors: Best practices for performance engineering. Workshop on
Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012,
Rhodes Island, Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),
DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for
medical image reconstruction on recent standard multicore processors. International
Journal of High Performance Computing Applications, (published online before print).
DOI: 10.1177/1094342012442424

(c) RRZE 2014 Node-Level Performance Engineering

http://www.crcpress.com/product/isbn/9781439811924
http://www.crcpress.com/product/isbn/9781439811924
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424

224

References

Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC

2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel

Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop

on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.

DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector

multiplication with explicit communication overlap on current multicore-based systems.

Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for

iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).

DOI 10.1016/j.jocs.2011.01.010

 (c) RRZE 2014 Node-Level Performance Engineering

http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010

225

References

Papers continued:

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization

strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA.

Advances in Engineering Software and Computers & Structures 42 (5), 266–272 (2011).

DOI: 10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance

prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.

DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In:

Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel

Programming Models on Hybrid Architectures. International Journal of High Performance

Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

(c) RRZE 2014 Node-Level Performance Engineering

http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

