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There is no alternative to knowing what is going on 

between your code and the hardware 

 

Without performance modeling, 

optimizing code is like stumbling in the dark 

The Rules™ 
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Time Topic 

8:30 – 10:00 Intro / Single-Core Performance 

10:00 – 10:30 Coffee break 

10:30 – 12:00 Node Performance / Performance Tools 

12:00 – 14:00 Lunch 

14:00 – 15:30 Performance Engineering Process 

15:30 – 16:00 Coffee break 

16:00 – 17:30 Performance Modeling / Case Studies 

Schedule 



WARMUP: 

PERFORMANCE QUIZ 
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 What is a “write-allocate” (a.k.a. read for ownership)? 

 

 

 

 What is Amdahl’s Law? 

 

 

 

 What is the Roofline Model? 

 

 

 

Quiz 

Sp =
T(1)

T(N)
=

1

s+ 1-s
N

A: Many cache architectures allocate a CL on a store miss. 

1 W. Schönauer: Scientific Supercomputing: 

Architecture and Use of Shared and Distributed 

Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore 

Computers. UCB Technical Report No. UCB/EECS-

2008-164. PhD thesis (2008) 

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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 How many cycles does a double-precision ADD/MULT/DIV take? 

 

 

 Do you know the STREAM benchmarks? 

 

 

 What is SIMD vectorization? 

 

 

 What is ccNUMA? 

 

Quiz cont. 

A: Intel IvyBridge, ADD 3 cycles, MULT 5 

cycles , DIV 21 cycles 

A: Defacto standard HPC benchmark 

for (memory) bandwidth.  

A
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A: Single instruction multiple data. 

Data parallel execution units. 
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Where it all started: Stored Program Computer 

  

 Provide improvements for relevant software 

 What are the technical opportunities? 

 Economical concerns 

 Multi-way special purpose 

EDSAC 1949 

Maurice Wilkes, Cambridge 

C
P

U
 

Memory 

Control 

 Unit 

Arithmetic 

Logical 

 Unit 

Input Output 

Architect’s view: 

Make the common case fast ! 
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Common lore: Efficiency is the fraction of  peak performance you 

reach! 

Excursion in memory bandwidth 

Some thoughts on efficiency … 

Example: STREAM triad (A(:)= B(:)+C(:)*d) with data not fitting into 

cache. 

 

Intel Xeon X5482 (Harpertown 3.2 GHz):  553 Mflops/s (8 cores) 

Efficiency 0.54% of peak 

 

Intel Xeon E5-2680 (SandyBridge EP 2.7 GHz) 4357 Mflops/s (16 cores) 

Efficiency  1.2% of peak 

 

 

What can we do about it? 

 

 

 Nothing! 
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Reality:  This code is bound by main memory bandwidth. 

 

HPT  6.6 GB/s (8.8 GB/s with WA) 

 

SNB  52.3 GB/s (69.6 GB/s with WA) 

 

In both cases this is near 100% of achievable memory bandwidth. 

 

Excursion in memory bandwidth 

A better way to think about efficiency 

Efficiency increase: None ! 

Architecture improvement: 

8x 

To think about efficiency you should focus on the 

utilization of the relevant resource! 
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Notions of work: 

 

• Application Work 

• Flops 

• LUPS 

• VUPS 

 

• Processor Work 

• Instructions 

• Data Volume 

 

 

 

 

 

 

Hardware-Software Co-Design? 

From algorithm to execution 

Algorithm 

Programming language 

Machine code 

Compiler 
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Consider the following code: 

 
#pragma omp parallel private(j) 

{ 

for (int j=0; j<niter; j++) { 

#pragma omp for 

   for (int i=0; i<size; i++) { 

      a[i] = b[i] + c[i] * d[i]; 

   } 

} 

}    

Example: Threaded vector triad in C 

Setup: 

32 threads running on a dual 

socket 8-core SandyBridge-EP 

gcc  4.7.0 

/* global synchronization */ 

Every single synchronization in this setup costs in the order 

of 60000 cycles !  
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Such an approach is not portable … 

 

Hardware issues frequently change … 

 

Those nasty hardware details are too difficult to learn for the 

average programmer … 

 

Why hardware should not be exposed 

Important fundamental concepts are stable and 

portable  (ILP, SIMD, memory organization). 

The basic principals are simple to understand 

and every programmer should know them. 
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Approaches to performance optimization 

Trial and error Blind data driven 

Automated expert 

tools Highly skilled experts 

Highly complex 

Problem centric 

Tool centric 
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1. Instruction execution 

Primary resource of the processor. 

 

2. Data transfer bandwidth 

Data transfers as a consequence of instruction execution. 

Focus on resource utilization 

What is the limiting resource? 

Do you fully utilize available resources? 
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• Reduce computational work 

• Reduce data volume (over slow data paths) 

 

• Make use of parallel resources 

• Load balancing 

• Serial fraction 

 

• Identify relevant bottleneck(s) 

• Eliminate bottleneck 

• Increase resource utilization 

 

Final Goal: Fully exploit offered resources for your specific code! 

What needs to be done on one slide 



HARDWARE OPTIMIZATIONS FOR 

SINGLE-CORE EXECUTION 

• ILP 

• SIMD 

• SMT 

• Memory hierarchy 
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Common technologies 

 Instruction Level Parallelism (ILP) 

 Instruction pipelining 

 Superscalar execution 

 Out-of-order execution 

 

 Memory Hierarchy 

 

 Branch Prediction Unit, Hardware Prefetching 

 

 Single Instruction Multiple Data (SIMD) 

 

 Simultaneous Multithreading (SMT)  

Cycle 

Stages 

Bubbles 
Wind-up 

Wind-down 

Scheduler 

Pipeline latency 

Caches 

Temporal locality Cache-line 

Write allocate 

Speculative execution 

Lanes Register width 

Packed 
Scalar 

Hazard 

CPI 
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Multi-Core: Intel Xeon 2600 (2012) 

 Xeon 2600 “Sandy Bridge EP”: 

8 cores running at 2.7 GHz (max 3.2 GHz)   

 

 Simultaneous Multithreading 

 reports as 16-way chip 

 

 2.3 Billion Transistors / 32 nm 

 

 Die size: 435 mm2  

 

2-socket server 
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General-purpose cache based microprocessor 

core 

 Implements “Stored 

Program Computer” 

concept (Turing 1936) 

 Similar designs on all 

modern systems 

 

 (Still) multiple potential 

bottlenecks 

Stored-program computer 

Modern CPU core 
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Pipelining of arithmetic/functional units  

 Idea: 
 Split complex instruction into several simple / fast steps (stages) 

 Each step takes the same amount of time, e.g. a single cycle 

 Execute different steps on different instructions at the same time (in 
parallel) 

 
 Allows for shorter cycle times (simpler logic circuits), e.g.:  
 floating point multiplication takes 5 cycles, but  

 processor can work on 5 different multiplications simultaneously 

 one result at each cycle after the pipeline is full 
 

 Drawback:  
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps) 

 Efficient use of pipelines requires large number of independent 
instructions  instruction level parallelism 

 Requires complex instruction scheduling by compiler/hardware – 
software-pipelining / out-of-order 

 
 Pipelining is widely used in modern computer architectures 
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5-stage Multiplication-Pipeline: 

A(i)=B(i)*C(i) ; i=1,...,N 

Wind-up/-down phases: Empty pipeline stages 

First result is available after 5 cycles (=latency of pipeline)! 



22 

Pipelining: The Instruction pipeline 

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps: 

Fetch Instruction 

from L1I 

Decode  

instruction 

Execute 

Instruction 

Hardware Pipelining on processor (all units can run concurrently): 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

t 

… 

 Branches can stall this pipeline! (Speculative Execution, Predication) 

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline) 

1 

2 

3 

4 
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 Multiple units enable use of Instrucion Level Parallelism (ILP): 

Instruction stream is “parallelized” on the fly 

 

 

 

 

 

 

 

 

 

 Issuing m concurrent instructions per cycle: m-way superscalar 

 Modern processors are 3- to 6-way superscalar &  

can perform 2 or 4 floating point operations per cycles 

Superscalar Processors – Instruction Level 

Parallelism 

Fetch Instruction 4 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 3 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 5 

from L1I 

Decode  

Instruction 5 

Decode  

Instruction 9 

Execute 

Instruction 5 

Fetch Instruction 9 

from L1I 

Fetch Instruction 13 

from L1I 

4-way 

„superscalar“ 

t 
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Core details: Simultaneous multi-threading 

(SMT) 
S

ta
n
d
a
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o
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2
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a
y
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M
T
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Single Instruction Multiple Data (SIMD) allows the concurrent execution of 

the same operation on “wide” registers. 

 SSE: register width = 128 Bit  2 DP floating point operands  

 AVX: register width = 256 Bit  4 DP floating point operands 

Adding two registers holding double precision floating point operands  

 

Core details: SIMD processing 

A
[0

] 
A
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A
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C
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C
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C
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A
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B
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] 

C
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64 Bit 

256 Bit 

+ + 

+ 

+ 

+ 

R0 R1 R2 R0 R1 R2 

Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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SIMD processing – Basics  

Steps (done by the compiler) for “SIMD processing” 

for(int i=0; i<n;i++) 

 C[i]=A[i]+B[i]; 

for(int i=0; i<n;i+=4){ 

  C[i]  =A[i]  +B[i]; 

 C[i+1]=A[i+1]+B[i+1]; 

 C[i+2]=A[i+2]+B[i+2]; 

 C[i+3]=A[i+3]+B[i+3];} 

//remainder loop handling 

LABEL1:  

 VLOAD R0  A[i] 

 VLOAD R1  B[i] 

 V64ADD[R0,R1]  R2 

 VSTORE R2  C[i] 

 ii+4 

 i<(n-4)? JMP LABEL1  

//remainder loop handling 

“Loop unrolling” 

Load 256 Bits starting from address of A[i] to 

register R0 

Add the corresponding 64 Bit entries in  R0 and 

R1 and store the 4 results to R2 

Store R2 (256 Bit) to address  

starting at C[i] 
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SIMD processing – Basics  

No SIMD vectorization  for loops with data dependencies: 

 

 

 

“Pointer aliasing” may prevent  SIMDfication 

 

 

 

C/C++ allows that A  &C[-1] and B  &C[-2] 

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD 

If “pointer aliasing” is not used, tell it to the compiler: 

–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc) 

restrict keyword (C only!): 

 

 

for(int i=0; i<n;i++) 

 A[i]=A[i-1]*s; 

void f(double *A, double *B, double *C, int n) { 

 for(int i=0; i<n; ++i)   

    C[i] = A[i] + B[i]; 

} 

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…} 
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Why and how? 

Why check the assembly code? 

 Sometimes the only way to make sure the compiler  “did the right 

thing” 

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads 

& Stores may still be scalar!  

 Get the assembler code (Intel compiler): 

 icc –S –O3  -xHost  triad.c  -o a.out 

 Disassemble Executable: 

    objdump –d  ./a.out | less 

 

The x86 ISA is documented in: 

Intel Software Development Manual (SDM) 2A and 2B 

AMD64 Architecture Programmer's Manual Vol. 1-5 
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Basics of the x86-64 ISA 

 Instructions have 0 to 2 operands 

 Operands can be registers, memory references or immediates  

 Opcodes (binary representation of instructions) vary from 1 to 17 bytes 

 There are two syntax forms: Intel (left)  and AT&T (right) 

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT 

 C:  A[i]  equivalent to  *(A+i)  (a pointer has a type: A+i*8) 

movaps [rdi + rax*8+48], xmm3 

add rax, 8 

js 1b 

401b9f: 0f 29 5c c7 30     movaps %xmm3,0x30(%rdi,%rax,8) 

401ba4: 48 83 c0 08        add    $0x8,%rax 

401ba8: 78 a6              js     401b50 <triad_asm+0x4b> 

 

movaps    %xmm4, 48(%rdi,%rax,8)  

addq      $8, %rax 

js        ..B1.4  
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Basics of the x86-64 ISA 

16 general Purpose Registers (64bit):   

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15 

alias with eight  32 bit register set: 

eax, ebx, ecx, edx, esi, edi, esp, ebp 

 

Floating Point SIMD Registers: 

xmm0-xmm15  SSE (128bit)   alias with 256-bit registers 

ymm0-ymm15  AVX (256bit) 

 

SIMD instructions are distinguished by: 

AVX (VEX) prefix:   v 

Operation:    mul, add, mov 

Modifier:   nontemporal (nt), unaligned (u), aligned (a), high (h) 

Width:    scalar (s), packed (p) 

Data type:   single (s),  double  (d) 
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Case Study: Simplest code for the summation of the 

elements of a vector (single precision) 

float sum = 0.0; 

 

for (int i=0; i<size; i++){ 

    sum += data[i]; 

} 

 

 

Instruction code: 

401d08:   f3 0f 58 04 82          addss  xmm0,[rdx + rax * 4] 

401d0d:   48 83 c0 01             add    rax,1 

401d11:   39 c7                   cmp    edi,eax 

401d13:   77 f3                   ja     401d08 

 

Instruction 

address 
Opcodes Assembly 

code 

To get  object code use 
objdump –d on object file or 

executable or compile with -S 

AT&T syntax: 
addss 0(%rdx,%rax,4),%xmm0 

(final sum 

across xmm0 

omitted) 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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How does data travel from memory to the CPU and back? 

 

Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 

MISS: Load or store instruction does 

not find data in a cache level 

 CL transfer required 

 

 

Example: Array copy A(:)=C(:) 
 

 

Registers and caches: 

Data transfers in a memory hierarchy 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 
evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

C(:) A(:) 
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Recap: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)= C(:) 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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• Promote temporal and spatial locality 

 

• Enable packed (block wise) load/store of data 

 

• Memory locality (placement) 

 

• Avoid false cache line sharing 

 

• Access data in long streams to enable efficient latency hiding 

 

Above requirements may collide with object oriented programming 

paradigm:   array of structures   vs   structure of arrays 

Consequences for  data structure layout 
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• All efforts are targeted on increasing instruction throughput 

• Every hardware optimization puts an assumption against the 

executed software 

• One can distinguish transparent and explicit solutions 

 

• Common technologies: 

• Instruction level parallelism (ILP) 

• Data parallel execution (SIMD), does not affect instruction 

throughput 

• Exploit temporal data access locality (Caches) 

• Hide data access latencies (Prefetching) 

• Avoid hazards 

Conclusions about core architectures 



PRELUDE: 

SCALABILITY 4 THE WIN! 
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Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 

Scalability Myth: Code scalability is the key issue 
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Scalability Myth: Code scalability is the key issue 

Prepared for  

the highly  

parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

 

Changing only the 

compile options makes 

this code scalable on an 

8-core chip 

–O3 -xAVX 
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Scalability Myth: Code scalability is the key issue 
!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

Single core/socket efficiency  

is key issue! 

Upper limit from simple 

performance model: 

35 GB/s & 24 Byte/update 



TOPOLOGY OF MULTI-CORE / 

MULTI-SOCKET SYSTEMS 

• Chip Topology 

• Node Topology 

• Memory Organisation 
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Timeline of technology developments 

Deep pipeline  

High clock 

SSE2 

Dual Core 

Quad Core 

3-channel, 

DDR3 on-chip 

ccNUMA 

Octa-core 

AVX 

6C 

12C 
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• Core: Unit reading and executing instruction stream 

 

• Chip: One integrated circuit die 

 

• Socket/Package: May consist of multiple chips 

 

 

• Memory Hierarchy: 

• Private caches 

• Shared caches 

• ccNUMA: Replicated memory interfaces 

 

Building blocks for multi-core compute nodes 
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Chip Topologies 

SandyBridge-EP, 8C, 32nm 435mm2 

Westmere-EP, 6C, 32nm 248mm2 

 Separation into core and uncore 

 Memory hierarchy holding together 

the chip design 

 L1 (L2) private caches 

 L3 cache shared (LLC) 

 

 Serialized LLC  not scalable 

 

 Segmented ring bus, distributed 

LLC  scalable design 
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From UMA to ccNUMA  

Memory architectures 

 

Today: Dual-socket Intel (Westmere,…) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

 

 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: Where 

does my data finally end up? 
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ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

ccNUMA 
4 chips, two sockets, 8 threads per ccNUMA domain 

 


S

T
R

E
A

M
 t

ri
a

d
 p

e
rf

o
rm

a
n

c
e

 [
M

B
/s

] 
Memory node 

C
P

U
 n

o
d

e
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"Golden Rule" of ccNUMA: 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 

Caveat: "touch" means "write", not "allocate" 

Example:  
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

It is sufficient to touch a single item to map the entire page 

ccNUMA default memory locality 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Parallel init: Correct parallel initialization 

LD0: Force data into LD0 via  numactl –m 0 

Interleaved:  numactl --interleave <LD range> 

The curse and blessing of interleaved placement:  
OpenMP STREAM on a Cray XE6 Interlagos node 
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The curse and blessing of interleaved placement:  

same on 4-socket (48 core) Magny Cours node 

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

# NUMA domains (6 threads per domain) 

B
a
n

d
w

id
th

 [
M

b
y
te

/s
] 



50 

Intel IvyBridge-EP IBM Power7 

Number of cores ncore 12 8 

FP instructions per cycle F 2 2 (DP) / 1 (SP) 

FP ops per instructions S 4 (DP) / 8 (SP) 2 (DP) / 4 (SP) - FMA 

Clock speed [GHz] n 2.7 3.7 

Performance [GF/s]  P 259 (DP) / 518 (SP) 236 (DP/SP) 

The driving forces behind performance 

   P = ncore * F * S * n 
 

But: P=5.4 GF/s or 14.8 GF/s(dp) for serial, non-SIMD code  

TOP500 rank 1 (1996) 

Intel IvyBridge-EP IBM  Power7 
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 Shared-memory (intra-node) 

 Good old MPI (current standard: 3.0) 

 OpenMP (current standard: 4.0) 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk+, OpenCL, StarSs,… you name it 

 “Accelerated” 

 OpenMP 4.0 

 CUDA 

 OpenCL 

 OpenACC 

 Distributed-memory (inter-node) 

 MPI (current standard: 3.0) 

 PVM (gone) 

 Hybrid 

 Pure MPI + X, X == <you name it> 

Parallel programming models 

on modern compute nodes 

All models require 

awareness of topology 

and affinity issues for 

getting best 

performance out of the 

machine! 
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 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 

Parallel programming models: 
Pure MPI 
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 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 

Parallel programming models: 
Pure threading on the node 
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Parallel programming models: Lots of choices 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned “round 

robin” across cores in node 

 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 



56 

Modern computer architecture has a rich “topology” 
 
Node-level hardware parallelism takes many forms 

 Sockets/devices – CPU: 1-8, GPGPU: 1-6 

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s) 

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)  

 

Exploiting performance: parallelism + bottleneck awareness 

 “High Performance Computing” == computing at a bottleneck 

 
Performance of programs is sensitive to architecture 

 Topology/affinity influences overheads of popular programming models 

 Standards do not contain (many) topology-aware features 

› Things are starting to improve slowly (MPI 3.0, OpenMP 4.0) 

 Apart from overheads, performance features are largely independent of the 
programming model 

 

 

 

Conclusions about Node Topologies 



INTERLUDE: 

A GLANCE AT CURRENT 

ACCELERATOR TECHNOLOGY 
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NVIDIA Kepler GK110 Block Diagram 

Architecture 

 7.1B Transistors 

 15 “SMX” units 

 192 (SP) “cores” each 

 > 1 TFLOP DP peak 

 1.5 MB L2 Cache 

 384-bit GDDR5 

 PCI Express Gen3 

 

 3:1 SP:DP performance 

 

© NVIDIA Corp. Used with permission. 
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Intel Xeon Phi block diagram 

Architecture 

 3B Transistors 

 60+ cores 

 512 bit SIMD 

 ≈ 1 TFLOP DP 

peak 

 0.5 MB  

L2/core 

 GDDR5 

 

 2:1 SP:DP 

performance 

 

64 byte/cy 
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Comparing accelerators 

Intel Xeon Phi 

 60+ IA32 cores each with 512 Bit SIMD  

FMA unit  480/960 SIMD DP/SP tracks 

 

 Clock Speed: ~1000 MHz 

 Transistor count: ~3 B (22nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1 TF/s 

 Memory BW: ~250 GB/s (GDDR5) 

 

 Threads to execute: 60-240+ 

 Programming: 

Fortran/C/C++ +OpenMP + SIMD 

 

 TOP7: “Stampede” at Texas Center  

for Advanced Computing 

NVIDIA Kepler K20 

 15 SMX units each with  

192 “cores”   

960/2880 DP/SP “cores”  

 Clock Speed: ~700 MHz 

 Transistor count: 7.1 B (28nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1.3 TF/s 

 Memory BW:  ~ 250 GB/s (GDDR5) 

 

 Threads to execute: 10,000+ 

 Programming:  

CUDA, OpenCL, (OpenACC) 

 

 TOP1: “Titan” at Oak Ridge National 

Laboratory 

TOP500 

rankings 

Nov 2012  
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-10x 

2. Memory Bandwidth: 1-5x 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA K20x  

(“Kepler”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s 

Threads@STREAM <4 <16 >8000? 

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s 

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 



MULTICORE PERFORMANCE AND 

TOOLS 

PROBING NODE TOPOLOGY 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 hwloc is another option 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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LIKWID tool suite: 

 

Like 

I 

Knew 

What 

I’m 

Doing 

 

Open source tool collection  

(developed at RRZE): 

http://code.google.com/p/likwid 

How do we figure out the node topology? 

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite for 

x86 multicore environments.  PSTI2010, Sep 13-

16, 2010, San Diego, CA 

http://arxiv.org/abs/1004.4431 
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Likwid Tool Suite 

 Command line tools for Linux: 

 easy to install  

 works with standard linux kernel 

 simple and clear to use  

 supports Intel and AMD CPUs 

 

 

 Current tools: 

 likwid-topology: Print thread and cache topology 

 likwid-pin: Pin threaded application without touching code 

 likwid-perfctr: Measure performance counters 

 likwid-powermeter: Query turbo mode steps. Measure ETS. 

 likwid-bench: Low-level bandwidth benchmark generator tool 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 
------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 

************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 



ENFORCING THREAD/PROCESS-

CORE AFFINITY UNDER THE LINUX 

OS 

 Standard tools and OS affinity facilities under 

program control 

 likwid-pin 
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Example: STREAM benchmark on 16-core Sandy Bridge: 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

first socket first) 

 There are several reasons for caring 

about affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 

 Benchmark how code reacts to variations 
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 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity() 

Windows:  SetThreadAffinityMask() 

 OpenMPI: hwloc library 

 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 All modern compilers with OpenMP support 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 OpenMP 4.0 

 Affinity awareness in MPI libraries: 

› OpenMPI 

› Intel MPI 

› … 

More thread/Process-core affinity (“pinning”) options 
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 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Based on combination of wrapper tool together with overloaded pthread library 

 binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 Supports logical core numbering within a node and within an existing CPU set 

 Useful for running inside CPU sets defined by someone else, e.g., the 

MPI start mechanism or a batch system 

 

 Usage examples: 

 likwid-pin -c 0,2,4-6  ./myApp parameters  

 likwid-pin –c S0:0-3 ./myApp parameters 

Likwid-pin 
Overview 
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Running the STREAM benchmark with likwid-pin: 

Likwid-pin 
Example: Intel OpenMP 

   

  $ likwid-pin -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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 Core numbering may vary from system to system even with identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-pin 

 Alternatively, likwid-pin can abstract this variation and provide a purely logical 

numbering (physical cores first) 

 

 

 

 

 

 

 

 

 Across all cores in the node: 

likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 

likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Likwid-pin 
Using logical core numbering 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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 Possible unit prefixes 

 

N  node 

 

 

S  socket 

 

 

 

M  NUMA domain 

 

 

C  outer level cache group 

Likwid-pin 
Using logical core numbering 

Chipset 

Memory 

Default if –c is not 

specified! 
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 Expressions are more powerful in situations where the pin mask  

would be very long or clumsy 

 

Compact pinning: 
likwid-pin -c E:<thread domain>:<number of threads>\ 

    [:<chunk size>:<stride>] ... 

 

Scattered pinning across all domains of the designated type : 

likwid-pin -c <domaintype>:scatter 

 

 Examples: 
likwid-pin -c E:N:8 ...       # equivalent to N:0-7 

likwid-pin -c E:N:120:2:4 ... # Phi: 120 threads,2 per core 

 Scatter across all NUMA domains: 
likwid-pin -c M:scatter 

Advanced options for pinning: Expressions 
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 KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>] 

Intel KMP_AFFINITY environment variable 

 modifier 

 granularity=<specifier> takes the 

following specifiers: fine, thread, 

and core 

 norespect 

 noverbose 

 proclist={<proc-list>} 

 respect 

 verbose 

 

 Default: 

noverbose,respect,granularity=core  

 

 type  (required) 

 compact 

 disabled 

 explicit  (GOMP_CPU_AFFINITY) 

 none 

 scatter 

 KMP_AFFINITY=verbose,none  to list machine topology map 

OS processor IDs 

Respect an OS 

affinity  mask in place 
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 KMP_AFFINITY=granularity=fine,compact 

 

 

 

 

 

 

 KMP_AFFINITY=granularity=fine,scatter 

 

Intel KMP_AFFINITY examples 

Package means 

chip/socket 

(c) Intel  

(c) Intel  
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GNU GOMP_AFFINITY 

 GOMP_AFFINITY=3,0-2  used with 6 threads 

 

 

 

 

 

 

 

 

 

 

 

 Always operates with OS processor IDs 

Round robin 

oversubscription 

(c) Intel  



PROBING PERFORMANCE 

BEHAVIOR 

likwid-perfctr 
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1. Runtime profile / Call graph (gprof) 

2. Instrument those parts which consume a significant part of 

runtime 

3. Find performance signatures 

 

Possible signatures: 

 Bandwidth saturation 

 Instruction throughput limitation (real or language-induced) 

 Latency impact (irregular data access, high branch ratio) 

 Load imbalance 

 ccNUMA issues (data access across ccNUMA domains) 

 Pathologic cases (false cacheline sharing, expensive operations) 

 

likwid-perfctr 

Basic approach to performance analysis 
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 How do we find out about the performance properties and requirements 

of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” 

on Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 “Marker” API for starting/stopping  

counters 

 Multiple measurement region  

support 

 Preconfigured and extensible  

metric groups, list with 

likwid-perfctr -a     

 

Probing performance behavior 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  
$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 

Marker API 

 A marker API is available to restrict measurements to code regions 

 The API only turns counters on/off. The configuration of the counters is still done 

by likwid-perfctr 

 Multiple named regions support, accumulation over multiple calls 

 Inclusive and overlapping regions allowed 

#include <likwid.h> 

. . . 

LIKWID_MARKER_INIT;  // must be called from serial region 

#pragma omp parallel 

{ 

  LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads 

} 

. . . 

LIKWID_MARKER_START(“Compute”); 

. . . 

LIKWID_MARKER_STOP(“Compute”); 

. . . 

LIKWID_MARKER_START(“Postprocess”); 

. . . 

LIKWID_MARKER_STOP(“Postprocess”); 

. . . 

LIKWID_MARKER_CLOSE;    // must be called from serial region 

 

Activate macros with  
-DLIKWID_PERFMON 



PATTERN-DRIVEN  

PERFORMANCE ENGINEERING 

PROCESS 

 
 

Basics of Benchmarking 

Performance Patterns 

Signatures 
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1. Define relevant test cases 

2. Establish a sensible performance metric 

3. Acquire a runtime profile (sequential) 

4. Identify hot kernels (Hopefully there are any!) 

5. Carry out optimization process for each kernel 

 

Motivation: 

• Understand observed performance 

• Learn about code characteristics and machine capabilities 

• Deliberately decide on optimizations 

 

Basics of Optimization 

Iteratively 
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Preparation 

 Reliable timing (Minimum time which can be measured?) 

 Document code generation (Flags, Compiler Version) 

 Get exclusive System 

 System state (Clock, Turbo mode, Memory, Caches) 

 Consider to automate runs with a skript (Shell, python, perl) 

Doing 

 Affinity control 

 Check: Is the result reasonable? 

 Is result deterministic and reproducible. 

 Statistics: Mean, Best ?? 

 Basic variants: Thread count, affinity, working set size (Baseline!) 

Best Practices Benchmarking 
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Postprocessing 

 Documentation 

 Try to understand and explain the result 

 Plan variations to gain more information 

 Many things can be better understood if you plot them (gnuplot, 

xmgrace) 

 

Best Practices Benchmarking cont. 
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• A bottleneck is a performance limiting setting 

• Microarchitectures expose numerous bottlenecks 

 

Observation 1: 

Most applications face a single bottleneck at a time! 

 

Observation 2: 

There is a limited number of relevant bottlenecks! 

 

Thinking in Bottlenecks 
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Reduce complexity! 

 

We propose a human driven process to enable a systematic 

way to success! 

 

• Executed by humans.  

• Uses tools by means of data acquisition only. 

 

 

Uses one of the most powerful tools available: 

Process vs. Tool 

Your brain ! 

You are a investigator making sense of what’s going on.  
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Performance Engineering Process: Analysis 

Pattern 

Microbenchmarking 
Hardware/Instruction 

set architecture 

Algorithm/Code 

Analysis 

Application 

Benchmarking 

Step 1 Analysis: Understanding observed performance 

Performance 

patterns are 

typical 

performance 

limiting motifs  

The set of input data indicating 

a pattern is its signature  
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Understand observed performance: Where am I? 

 

Input: 

• Static code analysis 

• HPM data 

• Scaling data set size 

• Scaling number of used cores 

• Microbenchmarking 

 

Performance patterns are typical performance limiting motives.  

The set of input data indicating a pattern is its signature. 

 

 

Performance analysis phase 

Pattern Signature 
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Performance Engineering Process: Modelling 

Pattern 

Performance Model 

Qualitative view 

Quantitative view 

Step 2 Formulate Model: Validate pattern and get quantitative insight. 

Validation Traces/HW metrics 

W
ro

n
g

 p
a

tt
e

rn
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Performance Engineering Process: Optimization 

Optimize for better 

resource utilization 

Eliminate non-

expedient activity 

Pattern 

Performance Model 

Performance 

improves until next 

bottleneck is hit 

Improves 

Performance 

Step 3 Optimization: Improve utilization of offered resources. 
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1. Maximum resource utilization 

2. Hazards 

3. Work related (Application or Processor) 

 

The system offers two basic resources: 

 Execution of instructions (primary) 

 Transferring data (secondary) 

 

 

Performance pattern classification 
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Patterns (I): Botttlenecks & hazards 

Pattern Performance behavior 
Metric signature, LIKWID 

performance group(s) 

Bandwidth saturation 
Saturating speedup across 

cores sharing a data path 

Bandwidth meets BW of suitable 

streaming benchmark (MEM, L3) 

ALU  saturation Throughput at design limit(s) 

Good (low) CPI, integral ratio of 

cycles to specific instruction 

count(s) (FLOPS_*, DATA, CPI) 

Inefficient 

data 

access 

Excess data 

volume 
Simple bandwidth performance 

model much too optimistic 

Low BW utilization / Low cache hit 

ratio, frequent CL evicts or 

replacements (CACHE, DATA, 

MEM) 
Latency-bound 

access 

Micro-architectural 

anomalies 

Large discrepancy from simple 

performance model based on 

LD/ST and arithmetic 

throughput 

Relevant events are very 

hardware-specific, e.g., memory 

aliasing stalls, conflict misses, 

unaligned LD/ST, requeue events 
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Patterns (II): Hazards 

Pattern Performance behavior 
Metric signature, LIKWID 

performance group(s) 

False sharing of cache 

lines 

Large discrepancy from 

performance model in parallel case, 

bad scalability 

Frequent (remote) CL evicts 

(CACHE) 

Bad ccNUMA page 

placement 

Bad or no scaling across NUMA 

domains, performance improves 

with interleaved page placement 

Unbalanced bandwidth on 

memory interfaces / High remote 

traffic (MEM) 

Pipelining issues 
In-core throughput far from design 

limit, performance insensitive to 

data set size 

(Large) integral ratio of cycles to 

specific instruction count(s), bad 

(high) CPI (FLOPS_*, DATA, CPI) 

Control flow issues See above 
High branch rate and branch miss 

ratio (BRANCH) 
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Patterns (III): Work-related 

Pattern Performance behavior 
Metric signature, LIKWID  

performance group(s) 

Load imbalance / serial 

fraction 
Saturating/sub-linear speedup 

Different amount of “work” on the 

cores (FLOPS_*); note that 

instruction count is not reliable! 

Synchronization overhead 

Speedup going down as more cores 

are added / No speedup with small 

problem sizes / Cores busy but low 

FP performance 

Large non-FP instruction count 

(growing with number of cores 

used) / Low CPI (FLOPS_*, CPI) 

Instruction overhead 
Low application performance, good 

scaling across cores, performance 

insensitive to problem size 

Low CPI near theoretical limit / 

Large non-FP instruction count 

(constant vs. number of cores) 

(FLOPS_*, DATA, CPI) 

Code 

composition 

Expensive 

instructions 

Similar to instruction overhead 

Many cycles per instruction (CPI) 

if the problem is large-latency 

arithmetic 

Ineffective 

instructions 

Scalar instructions dominating in 

data-parallel loops (FLOPS_*, 

CPI) 
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Example  rabbitCT 

Result of effort: 

5-6  x  improvement 

against initial parallel C 

code implementation 

 

>50% of peak 

performance (SSE) 
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Optimization without knowledge about bottleneck 
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Where to start 

Look at the code and understand what it is doing! 

 

Scaling runs: 

 Scale #cores inside ccNUMA domain 

 Scale across ccNUMA domains 

 Scale working set size (if possible) 

 

HPM measurements: 

 Memory Bandwidth 

 Instruction decomposition: Arithmetic, data, branch, other 

 SIMD vectorized fraction 

 Data volumes inside memory hierarchy 

 CPI 
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Most frequent patterns  

(seen with scientific computing glasses) 

Data transfer related: 

 Memory bandwidth saturation 

 Bad ccNUMA page placement 

 

Parallelization 

 Load imbalance 

 Serial fraction 

 

Code composition: 

 Instruction overhead 

 Ineffective instructions 

 Expensive instructions 

 

 

Overhead: 

 Synchronization overhead 

 

Excess work: 

 Data volume reduction over 

slow data paths 

 Reduction of algorithmic work 
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Pattern:  Bandwidth Saturation 

1. Perform scaling run inside ccNUMA domain 

2. Measure memory bandwidth with HPM 

3. Compare to micro benchmark with similar data access pattern 

Saturating 

bandwidth 

Scalable 

bandwidth 

Measured bandwidth spmv:  

45964 MB/s 

Synthetic load benchmark: 

47022 MB/s 
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Clearly distinguish between “saturating” and “scalable” 

performance on the chip level 

 

Consequences from the saturation pattern 

saturating 

type 

scalable 

type 
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There is no clear bottleneck for single-core execution 

Code profile for single thread ≠ code profile for multiple threads 

 Single-threaded profiling may be misleading 

 

 

 

Consequences from the saturation pattern 

8 threads 

saturating part scalable part 

runtime 

1 thread 
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Pattern: Load inbalance 

1. Check HPM instruction count distribution across cores 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 
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Example for a load balanced code 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but better 

performance 

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out 
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Pattern: Bad ccNUMA page placement 

1. Benchmark scaling across  ccNUMA domains 

2. Is performance sensitive to interleaved page placement 

3. Measure inter-socket traffic with HPM 
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Pattern: Instruction Overhead 

 

 

Instruction 

decomposition 

Inlining failed Inefficient data 

structures 

Arithmetic FP 12% 21% 

Load/Store 30% 50% 

Branch 24% 10% 

Other 34% 19% 

C++ codes which suffer from overhead (inlining problems, complex 

abstractions) need a lot more overall instructions related to the arithmetic 

instructions 

 Often (but not always) “good” (i.e., low) CPI  

 Low-ish bandwidth 

 Low # of floating-point instructions vs. other instructions 

1. Perform a HPM instruction decomposition analysis 

2. Measure resource utilization 

3. Static code analysis 
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Pattern: Inefficient Instructions 

1. HPM measurement: Relation packed vs. scalar instructions 

2. Static assembly code analysis: Search for scalar loads 

 
+--------------------------------------+-------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    | 

+--------------------------------------+-------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 2.19445e+11 | 1.7674e+11  | 1.76255e+11 | 1.75728e+11 | 1.75578e+11 | 

|        CPU_CLK_UNHALTED_CORE         | 1.4396e+11  | 1.28759e+11 | 1.28846e+11 | 1.28898e+11 | 1.28905e+11 | 

|         CPU_CLK_UNHALTED_REF         | 1.20204e+11 | 1.0895e+11  | 1.09024e+11 | 1.09067e+11 | 1.09074e+11 | 

| FP_COMP_OPS_EXE_SSE_FP_PACKED_DOUBLE | 1.1169e+09  | 1.09639e+09 | 1.09739e+09 | 1.10112e+09 | 1.10033e+09 | 

| FP_COMP_OPS_EXE_SSE_FP_SCALAR_DOUBLE | 3.62746e+10 | 3.45789e+10 | 3.45446e+10 | 3.44553e+10 | 3.44829e+10 | 

|      SIMD_FP_256_PACKED_DOUBLE       |      0      |      0      |      0      |      0      |      0      | +--

------------------------------------+-------------+-------------+-------------+-------------+-------------+ 

Small fraction 

of packed 

instructions 
No AVX 

 There is usually no counter for packed vs scalar (SIMD) loads and 

stores. 

 Also the compiler usually does not distinguish! 

 

Only solution: Inspect code at assembly level. 



112 

Pattern: Synchronization overhead 

sync 

overhead 

grows with # 

of threads 

bandwidth 

scalability 

across 

memory 

interfaces 

1. Performance is decreasing with growing core counts 

2. Performance is sensitive to topology 

3. Static code analysis: Estimate work vs. barrier cost. 
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Thread synchronization overhead on SandyBridge-EP  
Barrier overhead in CPU cycles 

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1 

Shared L3 384 5242 4616 

SMT threads 2509 3726 3399 

Other socket 1375 5959 4909 

Gcc not very competitive 

     Intel compiler 

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1 

Socket 1497 14546 14418 

Node 3401 34667 29788 

Node +SMT 6881 59038 58898 
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Thread synchronization overhead on AMD Interlagos  
Barrier overhead in CPU cycles 

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L2 258 3995 1503 128623 

Shared L3 698 2853 1076 128611 

Same socket 879 2785 1297 128695 

Other socket 940 2740 / 4222 1284 / 1325 128718 

Intel compiler barrier very expensive on Interlagos 

     OpenMP & Cray compiler 

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L3 2272 27916 5981 151939 

Socket 3783 49947 7479 163561 

Node 7663 167646 9526 178892 



115 

Thread synchronization overhead on Intel Xeon Phi  
Barrier overhead in CPU cycles 

SMT1 SMT2 SMT3 SMT4 

One core n/a 1597 2825 3557 

Full chip 10604 12800 15573 18490 

That does not look bad for 240 threads! 

 

Still the pain may be much larger, as more work can be done in 

one cycle on Phi compared to a full Sandy Bridge node 

 

3.75 x cores (16 vs 60) on Phi 

2 x more operations per cycle on Phi 

2.7 x more barrier penalty (cycles) on Phi 

 

                                   7.5 x more work done on Xeon Phi per cycle 

 

One barrier causes  2.7 x 7.5 = 20x more pain . 

2 threads on 

distinct cores: 

1936 
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SpMV kernel: Data set size and thread count 

influence on limiting pattern 

Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

  

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1:     Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across NUMA 

domains 

Pattern: Bandwidth saturation 
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 Case 2:     Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 

Pattern: Work reduction. Less data 

volume over slow data paths 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3:      Small size 

No bandwidth 

bottleneck 
Parallelization 

overhead 

dominates 

Pattern: Synchronization overhead 



“SIMPLE” PERFORMANCE 

MODELING: 

THE ROOFLINE MODEL 

 
 

Loop-based performance modeling: 

Execution vs. data transfer 
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How to perform a instruction throughput analysis on the example of 

Intel’s port based scheduler model. 

Preliminary: Estimating Instruction throughput 

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 

ALU ALU ALU 

FMUL FADD FSHUF 

JUMP 

LOAD LOAD 

AGU AGU 

STORE 

Issue 6 uops 

Retire 4 uops 

SandyBridge 

16b 16b 16b 
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Every new generation provides incremental improvements. 

The OOO microarchitecture is a blend between P6 (Pentium Pro) 

and P4 (Netburst) architectures. 

Preliminary: Estimating Instruction throughput 

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 Port 6 Port 7 

ALU ALU ALU 

FMA FMA FSHUF 

JUMP 

LOAD LOAD 

AGU AGU 

STORE 

Retire 4 uops 

32b 32b 32b 

AGU 

Haswell 

FMUL 

ALU 

JUMP 

Issue 8 uops 
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double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

How many cycles to process one 64byte cacheline? 

Exercise: Estimate performance of triad on 

SandyBridge @3GHz 

64byte  equivalent to 8 scalar iterations or 2 AVX vector iterations. 

 

Cycle 1:  load and ½ store  and mult and  add 

Cycle 2:  load and ½ store 

Cycle 3:  load                                       Answer:  6 cycles                
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double  *A, *B, *C, *D; 

for (int i=0; i<N; i++) { 

   A[i] = B[i] + C[i] * D[i] 

} 

 

Whats the performance in GFlops/s and bandwidth in MBytes/s ? 

Exercise: Estimate performance of triad on 

SandyBridge @3GHz 

One AVX iteration (3 cycles) performs 4x2=8 flops. 

 

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s 

4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s 
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The Roofline Model1,2 

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache (this is not necessarily Ppeak) 

 

2. I = Computational intensity (“work” per byte transferred) over 

the slowest data path utilized (“the bottleneck”) 

 Code balance BC = I -1 

 

3. bS = Applicable peak bandwidth of the slowest data path utilized 

 

 

Expected performance: 

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008) 

[B/s] [F/B] 

P = min(Pmax, I bs) 

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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Example: Vector triad A(:)=B(:)+C(:)*D(:)  

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized) 

 bS = 40 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

  I ∙ bS = 2.0 GF/s (1.2 % of peak performance) 

 

 Ppeak = 173 GFlop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz) 

 Pmax?   Observe LD/ST throughput maximum of 1 AVX Load and ½ 

AVX store per cycle  3 cy / 8 Flops  

    Pmax = 57.6 GFlop/s (33% peak) 

 

 

“Simple” Roofline: The vector triad 

P = min(Pmax, I bs) = min(57.6 , 2.0)GFlop/s = 2.0 GFlop/s 
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A not so simple Roofline example 

Example:     do i=1,N; s=s+a(i); enddo 
in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N 

 

 

ADD peak   

(best possible code) 

no SIMD 

 

3-cycle latency per ADD  

if not unrolled 

 

 

P = 5 Gflop/s 

How do we get 

these? 

 See next! 

I = 1 Flop / 8 byte (in DP) 

86.4 GF/s 

21.6 GF/s 

7.2 GF/s 
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Plain scalar code, no SIMD 

 

 

LOAD r1.0  0 

i  1 

loop:  

  LOAD r2.0  a(i) 

  ADD r1.0  r1.0+r2.0 

  ++i ? loop 

result  r1.0 

 

Applicable peak for the summation loop 

ADD pipes utilization: 

 1/12 of ADD peak 

S
IM

D
 l

a
n

e
s
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Scalar code, 3-way unrolling 

LOAD r1.0  0 

LOAD r2.0  0 

LOAD r3.0  0 

i  1 

loop:  

  LOAD r4.0  a(i) 

  LOAD r5.0  a(i+1) 

  LOAD r6.0  a(i+2) 

  ADD r1.0  r1.0+r4.0 

  ADD r2.0  r2.0+r5.0 

  ADD r3.0  r3.0+r6.0 

  i+=3 ? loop 

result  r1.0+r2.0+r3.0 

 

Applicable peak for the summation loop 

ADD pipes utilization: 

 1/4 of ADD peak 
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SIMD-vectorized, 3-way unrolled 

LOAD [r1.0,…,r1.3]  [0,0] 

LOAD [r2.0,…,r2.3]  [0,0] 

LOAD [r3.0,…,r3.3]  [0,0] 

i  1 

loop:  

  LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)] 

  LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)] 

  LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)] 

  ADD r1  r1+r4 

  ADD r2  r2+r5 

  ADD r3  r3+r6 

  i+=12 ? loop 

result  r1.0+r1.1+...+r3.2+r3.3 

 

Applicable peak for the summation loop 

ADD pipes utilization: 

 ADD peak 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 3 cy (ADD) 

4-way SIMD, 8 cores 

measurement 

Maximum memory 

bandwidth 40 GB/s 

Memory-bound @ large N! 

Pmax = 5 GF/s 

7.2 … 86.4 GF/s 

5 GF/s 
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The roofline formalism is based on some (crucial) assumptions: 

 There is a clear concept of “work” vs. “traffic” 

› “work” = flops, updates, iterations… 

› “traffic” = required data to do “work” 

 Attainable bandwidth of code = input parameter! Determine 

effective bandwidth via simple streaming benchmarks to model more 

complex kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be 

infinitely fast 

 If data transfer is the limiting factor, the bandwidth of the slowest 

data path can be utilized to 100% (“saturation”) 

 Latency effects are ignored, i.e. perfect streaming mode 

Assumptions for the Roofline Model 
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Typical code optimizations in the Roofline Model 

1. Hit the BW bottleneck by good 

serial code 

 

2. Increase intensity to make better 

use of BW bottleneck 

 

3. Increase intensity and go from 

memory-bound to core-bound 

 

4. Hit the core bottleneck by good 

serial code 

 

5. Shift Pmax by accessing 

additional hardware features or 

using a different 

algorithm/implementation 
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Saturation effects in multicore chips are not explained 

 Reason: “saturation assumption”  

 Cache line transfers and core execution do sometimes not overlap 

perfectly 

 Only increased “pressure” on the memory 

interface can saturate the bus 

 need more cores! 

 

ECM model gives more insight 

Shortcomings of the roofline model 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 
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Where the roofline model fails 

In memory 

performance 

below saturation 

point In cache 

situations 
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ECM = “Execution-Cache-Memory” 
 

Assumptions:  

Single-core execution time is composed of 

1. In-core execution 

2. Data transfers in the memory hierarchy 

Data transfers may or may not overlap with 

each other or with in-core execution 

Scaling is linear until the relevant bottleneck 

is reached  

Input: 

Same as for Roofline 

+ data transfer times in hierarchy 

ECM Model 
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ECM = “Execution-Cache-Memory” 

 

• Analytical performance model 

 

• Focus on resource utilization 

• Instruction Execution 

• Data Movement 

 

• Lightspeed assumption: 

• Optimal instruction throughput 

• Always bandwidth bound 

Introduction to ECM model 

The RULES™ 

1. Single-core execution time is 

composed of 

1. In-core execution 

2. Data transfers in the memory 

hierarchy 

2. All timings are in units of one CL 

3. LOADS in the L1 cache do not 

overlap with any other data 

transfer 

4. Scaling across cores is linear 

until a shared bottleneck is hit 
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naive kahan 

loads 2 2 

mul 1 1 

add 1 4 

Vector dot product: Code characteristics 

double sum = 0.0; 

 

for (int i=0; i<N; i++){ 

   sum += a[i]*b[i]; 

} 

 

double sum = 0.0; 

double c = 0.0; 

for (int i=0; i<N; i++) { 

    double prod = a[i]*b[i]; 

    double y = prod-c; 

    double t = sum+y; 

    c = (t-sum)-y; 

    sum = t; 

} 

Naive Kahan 
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SandyBridge-EP IvyBridge-EP Haswell-EP 

Type Xeon E5-2680 Xeon E5-2690 v2 Xeon E5-2695 v3 

# cores 8 cores @ 2.7GHz 10 cores @ 3.0GHz 14 cores @ 2.3GHz 

Load / Store 2 L + 1 S per cy 2 L + 1 S per cy 2 L + 1 S per cy 

L1 Port Width 16b 16b 32b 

Add 1 per cy 1 per cy 1 per cy 

Mul 1 per cy 1 per cy 2 per cy 

FMA n/a n/a 2 per cy 

SIMD width 32b 32b 32b 

Machine Model 

SandyBridge-EP IvyBridge-EP Haswell-EP 

L1 – L2 32b/cy  2cy/CL 32b/cy  2cy/CL 64b/cy  1cy/CL 

L2 – L3 32b/cy 2cy/CL 32b/cy 2cy/CL 32b/cy 2cy/CL 

L3 - MEM 4.0cy/CL 3.5cy/CL 2.5cy/CL 
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Shorthand notation: 

 

 

 

 

Contributions: 

 

 

Kahan (AVX) 

 

Prediction 

 

 

Example Kahan (AVX) on IvyBridge-EP 

16b SSE 

64b 

32b AVX 

4cy 

2cy 
Tcore = max(TnOL,TOL )

TECM = max(TnOL +Tdata,TOL )

{TOL ||TnOL |TL1/L2 |TL2/L3 |TL3/MEM }

{8 || 4 | 4 | 4}cy

{8 \ 8 \12}cy
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Model 

Naïve  (AVX):                                  

Kahan (scalar):                                  

Kahan (AVX):                                 

ECM Model IvyBridge-EP 

{4 || 4 | 4 | 4 | 7}cy

{32 || 8 | 4 | 4 | 7}cy
{8 || 4 | 4 | 4 | 7}cy

{4 \ 8 \12 \19}cy

{32 \ 32 \ 32 \ 32}cy
{8 \ 8 \12 \19}cy

Measurement 

Naïve (AVX): 

Kahan (scalar): 

Kahan (AVX):  

 

4.1 \ 8.7 \13.0 \ 24.9cy

8.4 \10.2 \13.7 \ 23.8cy
32.5 \ 32.4 \ 3248 \ 37.9cy



145 

Identify relevant bandwidth bottlenecks 

 L3 cache 

 Memory interface 

Scale single-thread performance until first bottleneck is hit: 

Multicore scaling in the ECM model 

. . . Example: 

Scalable L3  

on Sandy 

Bridge 

P(t)=min(tP0,Proof), with Proof=min(Pmax,l bS) 
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Model 

Naïve  (AVX):                                  

Kahan (scalar):                                  

Kahan (AVX):                                 

ECM Model IvyBridge-EP 

{4 || 4 | 4 | 4 | 7}cy

{32 || 8 | 4 | 4 | 7}cy
{8 || 4 | 4 | 4 | 7}cy

{4 \ 8 \12 \19}cy

{32 \ 32 \ 32 \ 32}cy
{8 \ 8 \12 \19}cy

Measurement 

Naïve (AVX): 

Kahan (scalar): 

Kahan (AVX):  

 

4.1 \ 8.7 \13.0 \ 24.9cy

8.4 \10.2 \13.7 \ 23.8cy
32.5 \ 32.4 \ 3248 \ 37.9cy



147 

Model: Scales until saturation sets in  

 

Saturation point (# cores) well predicted 

 

 

Measurement: scaling not perfect 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel code 

ECM prediction vs. measurements for  
A(:)=B(:)+C(:)*D(:), no overlap 
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In-core execution is dominated 

by divide operation  

(44 cycles with AVX, 22 scalar) 

 

 Almost perfect agreement 

with ECM model 

 

 

ECM prediction vs. measurements for  
A(:)=B(:)+C(:)/D(:) with full overlap 

Parallelism  “heals” bad 

single-core performance 

… just barely! 
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float sum = 0.0; 

 

for (int j=0; j<size; j++){ 

    sum += data[j]; 

} 

 

Instruction code: 

401d08:   f3 0f 58 04 82         addss  xmm0,[rdx + rax * 4] 

401d0d:   48 83 c0 01            add    rax,1 

401d11:   39 c7                  cmp    edi,eax 

401d13:   77 f3                  ja     401d08 

 

Case Study: Simplest code for the summation of 

the elements of a vector (single precision) 

Instruction 

address 
Opcodes Assembly 

code 

To get  object code use 
objdump –d on object file or 

executable or compile with -S 



150 

1: 

addss  xmm0, [rsi + rax * 4] 

add    rax, 1 

cmp    eax,edi 

js 1b 

Summation code (single precision): 

Optimizations 

1: 

addss xmm0, [rsi + rax * 4] 

addss xmm1, [rsi + rax * 4 + 4] 

addss xmm2, [rsi + rax * 4 + 8] 

addss xmm3, [rsi + rax * 4 + 12] 

add   rax, 4 

cmp   eax,edi 

js 1b 

1: 

addps xmm0, [rsi + rax * 4] 

addps xmm1, [rsi + rax * 4 + 16] 

addps xmm2, [rsi + rax * 4 + 32] 

addps xmm3, [rsi + rax * 4 + 48] 

add rax, 16 

cmp   eax,edi 

js 1b 

Unrolling with sub-sums to break up 

register dependency 

SSE SIMD vectorization  

3 cycles add 

pipeline 

latency 
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SIMD processing – single-threaded 

SIMD influences instruction execution in the 

core – other bottlenecks stay the same! 

48 

16 

4 

4 4 

Execution Cache Memory 

8cy 

16cy 16cy 
24cy 

Full 

benefit in 

L1 cache 

Data transfers 

are overlapped 

with execution 

Some penalty 

for SIMD (12 cy 

predicted) 

Peak 

Per-cacheline 

cycle counts 

M
fl

o
p

s
/s
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And with AVX? 

48 

16 

4 

2 

4 4 

Cache Memory 

8cy 

Peak 

M
F

lo
p

s
/s

 

SSE    8 cycles    

AVX    6 cycles    

8cy 

L3 Cache 

With preloading: 

AVX down to less than 7 cycles (8309 MFlops/s)  diminishing 

returns (Amdahl) 
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SIMD processing – Full chip (all cores) 

Influence of SMT  

Bandwidth saturation is the primary performance limitation on 

the chip level! 

8c 

8 threads on physical cores 16 threads using SMT 

Full scaling 

using SMT due 

to bubbles in 

pipeline 

All variants 

saturate the 

memory 

bandwidth 

Conclusion: If the code saturates the 

bottleneck, all variants are acceptable! 
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• The ECM model is a simple analysis tool to get insight into: 

• Runtime contributions 

• Bottleneck identification 

• Runtime overlap 

It can predict single core performance for any memory hierarchy 

level and get an estimate of multicore chip scalability. 

 

ECM correctly describes several effects 

 Saturation for memory-bound loops 

 Diminishing returns of in-core optimizations for far-away data 

 

Simple models work best. Do not try to complicate things unless it is really 

necessary! 

Summary: The ECM Model 



CASE STUDY: HPCCG 

Performance analysis on: 

• Intel IvyBridge-EP@2.2GHz 

• Intel Xeon Phi@1.05GHz 



156 

for(int k=1; k<max_iter && normr > tolerance; k++ ) 

{ 

    oldrtrans = rtrans; 

    ddot (nrow, r, r, &rtrans, t4); 

    double beta = rtrans/oldrtrans; 

    waxpby (nrow, 1.0, r, beta, p, p);         

    normr = sqrt(rtrans); 

    HPC_sparsemv(A, p, Ap); 

    double alpha = 0.0; 

    ddot(nrow, p, Ap, &alpha, t4); 

    alpha = rtrans/alpha; 

    waxpby(nrow, 1.0, r, -alpha, Ap, r); 

    waxpby(nrow, 1.0, x, alpha, p, x); 

    niters = k; 

} 

 

Introduction to HPCCG (Mantevo suite) 
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Components of HPCCG 1 

#pragma omp for reduction (+:result) 

for (int i=0; i<n; i++) { 

      result += x[i] * y[i]; 

} 

#pragma omp for 

for (int i=0; i<n; i++) { 

    w[i] = alpha * x[i] + beta * y[i]; 

} 

ddot: 

waxpby: 

2 Flops 

2 * 8b L = 16b 

2.2GHz/2c * 16 Flops = 

17.6 GFlops/s or 

140GB/s L1 or 46GB/s L2 

3 Flops 

2 * 8b L + 1 * 8b S = 24b 

2.2GHz/4c * 24flops = 

13.2 GFlops/s or 

106GB/s L1 or 47GB/s L2 
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Sparse matrix-vector multiply (spMVM) 

 Key ingredient in some matrix diagonalization algorithms 

 Lanczos, Davidson, Jacobi-Davidson 

 Store only Nnz nonzero elements of matrix and RHS, LHS 

vectors with Nr (number of matrix rows) entries 

 “Sparse”: Nnz ~ Nr  

 

= + • Nr 

General case: 

some indirect 

addressing 

required! 
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… 

CRS matrix storage scheme 

column index 

ro
w

 i
n
d
e
x
 

1 2 3 4 … 
1 
2 
3 
4 
… 

val[] 

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[] 

1 5 15 19 8 12 … row_ptr[] 

 val[] stores all the nonzeros 

(length Nnz) 

 col_idx[] stores the column index 

of each nonzero (length Nnz) 

 row_ptr[] stores the starting index 

of each new row in val[] (length: 

Nr) 
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CRS (Compressed Row Storage) – data 

format 

Format creation 

1. Store values and column 

indices of all non-zero elements 

row-wise 

2. Store starting indices of each 
column (rpt) 

Data arrays 

  double val[] 

  unsigned int col[] 

  unsigned int rpt[] 
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Components of HPCCG 2 

#pragma omp for 

for (int i=0; i< nrow; i++) { 

   double sum = 0.0; 

   double* cur_vals = vals_in_row[i]; 

   int*    cur_inds = inds_in_row[i]; 

   int     cur_nnz =  nnz_in_row[i]; 

 

   for (int j=0; j< cur_nnz; j++) { 

      sum += cur_vals[j]*x[cur_inds[j]]; 

   } 

   y[i] = sum; 

} 

2 Flops 

1 * 4b L + 2 * 8b L = 20b 

2.2GHz/2c * 16 Flops = 

17.6 GFlops/s or 

140GB/s L1 or 46GB/s L2 
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Routine Serial Socket 

ddot 5% 5% 

waxby 12% 16% 

spmv 83% 79% 

First Step: Runtime Profile (3003) 

Routine Chip 

ddot 3% 

waxby 8% 

spmv 89% 

Intel IvyBridge-EP (2.2GHz, 10 cores/chip) 

Intel Xeon Phi (1.05GHz, 60 cores/chip) 



163 

Scaling behavior inside socket (IvyBridge-EP) 

Routine Time [s] 
Memory Bandwidth 

[MB/s] Data Volume [GB] 

waxby 1 2,33 40464 93 

waxby 2 2,37 39919 94 

waxby 3 2,4 40545 96 

ddot 1 0,72 46886 34 

ddot 2 1,4 46444 64 

spmv 33,84 45964 1555 

HPM measurement 

with LIKWID 

instrumentation  

on socket level 

Pattern: 

Bandwidth 

saturation 
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Routine Socket Node 

ddot 6726 14547 

waxby 3642 6123 

spmv 6374 6320 

Total 5973 6531 

Scaling to full node (1803) 

Routine Socket 1 Socket 2 Total 

ddot 44020 47342 91362 

waxby 39795 28424 68219 

spmv 43109 2863 45972 

Performance [GFlops/s] 

Memory Bandwidth measured [GB/s] 

Pattern: Bad 

ccNUMA page 

placement 
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Matrix data was not placed. Solution: Add first touch initialization. 
#pragma omp parallel for 

  for (int i=0; i< local_nrow; i++){ 

      for (int j=0; j< 27; j++) { 

          curvalptr[i*27 + j] = 0.0; 

          curindptr[i*27 + j] = 0; 

      } 

} 

Optimization: Apply correct data placement 

Routine Socket 1 Socket 2 Total 

ddot 46406 48193 94599 

waxby 37113 24904 62017 

spmv 45822 40935 86757 

Node performance: spmv 11692, total 10912 
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Scaling behavior Intel Xeon Phi 

134804 MB/s 

131803 MB/s 

Code is instruction 

throughput limited 

Pattern: Expensive 

Instructions  
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BJDS (Blocked JDS) – data format 

Format creation 

1. Shift nonzeros in each row to the left 

2. Combine chunkHeight (multiple of 

vector length, here: 8) rows to one chunk 

3. Pad all rows in chunk to the same length  

4. Store matrix chunk by chunk and jagged-

diagonal-wise within chunk 

Data arrays 

  double val[] 

  unsigned int col[] 

  unsigned int chunkStart[] 
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Optimized spmv data structure on Xeon Phi 

Pattern: Bandwidth saturation 



EMPLOYING THE ECM MODEL ON 

STENCIL KERNELS 
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2D Jacobi Stencil: Layer condition 
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J2D multicore chip scaling 
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for(int k=2; k<=N-1; k++){ 

 for (int j=2; j<=N-1; j++){ 

  for (int i=2; i<=N-1; i++){ 

   d = 0.25*(d1[ k ][j][i] + d1[ k ][j-1][i] 

           + d1[k-1][j][i] + d1[k-1][j-1][i]); 

   u1[k][j][i] = u1[k][j][i] + (dth/d) 

   *( c1*(xx[ k ][ j ][ i ]-xx[ k ][ j ][i-1]) 

    + c2*(xx[ k ][ j ][i+1]-xx[ k ][ j ][i-2]) 

    + c1*(xy[ k ][ j ][ i ]-xy[ k ][j-1][ i ]) 

    + c2*(xy[ k ][j+1][ i ]-xy[ k ][j-2][ i ]) 

    + c1*(xz[ k ][ j ][ i ]-xz[k-1][ j ][ i ]) 

    + c2*(xz[k+1][ j ][ i ]-xz[k-2][ j ][ i ])); 

}}}} 

 

uxx stencil from earthquake propagation code 

Expensive 

Divide! 

vdivpd: 42 cycles throughput in double precision (SNB) 

What about single precision? 
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Employing the Intel IACA tool for L1 throughput estimate.  

Version         ECM model                       prediction 

DP 

SP 

DP noDIV 

uxx kernel ECM model 

{84 || 38 | 20 | 20 | 26}cy
{45 || 38 | 20 | 20 | 26}cy

{41|| 38 | 20 | 20 | 26}cy

{84 \ 84 \ 84 \104}cy

{45 \ 58 \ 78 \104}cy

{41 \ 58 \ 78 \104}cy

Prediction for in Memory data set: 

1. SP is twice as fast as DP 

2. All variants saturate at 4 cores 

3. The presence of the DIV in DP makes no difference 
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Comparison model vs. measurement 
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• ECM model allows to predict upper limit for benefits from 

temporal blocking for the L3 cache: 

 Removes L3-MEM transfer time of 26cy 

 24% speedup in DP (single core) 

 33% speedup in SP (single core) 

 

• Next bottleneck is the divide (DP) and L3 transfers (SP). 

• True benefit: Both are core-local and therefore scalable. 

 

• Expected performance in DP on chip level 2000 MLUP/s instead 

of 800 MLUPS/s (even with DIV)  

 

 

uxx kernel: Optimization opportunities 


