29 responses

Summary

Fill out online at at http://goo.gl/forms/hiXM5Feu3B

Which area are you working in?

- Computing center staff (consulting) 4 14%
- Computing Center staff (sysadmin) 1 3%
- Domain scientist (developer) 9 31%
- Domain scientist (user) 3 10%
- Programmer / developer 18 62%
- Management (administrative) 1 3%
- Management (research) 4 14%
- Other 6 21%

Which areas of science do the codes come from that you are working on?
What is the programming language that you mostly deal with when optimizing code?

Mathematics 10 34%
Physics 17 59%
Chemistry 8 28%
Materials science 5 17%
Computational fluid dynamics 9 31%
Structural mechanics 5 17%
Biological systems 4 14%
Finance / economics 2 7%
Social sciences 1 3%
Other 8 28%
What is the parallel programming model that you mostly deal with when optimizing code?
SIMD (vectorization) 20 69%
OpenMP 22 76%
C++11 threading 4 14%
MPI 22 76%
Java threads 2 7%
Cilk(++) 3 10%
Threading Building Blocks (TBB) 2 7%
POSIX threads 5 17%
UPC 0 0%
Co-Array Fortran 0 0%
GASPI 0 0%
Global Arrays 1 3%
CUDA 9 31%
OpenCL 4 14%
OpenACC 3 10%
Other 2 7%

Are your code optimizations centered on the single core, node, or highly parallel level?
Single core (sequential) 15 (52%)
Single node/device (e.g., CPU socket, multiple CPU sockets, GPGPU, other accelerator) 22 (76%)
Highly parallel (distributed memory) 20 (69%)

What is/are the target architecture(s) for which you optimize code?

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Intel/AMD x86 chips/clusters</td>
<td>26</td>
</tr>
<tr>
<td>Cray MPP</td>
<td>1</td>
</tr>
<tr>
<td>IBM Power</td>
<td>2</td>
</tr>
<tr>
<td>IBM Blue Gene</td>
<td>2</td>
</tr>
<tr>
<td>Large shared memory systems</td>
<td>2</td>
</tr>
<tr>
<td>AMD GPGPUs</td>
<td>3</td>
</tr>
<tr>
<td>Nvidia GPGPUs</td>
<td>9</td>
</tr>
<tr>
<td>Intel Xeon Phi</td>
<td>10</td>
</tr>
<tr>
<td>Low power/embedded</td>
<td>2</td>
</tr>
<tr>
<td>Mobile devices</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Intel/AMD x86 chips/clusters</td>
<td>26</td>
<td>90%</td>
</tr>
<tr>
<td>Cray MPP</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>IBM Power</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>IBM Blue Gene</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Large shared memory systems</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>AMD GPGPUs</td>
<td>3</td>
<td>10%</td>
</tr>
<tr>
<td>Nvidia GPGPUs</td>
<td>9</td>
<td>31%</td>
</tr>
<tr>
<td>Intel Xeon Phi</td>
<td>10</td>
<td>34%</td>
</tr>
<tr>
<td>Low power/embedded</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Mobile devices</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

What are the typical target metrics you optimize for?
If you have ever optimized code performance, what approach(es) did you use so far to improve it?
Selected better programming language / programming model / library
Selected appropriate compiler options
Employed proper thread/process affinity
Code transformations: blocking, unrolling, loop fusion, etc.
Changed code so the compiler does a better job
Strength reduction (avoid expensive operations)
Used intrinsics or assembly language
Employed proper ccNUMA page placement
Fixed load imbalance
Reduced overall work
Reduced lock contention/serialization
Reduced communication volume/frequency
Overlapped communication with computation
Message aggregation
Avoided global operations
Intelligent resource management (e.g., overlapping codes with different requirements to the hardware)
Changed communication pattern
Home-made autotuning (e.g., using scripts)
Autotuning using ...
If you have ever optimized for energy-related metrics, what approach(es) did you use so far?

- Voltage and/or frequency scaling: 1 (3%)
- Concurrency throttling (using fewer cores than are available): 0 (0%)
- Optimizing performance: 5 (17%)
- Intelligent resource management (e.g., co-scheduling of different workloads): 0 (0%)
- Other: 0 (0%)

Have you ever used performance tools for optimizing application code?

- Yes: 22 (76%)
- No: 3 (10%)

If you have used performance tools, which ones?
If you use tools, what do you use them for?

- SCALASCA: 3 (10%)
- VAMPIR: 3 (10%)
- Intel Trace Analyzer/Collector: 1 (3%)
- DIMEMAS: 1 (3%)
- Paraver: 1 (3%)
- Allinea MAP: 4 (14%)
- PerfExpert: 2 (7%)
- ThreadSpotter: 0 (0%)
- Intel Amplifier (VTune): 8 (28%)
- TAU: 8 (28%)
- PAPI: 10 (34%)
- LIKWID: 1 (3%)
- gprof or other compiler-based tool: 14 (48%)
- Other: 8 (28%)
If you use hardware performance counter measurements, what events/metrics do you look at?

- Flops or GFlop/s: 12 (41%)
- SIMD-related (scalar vs. packed instructions): 8 (28%)
- Instruction count / IPC: 7 (24%)
- Cache misses: 16 (55%)
- TLB misses: 6 (21%)
Do you use performance models in your optimization efforts?

- Yes: 6 (21%)
- No: 12 (41%)
- What is this "performance model" stuff anyway?: 7 (24%)

If you use performance models, which ones?

- Cycle-accurate (simulation): 1 (3%)
- Roofline model: 4 (14%)
- LogP or similar: 1 (3%)
- Statistical (curve fitting, extrapolation): 1 (3%)
- Other: 0 (0%)
- Other: 0 (0%)
Do you think you would have interesting optimization case studies to share at a dedicated workshop?

- Yes: 8 (28%)
- No: 9 (31%)
- Probably, but would require substantial effort: 10 (34%)

Have you ever had a paper rejected because it was "just" an optimization case study with "no novelty"?

- Yes: 7 (24%)
- No: 19 (66%)

How would you rate the usefulness of an "Optimization community" for your daily work?

- 1: 0 (0%)
- 2: 0 (0%)
- 3: 3 (10%)
- 4: 12 (41%)
- 5: 13 (45%)

Your overall opinion about this BoF?

- Very interesting: 18
- Best BoF ever: 2
- Other: 1
- Useless, Total nonsense: 0
- Mildly exciting: 0
- Moderately interesting: 6
Useless. Total waste of time. 0 0%
Mildly entertaining. 0 0%
Moderately interesting, learned something new. 6 21%
Very interesting. More of this! 18 62%
Best BoF ever! 2 7%
Other 1 3%

Anything you would like to share? Suggestions, comments about this BoF?

I really like the research that comes out of the RRZE et al. group. One small criticism of the ECM model: the assumption that there is no overlap of traffic between the levels of the cache always gives me pause. I wish you could get an official onfirmation/refutation of this from Intel.

Congratulations, and thanks for the amazing BoF

Enjoyed the session, but it wasn't really a BoF. Instead it was just a series of short presentations. If billing as a BoF again next year, should incorporate more time for discussion and audience participation.

needs more complex examples

a tidbit of more general optimization strategies for various types of code.

Would like to see more low-level optimization techniques that are closer to the metal

Liked the fact it wasn't all about MPI

Number of daily responses

[Chart showing number of daily responses from 11/18/14 to 1/31/15]