Performance Modeling Under a Power Bound: A Tour of the Near Future

Martin Schulz and Barry Rountree Lawrence Livermore National Laboratory

Performance Modeling: Methods & Applications – Workshop @ ISC 2015 + July 16th, 2015

LLNL-PRES-674802

http://scalability.llnl.gov/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

The Need For Performance Modeling Under a Power Bound: A Tour of the Near Future

Martin Schulz and Barry Rountree Lawrence Livermore National Laboratory

Performance Modeling: Methods & Applications – Workshop @ ISC 2015 + July 16th, 2015

http://scalability.llnl.gov/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Power Consumption of Current Systems (e.g., BG/Q)

COMPUTATION

Goal: Exascale @ 20MW

Rethink utilization in terms of power, not nodes

- Overprovisioning has large impact on applications
 - Need to execute under strict node level power bounds •
 - Different performance behavior and tradeoffs
 - Steer power where it is needed to make most progress •
 - Avoid wasted power, i.e., maximize power utilization •

Importance of Configurations

- Experiment on 32 nodes on LLNL's TLCC system with a global power bound
- Naïve configuration in red
 - Running all cores
 - This limits number of nodes

Best configuration in blue

- Moderate per node power bound
- Reduced number of cores
- Difference: > 2x

Consequences:

- Determining the right configuration is critical
- Intuition is insufficient -> need new models

sp-mz, 4500W power bound

Rethink utilization in terms of power, not nodes

- Overprovisioning has large impact on applications
 - Need to execute under strict node level power bounds
 - Different performance behavior and tradeoffs
 - Steer power where it is needed to make most progress
 - Avoid wasted power, i.e., maximize power utilization
- Need a new power/performance model
 - Different for each power bound
 - Depends on workload characteristics
 - So far, (some) success with adhoc models
 - Sampling of configuration space (~3000 points)
 - Linear regression to construct model (using 10%)

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Impact of Processor Manufacturing Variability

Census across 2386 processors

- mg (multigrid)
 - Runs at 105W
- ep (embarrassingly parallel)
 - Runs at 90W

Chart showing one point for each processor in the system

- Performance normalized to fastest unbounded run
- X-Axis: Slowdown
- Y-Axis: CPU clock
- Slowest processors circled

Large Scale Power Capping Experiments: 80W / 65W

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Large Scale Power Capping Experiments: < 51W

Large Scale Power Capping Experiments: Conclusions

Power capping makes systems heterogeneous

- Need more flexible task scheduling and ability to absorb slack
- Needs to be taken into account during load balancing

Slowdown under power caps application specific

- Can't use a single knob "processor/silicon efficiency"
- Depends on application's instruction mix and memory intensity

Runtime systems needed for more efficient scheduling

Conductor: A Runtime System for Overprovisioning

Central question

Given a job-level power constraint, how do we optimize application performance?

Main idea

- Identify critical path
 - Only the critical path needs full power
 - The rest can work with reduced power
- Measure power headroom
 - Execute application for controlled period of time and measure power
 - Can be distributed based on process criticality
- Execute repeatedly during application execution
 - Typically on time step boundaries
 - Intended for repetitive applications

Step I: Configuration Selection

Profile the configuration space on-line

- Run each computation operation on individual nodes at distinct configurations

 — Exploit parallelism
- Record the power/perf. profile characteristics of each computation operation
- Construct Pareto frontier
- Pick best configuration under a given power bound

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Step II: Power Reallocation

 How can we allocate power to the critical operations in an application and improve performance?

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Conductor Benefits Dynamic Applications

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Power-aware Resource Management

Power is a global resource

- The system power cap must be divided among jobs
- Static division results in power fragmentation
- Dynamic management can utilize open resources

Direction 1: Power-aware Resource Management

- Power as a controlled resource that is allocated
- Initial step: power aware backfilling in P-SLURM

Power Aware Backfilling

Results of Turnaround Times for Different Policies

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

Power-aware Resource Management

Power is a global resource

- The system power cap must be divided among jobs
- Static division results in power fragmentation
- Dynamic management can utilize open resources

Direction 1: Power-aware Resource Management

- Power as a controlled resource that is allocated
- Initial step: power aware backfilling in P-SLURM

Direction 2: Runtime Adaptation

- Part of a global operating system
- Detection and reallocation of unused power
- Transparent to application
- Need to maintain fairness

Enclave

Boards

Nodes

libmsr

System

POWsched: Power Scheduler for the Exascale

8 Enclaves with different job mixes

- Static vs. dynamic scheduling under same power bound
- Dynamic power measurement and control

Conclusions

Hard power limits will lead us to overprovisioned systems

- More hardware than we can power
 - Leads to power capping
 - Exposes inhomogeneity
- Selectively distribute power to the right place
 - Within applications using adaptive runtime control (Conductor)
 - Across applications by the OS (POWsched)
 - At job allocation by the resource manager (P-SLURM)
- Needs to be driven by power/performance models
 - Complex relationships
 - Inhomogeneity is application dependent
 - Current models are very empirical
 - Work well in current settings and achieve promising results
 - Long term: need more accurate understanding of such models

Basis for efficiently utilizing overprovisioned systems!

The Scalability Team

http://scalability.llnl.gov/

Todd

Abhinav **Bhatele**

David Boehme Gamblin

Tanzima Islam

Ignacio Laguna

Mohror

Rountree

Martin Schulz

Martin Schulz

- Main topics
 - Performance analysis tools and optimization
 - Correctness and debugging (incl. STAT, AutomaDeD, MUST)
 - Tool infrastructures (incl. PⁿMPI, GREMLINs) •
 - Power-aware and power-limited computing (incl. P-SLURM & Conductor) ٠
 - Resilience and Checkpoint/Restart (incl. SCR)
- Close collaboration with Universities of Arizona and Oregon & LMU/LRZ
- Funding sources involved in presented work:

Modeling Performance Under a Power Bound: A Short Tour of the Near Future

http://scalability.llnl.gov/

Conclusions

Hard power limits will lead us to overprovisioned systems

- More hardware than we can power
 - Leads to power capping
 - Exposes inhomogeneity
- Selectively distribute power to the right place
 - Within applications using adaptive runtime control (Conductor)
 - Across applications by the OS (POWsched)
 - At job allocation by the resource manager (P-SLURM)

Needs to be driven by power/performance models

- Complex relationships
- Inhomogeneity is application dependent
- Current models are very empirical
 - Work well in current settings and achieve promising results
 - Long term: need more accurate understanding of such models

Basis for efficiently utilizing overprovisioned systems!

