
ERLANGEN REGIONAL

COMPUTING CENTER

J. Treibig

PPoPP 2015, 6.2.2015

Node-Level Performance Engineering

for Multicore Systems

2

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

The Rules™

3

Time Topic

8:30 – 10:00 Intro / Single-Core Performance

10:00 – 10:30 Coffee break

10:30 – 12:00 Node Performance / Performance Tools

12:00 – 14:00 Lunch

14:00 – 15:30 Performance Engineering Process

15:30 – 16:00 Coffee break

16:00 – 17:30 Performance Modeling / Case Studies

Schedule

WARMUP:

PERFORMANCE QUIZ

5

 What is a “write-allocate” (a.k.a. read for ownership)?

 What is Amdahl’s Law?

 What is the Roofline Model?

Quiz

Sp =
T(1)

T(N)
=

1

s+ 1-s
N

A: Many cache architectures allocate a CL on a store miss.

1 W. Schönauer: Scientific Supercomputing:

Architecture and Use of Shared and Distributed

Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore

Computers. UCB Technical Report No. UCB/EECS-

2008-164. PhD thesis (2008)

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

6

 How many cycles does a double-precision ADD/MULT/DIV take?

 Do you know the STREAM benchmarks?

 What is SIMD vectorization?

 What is ccNUMA?

Quiz cont.

A: Intel IvyBridge, ADD 3 cycles, MULT 5

cycles , DIV 21 cycles

A: Defacto standard HPC benchmark

for (memory) bandwidth.

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

R0 R1 R2

A: Single instruction multiple data.

Data parallel execution units.

7

Where it all started: Stored Program Computer

 Provide improvements for relevant software

 What are the technical opportunities?

 Economical concerns

 Multi-way special purpose

EDSAC 1949

Maurice Wilkes, Cambridge

C
P

U

Memory

Control

 Unit

Arithmetic

Logical

 Unit

Input Output

Architect’s view:

Make the common case fast !

8

Common lore: Efficiency is the fraction of peak performance you

reach!

Excursion in memory bandwidth

Some thoughts on efficiency …

Example: STREAM triad (A(:)= B(:)+C(:)*d) with data not fitting into

cache.

Intel Xeon X5482 (Harpertown 3.2 GHz): 553 Mflops/s (8 cores)

Efficiency 0.54% of peak

Intel Xeon E5-2680 (SandyBridge EP 2.7 GHz) 4357 Mflops/s (16 cores)

Efficiency 1.2% of peak

What can we do about it?

 Nothing!

9

Reality: This code is bound by main memory bandwidth.

HPT 6.6 GB/s (8.8 GB/s with WA)

SNB 52.3 GB/s (69.6 GB/s with WA)

In both cases this is near 100% of achievable memory bandwidth.

Excursion in memory bandwidth

A better way to think about efficiency

Efficiency increase: None !

Architecture improvement:

8x

To think about efficiency you should focus on the

utilization of the relevant resource!

10

Notions of work:

• Application Work

• Flops

• LUPS

• VUPS

• Processor Work

• Instructions

• Data Volume

Hardware-Software Co-Design?

From algorithm to execution

Algorithm

Programming language

Machine code

Compiler

11

Consider the following code:

#pragma omp parallel private(j)

{

for (int j=0; j<niter; j++) {

#pragma omp for

 for (int i=0; i<size; i++) {

 a[i] = b[i] + c[i] * d[i];

 }

}

}

Example: Threaded vector triad in C

Setup:

32 threads running on a dual

socket 8-core SandyBridge-EP

gcc 4.7.0

/* global synchronization */

Every single synchronization in this setup costs in the order

of 60000 cycles !

12

Such an approach is not portable …

Hardware issues frequently change …

Those nasty hardware details are too difficult to learn for the

average programmer …

Why hardware should not be exposed

Important fundamental concepts are stable and

portable (ILP, SIMD, memory organization).

The basic principals are simple to understand

and every programmer should know them.

13

Approaches to performance optimization

Trial and error Blind data driven

Automated expert

tools Highly skilled experts

Highly complex

Problem centric

Tool centric

14

1. Instruction execution

Primary resource of the processor.

2. Data transfer bandwidth

Data transfers as a consequence of instruction execution.

Focus on resource utilization

What is the limiting resource?

Do you fully utilize available resources?

15

• Reduce computational work

• Reduce data volume (over slow data paths)

• Make use of parallel resources

• Load balancing

• Serial fraction

• Identify relevant bottleneck(s)

• Eliminate bottleneck

• Increase resource utilization

Final Goal: Fully exploit offered resources for your specific code!

What needs to be done on one slide

HARDWARE OPTIMIZATIONS FOR

SINGLE-CORE EXECUTION

• ILP

• SIMD

• SMT

• Memory hierarchy

17

Common technologies

 Instruction Level Parallelism (ILP)

 Instruction pipelining

 Superscalar execution

 Out-of-order execution

 Memory Hierarchy

 Branch Prediction Unit, Hardware Prefetching

 Single Instruction Multiple Data (SIMD)

 Simultaneous Multithreading (SMT)

Cycle

Stages

Bubbles
Wind-up

Wind-down

Scheduler

Pipeline latency

Caches

Temporal locality Cache-line

Write allocate

Speculative execution

Lanes Register width

Packed
Scalar

Hazard

CPI

18

Multi-Core: Intel Xeon 2600 (2012)

 Xeon 2600 “Sandy Bridge EP”:

8 cores running at 2.7 GHz (max 3.2 GHz)

 Simultaneous Multithreading

 reports as 16-way chip

 2.3 Billion Transistors / 32 nm

 Die size: 435 mm2

2-socket server

19

General-purpose cache based microprocessor

core

 Implements “Stored

Program Computer”

concept (Turing 1936)

 Similar designs on all

modern systems

 (Still) multiple potential

bottlenecks

Stored-program computer

Modern CPU core

20

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in
parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent
instructions  instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware –
software-pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

21

5-stage Multiplication-Pipeline:

A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

22

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Hardware Pipelining on processor (all units can run concurrently):

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

23

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 or 4 floating point operations per cycles

Superscalar Processors – Instruction Level

Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

24

Core details: Simultaneous multi-threading

(SMT)
S

ta
n
d
a
rd

 c
o
re

2
-w

a
y
 S

M
T

25

Single Instruction Multiple Data (SIMD) allows the concurrent execution of

the same operation on “wide” registers.

 SSE: register width = 128 Bit  2 DP floating point operands

 AVX: register width = 256 Bit  4 DP floating point operands

Adding two registers holding double precision floating point operands

Core details: SIMD processing

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

26

SIMD processing – Basics

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n;i++)

 C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

 C[i] =A[i] +B[i];

 C[i+1]=A[i+1]+B[i+1];

 C[i+2]=A[i+2]+B[i+2];

 C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

 VLOAD R0  A[i]

 VLOAD R1  B[i]

 V64ADD[R0,R1]  R2

 VSTORE R2  C[i]

 ii+4

 i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to

register R0

Add the corresponding 64 Bit entries in R0 and

R1 and store the 4 results to R2

Store R2 (256 Bit) to address

starting at C[i]

27

SIMD processing – Basics

No SIMD vectorization for loops with data dependencies:

“Pointer aliasing” may prevent SIMDfication

C/C++ allows that A  &C[-1] and B  &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD

If “pointer aliasing” is not used, tell it to the compiler:

–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

restrict keyword (C only!):

for(int i=0; i<n;i++)

 A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {

 for(int i=0; i<n; ++i)

 C[i] = A[i] + B[i];

}

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…}

28

Why and how?

Why check the assembly code?

 Sometimes the only way to make sure the compiler “did the right

thing”

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads

& Stores may still be scalar!

 Get the assembler code (Intel compiler):

 icc –S –O3 -xHost triad.c -o a.out

 Disassemble Executable:

 objdump –d ./a.out | less

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

29

Basics of the x86-64 ISA

 Instructions have 0 to 2 operands

 Operands can be registers, memory references or immediates

 Opcodes (binary representation of instructions) vary from 1 to 17 bytes

 There are two syntax forms: Intel (left) and AT&T (right)

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT

 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)

401ba4: 48 83 c0 08 add $0x8,%rax

401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm4, 48(%rdi,%rax,8)

addq $8, %rax

js ..B1.4

30

Basics of the x86-64 ISA

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256-bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

31

Case Study: Simplest code for the summation of the

elements of a vector (single precision)

float sum = 0.0;

for (int i=0; i<size; i++){

 sum += data[i];

}

Instruction code:

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]

401d0d: 48 83 c0 01 add rax,1

401d11: 39 c7 cmp edi,eax

401d13: 77 f3 ja 401d08

Instruction

address
Opcodes Assembly

code

To get object code use
objdump –d on object file or

executable or compile with -S

AT&T syntax:
addss 0(%rdx,%rax,4),%xmm0

(final sum

across xmm0

omitted)

32

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

33

How does data travel from memory to the CPU and back?

Remember: Caches are organized

in cache lines (e.g., 64 bytes)

Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

MISS: Load or store instruction does

not find data in a cache level

 CL transfer required

Example: Array copy A(:)=C(:)

Registers and caches:

Data transfers in a memory hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate
evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

C(:) A(:)

34

Recap: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)= C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

35

• Promote temporal and spatial locality

• Enable packed (block wise) load/store of data

• Memory locality (placement)

• Avoid false cache line sharing

• Access data in long streams to enable efficient latency hiding

Above requirements may collide with object oriented programming

paradigm: array of structures vs structure of arrays

Consequences for data structure layout

36

• All efforts are targeted on increasing instruction throughput

• Every hardware optimization puts an assumption against the

executed software

• One can distinguish transparent and explicit solutions

• Common technologies:

• Instruction level parallelism (ILP)

• Data parallel execution (SIMD), does not affect instruction

throughput

• Exploit temporal data access locality (Caches)

• Hide data access latencies (Prefetching)

• Avoid hazards

Conclusions about core architectures

PRELUDE:

SCALABILITY 4 THE WIN!

38

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

Scalability Myth: Code scalability is the key issue

39

Scalability Myth: Code scalability is the key issue

Prepared for

the highly

parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the

compile options makes

this code scalable on an

8-core chip

–O3 -xAVX

40

Scalability Myth: Code scalability is the key issue
!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency

is key issue!

Upper limit from simple

performance model:

35 GB/s & 24 Byte/update

TOPOLOGY OF MULTI-CORE /

MULTI-SOCKET SYSTEMS

• Chip Topology

• Node Topology

• Memory Organisation

42

Timeline of technology developments

Deep pipeline 

High clock

SSE2

Dual Core

Quad Core

3-channel,

DDR3 on-chip

ccNUMA

Octa-core

AVX

6C

12C

43

• Core: Unit reading and executing instruction stream

• Chip: One integrated circuit die

• Socket/Package: May consist of multiple chips

• Memory Hierarchy:

• Private caches

• Shared caches

• ccNUMA: Replicated memory interfaces

Building blocks for multi-core compute nodes

44

Chip Topologies

SandyBridge-EP, 8C, 32nm 435mm2

Westmere-EP, 6C, 32nm 248mm2

 Separation into core and uncore

 Memory hierarchy holding together

the chip design

 L1 (L2) private caches

 L3 cache shared (LLC)

 Serialized LLC  not scalable

 Segmented ring bus, distributed

LLC  scalable design

45

From UMA to ccNUMA

Memory architectures

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures: Where

does my data finally end up?

46

ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain  4x4 combinations

ccNUMA
4 chips, two sockets, 8 threads per ccNUMA domain


S

T
R

E
A

M
 t

ri
a

d
 p

e
rf

o
rm

a
n

c
e

 [
M

B
/s

]
Memory node

C
P

U
 n

o
d

e

47

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

Caveat: "touch" means "write", not "allocate"

Example:
double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

ccNUMA default memory locality

Memory not

mapped here yet

Mapping takes

place here

48

Parallel init: Correct parallel initialization

LD0: Force data into LD0 via numactl –m 0

Interleaved: numactl --interleave <LD range>

The curse and blessing of interleaved placement:
OpenMP STREAM on a Cray XE6 Interlagos node

49

The curse and blessing of interleaved placement:

same on 4-socket (48 core) Magny Cours node

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a
n

d
w

id
th

 [
M

b
y
te

/s
]

50

Intel IvyBridge-EP IBM Power7

Number of cores ncore 12 8

FP instructions per cycle F 2 2 (DP) / 1 (SP)

FP ops per instructions S 4 (DP) / 8 (SP) 2 (DP) / 4 (SP) - FMA

Clock speed [GHz] n 2.7 3.7

Performance [GF/s] P 259 (DP) / 518 (SP) 236 (DP/SP)

The driving forces behind performance

 P = ncore * F * S * n

But: P=5.4 GF/s or 14.8 GF/s(dp) for serial, non-SIMD code

TOP500 rank 1 (1996)

Intel IvyBridge-EP IBM Power7

52

 Shared-memory (intra-node)

 Good old MPI (current standard: 3.0)

 OpenMP (current standard: 4.0)

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 “Accelerated”

 OpenMP 4.0

 CUDA

 OpenCL

 OpenACC

 Distributed-memory (inter-node)

 MPI (current standard: 3.0)

 PVM (gone)

 Hybrid

 Pure MPI + X, X == <you name it>

Parallel programming models

on modern compute nodes

All models require

awareness of topology

and affinity issues for

getting best

performance out of the

machine!

53

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

Parallel programming models:
Pure MPI

54

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

Parallel programming models:
Pure threading on the node

55

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned “round

robin” across cores in node

Two MPI processes / socket

OpenMP threads

on same socket

56

Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

Performance of programs is sensitive to architecture

 Topology/affinity influences overheads of popular programming models

 Standards do not contain (many) topology-aware features

› Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)

 Apart from overheads, performance features are largely independent of the
programming model

Conclusions about Node Topologies

INTERLUDE:

A GLANCE AT CURRENT

ACCELERATOR TECHNOLOGY

58

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

59

Intel Xeon Phi block diagram

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP

peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

60

Comparing accelerators

Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit  480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center

for Advanced Computing

NVIDIA Kepler K20

 15 SMX units each with

192 “cores” 

960/2880 DP/SP “cores”

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10,000+

 Programming:

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National

Laboratory

TOP500

rankings

Nov 2012

61

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

MULTICORE PERFORMANCE AND

TOOLS

PROBING NODE TOPOLOGY

 Standard tools

 likwid-topology

63

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information 

 hwloc is another option

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

64

LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

How do we figure out the node topology?

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite for

x86 multicore environments. PSTI2010, Sep 13-

16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431

65

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-powermeter: Query turbo mode steps. Measure ETS.

 likwid-bench: Low-level bandwidth benchmark generator tool

66

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

67

Output of likwid-topology continued

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

68

Output of likwid-topology continued

***

Graphical:

***

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

ENFORCING THREAD/PROCESS-

CORE AFFINITY UNDER THE LINUX

OS

 Standard tools and OS affinity facilities under

program control

 likwid-pin

70

Example: STREAM benchmark on 16-core Sandy Bridge:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

first socket first)

 There are several reasons for caring

about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

 Benchmark how code reacts to variations

71

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity()

Windows: SetThreadAffinityMask()

 OpenMPI: hwloc library

 Support for “semi-automatic” pinning in some
compilers/environments

 All modern compilers with OpenMP support

 Generic Linux: taskset, numactl, likwid-pin (see below)

 OpenMP 4.0

 Affinity awareness in MPI libraries:

› OpenMPI

› Intel MPI

› …

More thread/Process-core affinity (“pinning”) options

72

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread library

 binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node and within an existing CPU set

 Useful for running inside CPU sets defined by someone else, e.g., the

MPI start mechanism or a batch system

 Usage examples:

 likwid-pin -c 0,2,4-6 ./myApp parameters

 likwid-pin –c S0:0-3 ./myApp parameters

Likwid-pin
Overview

73

Running the STREAM benchmark with likwid-pin:

Likwid-pin
Example: Intel OpenMP

 $ likwid-pin -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

74

 Core numbering may vary from system to system even with identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-pin

 Alternatively, likwid-pin can abstract this variation and provide a purely logical

numbering (physical cores first)

 Across all cores in the node:

likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:

likwid-pin -c S0:0-3@S1:0-3 ./a.out

Likwid-pin
Using logical core numbering

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

75

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

Likwid-pin
Using logical core numbering

Chipset

Memory

Default if –c is not

specified!

76

 Expressions are more powerful in situations where the pin mask

would be very long or clumsy

Compact pinning:
likwid-pin -c E:<thread domain>:<number of threads>\

 [:<chunk size>:<stride>] ...

Scattered pinning across all domains of the designated type :

likwid-pin -c <domaintype>:scatter

 Examples:
likwid-pin -c E:N:8 ... # equivalent to N:0-7

likwid-pin -c E:N:120:2:4 ... # Phi: 120 threads,2 per core

 Scatter across all NUMA domains:
likwid-pin -c M:scatter

Advanced options for pinning: Expressions

77

 KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Intel KMP_AFFINITY environment variable

 modifier

 granularity=<specifier> takes the

following specifiers: fine, thread,

and core

 norespect

 noverbose

 proclist={<proc-list>}

 respect

 verbose

 Default:

noverbose,respect,granularity=core

 type (required)

 compact

 disabled

 explicit (GOMP_CPU_AFFINITY)

 none

 scatter

 KMP_AFFINITY=verbose,none to list machine topology map

OS processor IDs

Respect an OS

affinity mask in place

78

 KMP_AFFINITY=granularity=fine,compact

 KMP_AFFINITY=granularity=fine,scatter

Intel KMP_AFFINITY examples

Package means

chip/socket

(c) Intel

(c) Intel

80

GNU GOMP_AFFINITY

 GOMP_AFFINITY=3,0-2 used with 6 threads

 Always operates with OS processor IDs

Round robin

oversubscription

(c) Intel

PROBING PERFORMANCE

BEHAVIOR

likwid-perfctr

82

1. Runtime profile / Call graph (gprof)

2. Instrument those parts which consume a significant part of

runtime

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive operations)

likwid-perfctr

Basic approach to performance analysis

83

 How do we find out about the performance properties and requirements

of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm”

on Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with

likwid-perfctr -a

Probing performance behavior

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

84

likwid-perfctr

Example usage with preconfigured metric group
$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

85

likwid-perfctr

Marker API

 A marker API is available to restrict measurements to code regions

 The API only turns counters on/off. The configuration of the counters is still done

by likwid-perfctr

 Multiple named regions support, accumulation over multiple calls

 Inclusive and overlapping regions allowed

#include <likwid.h>

. . .

LIKWID_MARKER_INIT; // must be called from serial region

#pragma omp parallel

{

 LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}

. . .

LIKWID_MARKER_START(“Compute”);

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

Activate macros with
-DLIKWID_PERFMON

PATTERN-DRIVEN

PERFORMANCE ENGINEERING

PROCESS

Basics of Benchmarking

Performance Patterns

Signatures

87

1. Define relevant test cases

2. Establish a sensible performance metric

3. Acquire a runtime profile (sequential)

4. Identify hot kernels (Hopefully there are any!)

5. Carry out optimization process for each kernel

Motivation:

• Understand observed performance

• Learn about code characteristics and machine capabilities

• Deliberately decide on optimizations

Basics of Optimization

Iteratively

88

Preparation

 Reliable timing (Minimum time which can be measured?)

 Document code generation (Flags, Compiler Version)

 Get exclusive System

 System state (Clock, Turbo mode, Memory, Caches)

 Consider to automate runs with a skript (Shell, python, perl)

Doing

 Affinity control

 Check: Is the result reasonable?

 Is result deterministic and reproducible.

 Statistics: Mean, Best ??

 Basic variants: Thread count, affinity, working set size (Baseline!)

Best Practices Benchmarking

89

Postprocessing

 Documentation

 Try to understand and explain the result

 Plan variations to gain more information

 Many things can be better understood if you plot them (gnuplot,

xmgrace)

Best Practices Benchmarking cont.

90

• A bottleneck is a performance limiting setting

• Microarchitectures expose numerous bottlenecks

Observation 1:

Most applications face a single bottleneck at a time!

Observation 2:

There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks

91

Reduce complexity!

We propose a human driven process to enable a systematic

way to success!

• Executed by humans.

• Uses tools by means of data acquisition only.

Uses one of the most powerful tools available:

Process vs. Tool

Your brain !

You are a investigator making sense of what’s going on.

92

Performance Engineering Process: Analysis

Pattern

Microbenchmarking
Hardware/Instruction

set architecture

Algorithm/Code

Analysis

Application

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance

patterns are

typical

performance

limiting motifs

The set of input data indicating

a pattern is its signature

93

Understand observed performance: Where am I?

Input:

• Static code analysis

• HPM data

• Scaling data set size

• Scaling number of used cores

• Microbenchmarking

Performance patterns are typical performance limiting motives.

The set of input data indicating a pattern is its signature.

Performance analysis phase

Pattern Signature

94

Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn

95

Performance Engineering Process: Optimization

Optimize for better

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance

improves until next

bottleneck is hit

Improves

Performance

Step 3 Optimization: Improve utilization of offered resources.

96

1. Maximum resource utilization

2. Hazards

3. Work related (Application or Processor)

The system offers two basic resources:

 Execution of instructions (primary)

 Transferring data (secondary)

Performance pattern classification

97

Patterns (I): Botttlenecks & hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Bandwidth saturation
Saturating speedup across

cores sharing a data path

Bandwidth meets BW of suitable

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of

cycles to specific instruction

count(s) (FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume
Simple bandwidth performance

model much too optimistic

Low BW utilization / Low cache hit

ratio, frequent CL evicts or

replacements (CACHE, DATA,

MEM)
Latency-bound

access

Micro-architectural

anomalies

Large discrepancy from simple

performance model based on

LD/ST and arithmetic

throughput

Relevant events are very

hardware-specific, e.g., memory

aliasing stalls, conflict misses,

unaligned LD/ST, requeue events

98

Patterns (II): Hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

False sharing of cache

lines

Large discrepancy from

performance model in parallel case,

bad scalability

Frequent (remote) CL evicts

(CACHE)

Bad ccNUMA page

placement

Bad or no scaling across NUMA

domains, performance improves

with interleaved page placement

Unbalanced bandwidth on

memory interfaces / High remote

traffic (MEM)

Pipelining issues
In-core throughput far from design

limit, performance insensitive to

data set size

(Large) integral ratio of cycles to

specific instruction count(s), bad

(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss

ratio (BRANCH)

99

Patterns (III): Work-related

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Load imbalance / serial

fraction
Saturating/sub-linear speedup

Different amount of “work” on the

cores (FLOPS_*); note that

instruction count is not reliable!

Synchronization overhead

Speedup going down as more cores

are added / No speedup with small

problem sizes / Cores busy but low

FP performance

Large non-FP instruction count

(growing with number of cores

used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good

scaling across cores, performance

insensitive to problem size

Low CPI near theoretical limit /

Large non-FP instruction count

(constant vs. number of cores)

(FLOPS_*, DATA, CPI)

Code

composition

Expensive

instructions

Similar to instruction overhead

Many cycles per instruction (CPI)

if the problem is large-latency

arithmetic

Ineffective

instructions

Scalar instructions dominating in

data-parallel loops (FLOPS_*,

CPI)

100

Example rabbitCT

Result of effort:

5-6 x improvement

against initial parallel C

code implementation

>50% of peak

performance (SSE)

101

Optimization without knowledge about bottleneck

102

Where to start

Look at the code and understand what it is doing!

Scaling runs:

 Scale #cores inside ccNUMA domain

 Scale across ccNUMA domains

 Scale working set size (if possible)

HPM measurements:

 Memory Bandwidth

 Instruction decomposition: Arithmetic, data, branch, other

 SIMD vectorized fraction

 Data volumes inside memory hierarchy

 CPI

103

Most frequent patterns

(seen with scientific computing glasses)

Data transfer related:

 Memory bandwidth saturation

 Bad ccNUMA page placement

Parallelization

 Load imbalance

 Serial fraction

Code composition:

 Instruction overhead

 Ineffective instructions

 Expensive instructions

Overhead:

 Synchronization overhead

Excess work:

 Data volume reduction over

slow data paths

 Reduction of algorithmic work

104

Pattern: Bandwidth Saturation

1. Perform scaling run inside ccNUMA domain

2. Measure memory bandwidth with HPM

3. Compare to micro benchmark with similar data access pattern

Saturating

bandwidth

Scalable

bandwidth

Measured bandwidth spmv:

45964 MB/s

Synthetic load benchmark:

47022 MB/s

105

Clearly distinguish between “saturating” and “scalable”

performance on the chip level

Consequences from the saturation pattern

saturating

type

scalable

type

106

There is no clear bottleneck for single-core execution

Code profile for single thread ≠ code profile for multiple threads

 Single-threaded profiling may be misleading

Consequences from the saturation pattern

8 threads

saturating part scalable part

runtime

1 thread

107

Pattern: Load inbalance

1. Check HPM instruction count distribution across cores

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

108

Example for a load balanced code

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but better

performance

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out

109

Pattern: Bad ccNUMA page placement

1. Benchmark scaling across ccNUMA domains

2. Is performance sensitive to interleaved page placement

3. Measure inter-socket traffic with HPM

110

Pattern: Instruction Overhead

Instruction

decomposition

Inlining failed Inefficient data

structures

Arithmetic FP 12% 21%

Load/Store 30% 50%

Branch 24% 10%

Other 34% 19%

C++ codes which suffer from overhead (inlining problems, complex

abstractions) need a lot more overall instructions related to the arithmetic

instructions

 Often (but not always) “good” (i.e., low) CPI

 Low-ish bandwidth

 Low # of floating-point instructions vs. other instructions

1. Perform a HPM instruction decomposition analysis

2. Measure resource utilization

3. Static code analysis

111

Pattern: Inefficient Instructions

1. HPM measurement: Relation packed vs. scalar instructions

2. Static assembly code analysis: Search for scalar loads

+--------------------------------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 |

+--------------------------------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 2.19445e+11 | 1.7674e+11 | 1.76255e+11 | 1.75728e+11 | 1.75578e+11 |

| CPU_CLK_UNHALTED_CORE | 1.4396e+11 | 1.28759e+11 | 1.28846e+11 | 1.28898e+11 | 1.28905e+11 |

| CPU_CLK_UNHALTED_REF | 1.20204e+11 | 1.0895e+11 | 1.09024e+11 | 1.09067e+11 | 1.09074e+11 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED_DOUBLE | 1.1169e+09 | 1.09639e+09 | 1.09739e+09 | 1.10112e+09 | 1.10033e+09 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR_DOUBLE | 3.62746e+10 | 3.45789e+10 | 3.45446e+10 | 3.44553e+10 | 3.44829e+10 |

| SIMD_FP_256_PACKED_DOUBLE | 0 | 0 | 0 | 0 | 0 | +--

------------------------------------+-------------+-------------+-------------+-------------+-------------+

Small fraction

of packed

instructions
No AVX

 There is usually no counter for packed vs scalar (SIMD) loads and

stores.

 Also the compiler usually does not distinguish!

Only solution: Inspect code at assembly level.

112

Pattern: Synchronization overhead

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

1. Performance is decreasing with growing core counts

2. Performance is sensitive to topology

3. Static code analysis: Estimate work vs. barrier cost.

113

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc not very competitive

 Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

114

Thread synchronization overhead on AMD Interlagos
Barrier overhead in CPU cycles

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L2 258 3995 1503 128623

Shared L3 698 2853 1076 128611

Same socket 879 2785 1297 128695

Other socket 940 2740 / 4222 1284 / 1325 128718

Intel compiler barrier very expensive on Interlagos

 OpenMP & Cray compiler

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L3 2272 27916 5981 151939

Socket 3783 49947 7479 163561

Node 7663 167646 9526 178892

115

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

That does not look bad for 240 threads!

Still the pain may be much larger, as more work can be done in

one cycle on Phi compared to a full Sandy Bridge node

3.75 x cores (16 vs 60) on Phi

2 x more operations per cycle on Phi

2.7 x more barrier penalty (cycles) on Phi

 7.5 x more work done on Xeon Phi per cycle

One barrier causes 2.7 x 7.5 = 20x more pain .

2 threads on

distinct cores:

1936

116

SpMV kernel: Data set size and thread count

influence on limiting pattern

Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node



do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

117

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across NUMA

domains

Pattern: Bandwidth saturation

118

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

Pattern: Work reduction. Less data

volume over slow data paths

119

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck
Parallelization

overhead

dominates

Pattern: Synchronization overhead

“SIMPLE” PERFORMANCE

MODELING:

THE ROOFLINE MODEL

Loop-based performance modeling:

Execution vs. data transfer

121

How to perform a instruction throughput analysis on the example of

Intel’s port based scheduler model.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Issue 6 uops

Retire 4 uops

SandyBridge

16b 16b 16b

122

Every new generation provides incremental improvements.

The OOO microarchitecture is a blend between P6 (Pentium Pro)

and P4 (Netburst) architectures.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

Issue 8 uops

123

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

How many cycles to process one 64byte cacheline?

Exercise: Estimate performance of triad on

SandyBridge @3GHz

64byte equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and ½ store and mult and add

Cycle 2: load and ½ store

Cycle 3: load Answer: 6 cycles

124

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

 A[i] = B[i] + C[i] * D[i]

}

Whats the performance in GFlops/s and bandwidth in MBytes/s ?

Exercise: Estimate performance of triad on

SandyBridge @3GHz

One AVX iteration (3 cycles) performs 4x2=8 flops.

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

125

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over

the slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

P = min(Pmax, I bs)

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

126

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

  I = 0.4 F/W = 0.05 F/B

  I ∙ bS = 2.0 GF/s (1.2 % of peak performance)

 Ppeak = 173 GFlop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

 Pmax?  Observe LD/ST throughput maximum of 1 AVX Load and ½

AVX store per cycle  3 cy / 8 Flops

  Pmax = 57.6 GFlop/s (33% peak)

“Simple” Roofline: The vector triad

P = min(Pmax, I bs) = min(57.6 , 2.0)GFlop/s = 2.0 GFlop/s

127

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo
in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

ADD peak

(best possible code)

no SIMD

3-cycle latency per ADD

if not unrolled

P = 5 Gflop/s

How do we get

these?

 See next!

I = 1 Flop / 8 byte (in DP)

86.4 GF/s

21.6 GF/s

7.2 GF/s

128

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop:

 LOAD r2.0  a(i)

 ADD r1.0  r1.0+r2.0

 ++i ? loop

result  r1.0

Applicable peak for the summation loop

ADD pipes utilization:

 1/12 of ADD peak

S
IM

D
 l

a
n

e
s

129

Scalar code, 3-way unrolling

LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop:

 LOAD r4.0  a(i)

 LOAD r5.0  a(i+1)

 LOAD r6.0  a(i+2)

 ADD r1.0  r1.0+r4.0

 ADD r2.0  r2.0+r5.0

 ADD r3.0  r3.0+r6.0

 i+=3 ? loop

result  r1.0+r2.0+r3.0

Applicable peak for the summation loop

ADD pipes utilization:

 1/4 of ADD peak

130

SIMD-vectorized, 3-way unrolled

LOAD [r1.0,…,r1.3]  [0,0]

LOAD [r2.0,…,r2.3]  [0,0]

LOAD [r3.0,…,r3.3]  [0,0]

i  1

loop:

 LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)]

 LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)]

 LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)]

 ADD r1  r1+r4

 ADD r2  r2+r5

 ADD r3  r3+r6

 i+=12 ? loop

result  r1.0+r1.1+...+r3.2+r3.3

Applicable peak for the summation loop

ADD pipes utilization:

 ADD peak

131

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

analysis

Code analysis:

1 ADD + 1 LOAD

architecture Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

4-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Memory-bound @ large N!

Pmax = 5 GF/s

7.2 … 86.4 GF/s

5 GF/s

132

The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

› “work” = flops, updates, iterations…

› “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine

effective bandwidth via simple streaming benchmarks to model more

complex kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be

infinitely fast

 If data transfer is the limiting factor, the bandwidth of the slowest

data path can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

Assumptions for the Roofline Model

133

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code

2. Increase intensity to make better

use of BW bottleneck

3. Increase intensity and go from

memory-bound to core-bound

4. Hit the core bottleneck by good

serial code

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation

134

Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

ECM model gives more insight

Shortcomings of the roofline model

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

135

Where the roofline model fails

In memory

performance

below saturation

point In cache

situations

136

ECM = “Execution-Cache-Memory”

Assumptions:

Single-core execution time is composed of

1. In-core execution

2. Data transfers in the memory hierarchy

Data transfers may or may not overlap with

each other or with in-core execution

Scaling is linear until the relevant bottleneck

is reached

Input:

Same as for Roofline

+ data transfer times in hierarchy

ECM Model

137

ECM = “Execution-Cache-Memory”

• Analytical performance model

• Focus on resource utilization

• Instruction Execution

• Data Movement

• Lightspeed assumption:

• Optimal instruction throughput

• Always bandwidth bound

Introduction to ECM model

The RULES™

1. Single-core execution time is

composed of

1. In-core execution

2. Data transfers in the memory

hierarchy

2. All timings are in units of one CL

3. LOADS in the L1 cache do not

overlap with any other data

transfer

4. Scaling across cores is linear

until a shared bottleneck is hit

138

naive kahan

loads 2 2

mul 1 1

add 1 4

Vector dot product: Code characteristics

double sum = 0.0;

for (int i=0; i<N; i++){

 sum += a[i]*b[i];

}

double sum = 0.0;

double c = 0.0;

for (int i=0; i<N; i++) {

 double prod = a[i]*b[i];

 double y = prod-c;

 double t = sum+y;

 c = (t-sum)-y;

 sum = t;

}

Naive Kahan

139

SandyBridge-EP IvyBridge-EP Haswell-EP

Type Xeon E5-2680 Xeon E5-2690 v2 Xeon E5-2695 v3

cores 8 cores @ 2.7GHz 10 cores @ 3.0GHz 14 cores @ 2.3GHz

Load / Store 2 L + 1 S per cy 2 L + 1 S per cy 2 L + 1 S per cy

L1 Port Width 16b 16b 32b

Add 1 per cy 1 per cy 1 per cy

Mul 1 per cy 1 per cy 2 per cy

FMA n/a n/a 2 per cy

SIMD width 32b 32b 32b

Machine Model

SandyBridge-EP IvyBridge-EP Haswell-EP

L1 – L2 32b/cy 2cy/CL 32b/cy 2cy/CL 64b/cy 1cy/CL

L2 – L3 32b/cy 2cy/CL 32b/cy 2cy/CL 32b/cy 2cy/CL

L3 - MEM 4.0cy/CL 3.5cy/CL 2.5cy/CL

140

Shorthand notation:

Contributions:

Kahan (AVX)

Prediction

Example Kahan (AVX) on IvyBridge-EP

16b SSE

64b

32b AVX

4cy

2cy
Tcore = max(TnOL,TOL)

TECM = max(TnOL +Tdata,TOL)

{TOL ||TnOL |TL1/L2 |TL2/L3 |TL3/MEM }

{8 || 4 | 4 | 4}cy

{8 \ 8 \12}cy

141

Model

Naïve (AVX):

Kahan (scalar):

Kahan (AVX):

ECM Model IvyBridge-EP

{4 || 4 | 4 | 4 | 7}cy

{32 || 8 | 4 | 4 | 7}cy
{8 || 4 | 4 | 4 | 7}cy

{4 \ 8 \12 \19}cy

{32 \ 32 \ 32 \ 32}cy
{8 \ 8 \12 \19}cy

Measurement

Naïve (AVX):

Kahan (scalar):

Kahan (AVX):

4.1 \ 8.7 \13.0 \ 24.9cy

8.4 \10.2 \13.7 \ 23.8cy
32.5 \ 32.4 \ 3248 \ 37.9cy

145

Identify relevant bandwidth bottlenecks

 L3 cache

 Memory interface

Scale single-thread performance until first bottleneck is hit:

Multicore scaling in the ECM model

. . . Example:

Scalable L3

on Sandy

Bridge

P(t)=min(tP0,Proof), with Proof=min(Pmax,l bS)

146

Model

Naïve (AVX):

Kahan (scalar):

Kahan (AVX):

ECM Model IvyBridge-EP

{4 || 4 | 4 | 4 | 7}cy

{32 || 8 | 4 | 4 | 7}cy
{8 || 4 | 4 | 4 | 7}cy

{4 \ 8 \12 \19}cy

{32 \ 32 \ 32 \ 32}cy
{8 \ 8 \12 \19}cy

Measurement

Naïve (AVX):

Kahan (scalar):

Kahan (AVX):

4.1 \ 8.7 \13.0 \ 24.9cy

8.4 \10.2 \13.7 \ 23.8cy
32.5 \ 32.4 \ 3248 \ 37.9cy

147

Model: Scales until saturation sets in

Saturation point (# cores) well predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel code

ECM prediction vs. measurements for
A(:)=B(:)+C(:)*D(:), no overlap

148

In-core execution is dominated

by divide operation

(44 cycles with AVX, 22 scalar)

 Almost perfect agreement

with ECM model

ECM prediction vs. measurements for
A(:)=B(:)+C(:)/D(:) with full overlap

Parallelism “heals” bad

single-core performance

… just barely!

149

float sum = 0.0;

for (int j=0; j<size; j++){

 sum += data[j];

}

Instruction code:

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]

401d0d: 48 83 c0 01 add rax,1

401d11: 39 c7 cmp edi,eax

401d13: 77 f3 ja 401d08

Case Study: Simplest code for the summation of

the elements of a vector (single precision)

Instruction

address
Opcodes Assembly

code

To get object code use
objdump –d on object file or

executable or compile with -S

150

1:

addss xmm0, [rsi + rax * 4]

add rax, 1

cmp eax,edi

js 1b

Summation code (single precision):

Optimizations

1:

addss xmm0, [rsi + rax * 4]

addss xmm1, [rsi + rax * 4 + 4]

addss xmm2, [rsi + rax * 4 + 8]

addss xmm3, [rsi + rax * 4 + 12]

add rax, 4

cmp eax,edi

js 1b

1:

addps xmm0, [rsi + rax * 4]

addps xmm1, [rsi + rax * 4 + 16]

addps xmm2, [rsi + rax * 4 + 32]

addps xmm3, [rsi + rax * 4 + 48]

add rax, 16

cmp eax,edi

js 1b

Unrolling with sub-sums to break up

register dependency

SSE SIMD vectorization

3 cycles add

pipeline

latency

151

SIMD processing – single-threaded

SIMD influences instruction execution in the

core – other bottlenecks stay the same!

48

16

4

4 4

Execution Cache Memory

8cy

16cy 16cy
24cy

Full

benefit in

L1 cache

Data transfers

are overlapped

with execution

Some penalty

for SIMD (12 cy

predicted)

Peak

Per-cacheline

cycle counts

M
fl

o
p

s
/s

152

And with AVX?

48

16

4

2

4 4

Cache Memory

8cy

Peak

M
F

lo
p

s
/s

SSE 8 cycles

AVX 6 cycles

8cy

L3 Cache

With preloading:

AVX down to less than 7 cycles (8309 MFlops/s) diminishing

returns (Amdahl)

153

SIMD processing – Full chip (all cores)

Influence of SMT

Bandwidth saturation is the primary performance limitation on

the chip level!

8c

8 threads on physical cores 16 threads using SMT

Full scaling

using SMT due

to bubbles in

pipeline

All variants

saturate the

memory

bandwidth

Conclusion: If the code saturates the

bottleneck, all variants are acceptable!

154

• The ECM model is a simple analysis tool to get insight into:

• Runtime contributions

• Bottleneck identification

• Runtime overlap

It can predict single core performance for any memory hierarchy

level and get an estimate of multicore chip scalability.

ECM correctly describes several effects

 Saturation for memory-bound loops

 Diminishing returns of in-core optimizations for far-away data

Simple models work best. Do not try to complicate things unless it is really

necessary!

Summary: The ECM Model

CASE STUDY: HPCCG

Performance analysis on:

• Intel IvyBridge-EP@2.2GHz

• Intel Xeon Phi@1.05GHz

156

for(int k=1; k<max_iter && normr > tolerance; k++)

{

 oldrtrans = rtrans;

 ddot (nrow, r, r, &rtrans, t4);

 double beta = rtrans/oldrtrans;

 waxpby (nrow, 1.0, r, beta, p, p);

 normr = sqrt(rtrans);

 HPC_sparsemv(A, p, Ap);

 double alpha = 0.0;

 ddot(nrow, p, Ap, &alpha, t4);

 alpha = rtrans/alpha;

 waxpby(nrow, 1.0, r, -alpha, Ap, r);

 waxpby(nrow, 1.0, x, alpha, p, x);

 niters = k;

}

Introduction to HPCCG (Mantevo suite)

157

Components of HPCCG 1

#pragma omp for reduction (+:result)

for (int i=0; i<n; i++) {

 result += x[i] * y[i];

}

#pragma omp for

for (int i=0; i<n; i++) {

 w[i] = alpha * x[i] + beta * y[i];

}

ddot:

waxpby:

2 Flops

2 * 8b L = 16b

2.2GHz/2c * 16 Flops =

17.6 GFlops/s or

140GB/s L1 or 46GB/s L2

3 Flops

2 * 8b L + 1 * 8b S = 24b

2.2GHz/4c * 24flops =

13.2 GFlops/s or

106GB/s L1 or 47GB/s L2

158

Sparse matrix-vector multiply (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS

vectors with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:

some indirect

addressing

required!

159

…

CRS matrix storage scheme

column index

ro
w

 i
n
d
e
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros

(length Nnz)

 col_idx[] stores the column index

of each nonzero (length Nnz)

 row_ptr[] stores the starting index

of each new row in val[] (length:

Nr)

160

CRS (Compressed Row Storage) – data

format

Format creation

1. Store values and column

indices of all non-zero elements

row-wise

2. Store starting indices of each
column (rpt)

Data arrays

 double val[]

 unsigned int col[]

 unsigned int rpt[]

161

Components of HPCCG 2

#pragma omp for

for (int i=0; i< nrow; i++) {

 double sum = 0.0;

 double* cur_vals = vals_in_row[i];

 int* cur_inds = inds_in_row[i];

 int cur_nnz = nnz_in_row[i];

 for (int j=0; j< cur_nnz; j++) {

 sum += cur_vals[j]*x[cur_inds[j]];

 }

 y[i] = sum;

}

2 Flops

1 * 4b L + 2 * 8b L = 20b

2.2GHz/2c * 16 Flops =

17.6 GFlops/s or

140GB/s L1 or 46GB/s L2

162

Routine Serial Socket

ddot 5% 5%

waxby 12% 16%

spmv 83% 79%

First Step: Runtime Profile (3003)

Routine Chip

ddot 3%

waxby 8%

spmv 89%

Intel IvyBridge-EP (2.2GHz, 10 cores/chip)

Intel Xeon Phi (1.05GHz, 60 cores/chip)

163

Scaling behavior inside socket (IvyBridge-EP)

Routine Time [s]
Memory Bandwidth

[MB/s] Data Volume [GB]

waxby 1 2,33 40464 93

waxby 2 2,37 39919 94

waxby 3 2,4 40545 96

ddot 1 0,72 46886 34

ddot 2 1,4 46444 64

spmv 33,84 45964 1555

HPM measurement

with LIKWID

instrumentation

on socket level

Pattern:

Bandwidth

saturation

164

Routine Socket Node

ddot 6726 14547

waxby 3642 6123

spmv 6374 6320

Total 5973 6531

Scaling to full node (1803)

Routine Socket 1 Socket 2 Total

ddot 44020 47342 91362

waxby 39795 28424 68219

spmv 43109 2863 45972

Performance [GFlops/s]

Memory Bandwidth measured [GB/s]

Pattern: Bad

ccNUMA page

placement

165

Matrix data was not placed. Solution: Add first touch initialization.
#pragma omp parallel for

 for (int i=0; i< local_nrow; i++){

 for (int j=0; j< 27; j++) {

 curvalptr[i*27 + j] = 0.0;

 curindptr[i*27 + j] = 0;

 }

}

Optimization: Apply correct data placement

Routine Socket 1 Socket 2 Total

ddot 46406 48193 94599

waxby 37113 24904 62017

spmv 45822 40935 86757

Node performance: spmv 11692, total 10912

166

Scaling behavior Intel Xeon Phi

134804 MB/s

131803 MB/s

Code is instruction

throughput limited

Pattern: Expensive

Instructions

167

BJDS (Blocked JDS) – data format

Format creation

1. Shift nonzeros in each row to the left

2. Combine chunkHeight (multiple of

vector length, here: 8) rows to one chunk

3. Pad all rows in chunk to the same length

4. Store matrix chunk by chunk and jagged-

diagonal-wise within chunk

Data arrays

 double val[]

 unsigned int col[]

 unsigned int chunkStart[]

168

Optimized spmv data structure on Xeon Phi

Pattern: Bandwidth saturation

EMPLOYING THE ECM MODEL ON

STENCIL KERNELS

170

2D Jacobi Stencil: Layer condition

171

J2D multicore chip scaling

172

for(int k=2; k<=N-1; k++){

 for (int j=2; j<=N-1; j++){

 for (int i=2; i<=N-1; i++){

 d = 0.25*(d1[k][j][i] + d1[k][j-1][i]

 + d1[k-1][j][i] + d1[k-1][j-1][i]);

 u1[k][j][i] = u1[k][j][i] + (dth/d)

 (c1(xx[k][j][i]-xx[k][j][i-1])

 + c2*(xx[k][j][i+1]-xx[k][j][i-2])

 + c1*(xy[k][j][i]-xy[k][j-1][i])

 + c2*(xy[k][j+1][i]-xy[k][j-2][i])

 + c1*(xz[k][j][i]-xz[k-1][j][i])

 + c2*(xz[k+1][j][i]-xz[k-2][j][i]));

}}}}

uxx stencil from earthquake propagation code

Expensive

Divide!

vdivpd: 42 cycles throughput in double precision (SNB)

What about single precision?

173

Employing the Intel IACA tool for L1 throughput estimate.

Version ECM model prediction

DP

SP

DP noDIV

uxx kernel ECM model

{84 || 38 | 20 | 20 | 26}cy
{45 || 38 | 20 | 20 | 26}cy

{41|| 38 | 20 | 20 | 26}cy

{84 \ 84 \ 84 \104}cy

{45 \ 58 \ 78 \104}cy

{41 \ 58 \ 78 \104}cy

Prediction for in Memory data set:

1. SP is twice as fast as DP

2. All variants saturate at 4 cores

3. The presence of the DIV in DP makes no difference

174

Comparison model vs. measurement

175

• ECM model allows to predict upper limit for benefits from

temporal blocking for the L3 cache:

 Removes L3-MEM transfer time of 26cy

 24% speedup in DP (single core)

 33% speedup in SP (single core)

• Next bottleneck is the divide (DP) and L3 transfers (SP).

• True benefit: Both are core-local and therefore scalable.

• Expected performance in DP on chip level 2000 MLUP/s instead

of 800 MLUPS/s (even with DIV)

uxx kernel: Optimization opportunities

