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Power Consumption of Current Systems (e.g., BG/Q)
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Goal: Exascale @ 20MW

Modeling Performance Under a Power Bound: A Short Tour of the Near Future ‘},
‘Lawrence Livermore National Laboratory Martin Schulz

COMPUTATION



Goal: Exascale @ 20MW
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@ Need to Enforce Power Caps .
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3 Provisioned Power =
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= © = Power as a constraint, not an optimization goal S

= Overprovisioned systems g

X

N * More hardware that can be powered at once S

« Need mechanisms to control and cap power
o « Need runtime systems to maximize power usage within cap &

* Need Cross-job scheduling control
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Rethink utilization in terms of power, not nodes

= Overprovisioning has large impact on applications
« Need to execute under strict node level power bounds
— Different performance behavior and tradeoffs
« Steer power where it is needed to make most progress
- Avoid wasted power, i.e., maximize power utilization
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Importance of Configurations

= Experiment on 32 nodes on sp-mz, 4500W power bound
LLNL’s TLCC system with — Mexpowerperprocessor %N
= Best configuration :
a global power bound

Nodes (8-32)

= Naive configuration in red

« Running all cores
» This limits number of nodes

= Best configuration in blue

« Moderate per node power bound
« Reduced number of cores

= Difference: > 2x

Cores (4—167:::

= Consequences:

« Determining the right configuration is critical
e Intuition is insufficient -> need new models

Avg.
Watts

Processor Power Bound (Watts) (51, 65, 80, 95, 115)
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Rethink utilization in terms of power, not nodes

= Overprovisioning has large impact on applications
« Need to execute under strict node level power bounds
— Different performance behavior and tradeoffs
« Steer power where it is needed to make most progress

- Avoid wasted power, i.e., maximize power utilization

= Need a new power/performance model
 Different for each power bound
« Depends on workload characteristics
* So far, (some) success with adhoc models
— Sampling of configuration space (~3000 points)
— Linear regression to construct model (using 10%)
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Modeling Results (8-64 nodes, 51W-115W, SandyBridge)
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Impact of Processor Manufacturing Variability

8 = Census across 2386 processors
9BW | . mg (multigrid)
! — Runs at 105W
> 1
5 - ep (embarrassingly parallel)
g % I — Runs at 9oW
~ : .
S : 5 = Chart showing one point for
D) 1 °
& - | each processor in the system
ep- |
Ry + Performance normalized to fastest
; ;zv;:;:t)\::ocessors, mg-95W E unbounded run
2 | & o | »6s « X-Axis: Slowdown
o 1.0}9€i _______ ________1.9‘33 .
| ' » Y-Axis: CPU clock
" Normalized Slowdown 1932 « Slowest processors circled
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Large Scale Power Capping Experiments: 80W | 65W
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Large Scale Power Capping Experiments: < 51W
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Large Scale Power Capping Experiments: Conclusions
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= Power capping makes systems heterogeneous
« Need more flexible task scheduling and ability to absorb slack
* Needs to be taken into account during load balancing

= Slowdown under power caps application specific
« Can’t use asingle knob “processor/silicon efficiency”
« Depends on application’s instruction mix and memory intensity

= Runtime systems needed for more efficient scheduling
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Conductor: A Runtime System for Overprovisioning

= Central question

Given a job-level power constraint,
how do we optimize application performance?

= Main idea

« ldentify critical path
— Only the critical path needs full power
— The rest can work with reduced power

« Measure power headroom
— Execute application for controlled period of time and measure power
— (an be distributed based on process criticality

« Execute repeatedly during application execution
— Typically on time step boundaries
— Intended for repetitive applications
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Step I: Configuration Selection

= Profile the configuration space on-line
* Run each computation operation

. -9 - Configurations
on ||.1d!v1dual nodes | o - Optimal
at distinct configurations o O N

10

— Exploit parallelism

« Record the power/perf.
profile characteristics of each
computation operation

Time (seconds)
6

e Construct Pareto frontier

 Pick best configuration under
a given power bound

20 30 40 50
Power (watts)
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Step lI: Power Reallocation

= How can we allocate power to the critical operations in an
application and improve performance?

R | Barrier
Before power P1 €, E
reallocation P, C, %////////////////%i "
—> time
" EBarrier
After power P1 _i
reallocation P C %i
0 0 ! > time
I High power
Medium power
Low power
222224 Slack
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Conductor Benefits Dynamic Applications

ParaDiS 64 nodes [ 512 processes
on Intel SandyBridge with RAPL
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* Up to 13% speedup over Static scheme

* Benefits from process-level
imbalance of power usage

5

Average power Usage bins
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Power-aware Resource Management

= Power is a global resource
« The system power cap must be divided among jobs

LA B A L)

' —

- Static division results in power fragmentation

« Dynamic management can utilize open resources R, EAE Y

= Direction 1: Power-aware Resource Management
- Power as a controlled resource that is allocated
« Initial step: power aware backfilling in P-SLURM
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Power Aware Backfilling

FCFS Policy for Power

Power

Power

o Time 2
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Results of Turnaround Times for Different Policies

Random Trace 1, Traditional = Traditional
« Require nodes at full power
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= Adaptive
« Adjust node power
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Power-aware Resource Management

= Power is a global resource
« The system power cap must be divided among jobs
- Static division results in power fragmentation
« Dynamic management can utilize open resources
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= Direction 1: Power-aware Resource Management

 Power as a controlled resource that is allocated
» Initial step: power aware backfilling in P-SLURM

= Direction 2: Runtime Adaptation
 Part of a global operating system

e Detection and reallocation
of unused power

« Transparent to application

System

Enclave

Boards

Nodes
« Need to maintain fairness
libmsr
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POWsched: Power Scheduler for the Exascale

= 8 Enclaves with different job mixes
« Static vs. dynamic scheduling under same power bound
« Dynamic power measurement and control

Static Scheduling Dynamic Scheduling
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Conclusions

= Hard power limits will lead us to overprovisioned systems

* More hardware than we can power
— Leads to power capping
— Exposes inhomogeneity

 Selectively distribute power to the right place
— Within applications using adaptive runtime control (Conductor)
— Across applications by the OS (POWsched)
— At job allocation by the resource manager (P-SLURM)

= Needs to be driven by power/performance models
« Complex relationships
« Inhomogeneity is application dependent
» Current models are very empirical
— Work well in current settings and achieve promising results
— Long term: need more accurate understanding of such models

= Basis for efficiently utilizing overprovisioned systems!

uL' Lawrence Livermore National Laboratory . Martinschulz ~__ " _ .



The Scalability Team
http: //scalablhty [Inl. gov/

Abhihav David Todd Tanzima Ignacio Kathryn | Barry Martin
Bhatele Boehme Gamblin Islam Laguna Mohror Rountree Schulz
= Main topics
« Performance analysis tools and optimization

« Correctness and debugging (incl. STAT, AutomaDeD, MUST)
 Tool infrastructures (incl. P"MPI, GREMLINS)

« Power-aware and power-limited computing (incl. P-SLURM & Conductor)
« Resilience and Checkpoint/Restart (incl. SCR)

= Close collaboration with Universities of Arizona and Oregon & LMU/LRZ

" Fundmg sources involved in presented work:

FHec 3 )

s PIPER &

P"’l“t

MODERNIZATION PROGRAM

FISC
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Conclusions http://scalability.linl.gov/

= Hard power limits will lead us to overprovisioned systems

* More hardware than we can power
— Leads to power capping
— Exposes inhomogeneity

 Selectively distribute power to the right place
— Within applications using adaptive runtime control (Conductor)
— Across applications by the OS (POWsched)
— At job allocation by the resource manager (P-SLURM)

= Needs to be driven by power/performance models
« Complex relationships
« Inhomogeneity is application dependent
» Current models are very empirical
— Work well in current settings and achieve promising results
— Long term: need more accurate understanding of such models

= Basis for efficiently utilizing overprovisioned systems!
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