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The PMaC Lab

Research the complex interactions between HPC
systems and applications and use that to
understand the factors that affect performance and
power on current and projected HPC platforms.
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Motivation: Entering the era of Exascale 0 many
core systems with strict power budgeting

1 Trend towards multi- and many-core systems has
accelerated over the last decade 1

I Multi-core designs allow for greater energy efficiency

1 Increase the compute performance through many simple and
more energy savings cores

I More cores/processor A less memory BW per core

1 In particular the off-chip bandwidth which is limited by pin
constraints and slowly rising memory speeds

{ Exascale comes with strict power budgeting
I Power capping on the memory sub-system
I Reduced power A reduced performance

Understand HPC applications sensitivities to these
performance/power changes to the memory sub-system

Performance & Power Models
SDSC provide this understanding
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Memory sensitivity models -
Model i ng an HPC applicati on:¢
power/performance changes in memory sub -system

Models that capture:

TAppli cationdos sensitivit
memory BW (e.g. many core)
TAppl i cationos sensitivit

memory sub-system
Model development:

1 Identify software parameters that determine
applicationodos sensitivit
I How sensitive are different types of computations?

I Are certain algorithms less sensitive and would
result in improved energy efficiency/performance?

SDSC PMaC
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Overview

1 Brief description of modeling
technique:

I Application characterization
I Training the model

I Validation of model

I Results

I Use cases
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HPC Application Model Development 0
predicting power & performance

Main goal:

1 Develop model that predicts power and performance of
application given a change in memory sub-system:
I Reduced per core memory bandwidth
I Power capped memory sub-system

Application

Model of Performance & power
Syi:]e;gg";'th draw of application
on system
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HPC Application Model Development 0
characterizing the application
1 Break large scale application into computational phases

Application Func. foo

L1: <lyvy, 11Vv,,

| .
L2: <l,vyq, vy,

Phase |
L3: <lgvy, Igv,, €
}lav,>

L4: <l,vq, v, €

i Phase I

L5: <lgvq, lgv,, v, >
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HPC Application Model Development 0

characterizing the application

1 Break large scale application into computational phases
1 Identify software parameters that determine computational

phaseods

sensitivity

to change (

i Data movement of computation (location, stride, type), computation metrics, etc.

Application

Func. foo
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Func. foo

L1: <lyvq, lyvs,

| .
L2: <l,vyq, vy,

Phase |
L3: <lzvy, I3vy,
}lav,>

L4: <lvq, 1, €

i Phase Il

L5: <lgvy, lsv,,  ev,>l

Characterization vector =

<data movement location, data
movement stride, data movement
type, computation metrics>
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HPC Application Model Development 0

characterizing the application

1 Break large scale application into computational phases
1 Identify software parameters that determine computational

phaseods

sensitivity ¢to

change (

i Data movement of computation (location, stride, type), computation metrics, etc.

Application

Func. foo
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Func. foo

L1: <lyvq, lyvs,

| .
L2: <l,vyq, vy,

Phase |
L3: <lzvy, I3vy,
}lav,>

L4: <lvq, 1, €

i Phase Il

L5: <lgvy, lsv,,  ev,>l

Characterization vector =

<cache hit rates, stride, load/store,
FP/mem, # inst., etc. >
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HPC Application Model Development 0
characterizing the application

1 Break large scale application into computational phases
1 Identify software parameters that determine computational

phaseds sensitivity to change (
i Data movement of computation (location, stride, type), computation metrics, etc.

Application Func. foo
Func. foo :
L1: <lvq, v, € ] _
Laichy by, ¢ [P Characterization vector for
L3 <y, Ly, € each computational phase =

} Vo> P1: <pyvy, PV, I9:31Vn>
L4: <lvq, 1, € P2: <P2Vi1, P2Va; &Vn>
L5: <lgvy, lsv,,  ev,>l Phase Il

Automated full-scale production application collection via

PEBIL (P Ma CBffeient Binary Instrumentor for Linux)
SDSC static & dynamic analysis
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Modeling Methodology

{1 Training set: use HPC computational kernels &

benchmarks (applications are not part of training set)
1 Capture computation vector per kernel
Kernel 1: <k,v,, kv,  kv,>
Kernel 2: <k,v,, Kov,,  BV,>
Kernel 3: <kyvq, Kgv,,  kyv,>

e
1 Measure performance of each kernel for target system under
change (e.g. reduced per core BW, power cap)

Kernel 1. <Perf, ,,Cap90%,k,v,, kv, v, X
<Perf, 4;,Cap80%,k,v,, kv, €V, X
<Perf, ;,0,Cap70%,k,v,, kv, €V X

é .

Kernel 2. <Perf, 4,,Cap90%,k,v,, k,v,, &V, X
<Perf, 4;,Cap80%,k,v,, kv, &V XK
<Perf, ;0,Cap70%,k,v,, k,v,, &V XK
é
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Modeling Methodology

Training set:

<Perf; 40,Cap90%,k,v,, K1V,  &Vv,K
<Perf; 50,Cap80%,k,v,, K1V,  &Vv,K
<Perf; ;0,Cap70%,k,vy, K1V,  €V,K
e .

<Perf, 40,Cap90%,k,v,, Kov,, &V K
<Perf, g5,Cap80%,k,v,, kov,, &V, K
<Perf, ;0,Cap70%,k,v,, kov,, &V, >k
é

1 Modeling technique Cubist (e.g., tree of linear regression
models) & Gradient Boosting

1 Prevent over-fitting:

I Split the empirical dataset into training and validation sets
1 60%-40% split: 60% used for training the model and 40% for validation

I 10-fold cross validation to avoid over-fitting during model training

{1 Variable importance analysis to determine which
predictors have the most impact on performance
degradation
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Modeling reduced per core memory BW

System Configuration for Validation
testing with the Imbench benchmark

1 How to approximate reduced per core memory BW?
I Change the memory bus frequency (set at boot time)

TOne node of the SDSCO0Os Gord
I Sandy Bridge 1 2 procs, 8 cores/proc, 64GB DDR3-1333MHz memory
I Available bus freq. 1 1333 MHz (max & default), 1067 MHz, 800 MHz

Simulating the reduction in memory bandwidth via memory bus frequency throttling
Read Bandwidth as Measured by Imbench
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_ 800MHz: 37.7% reduction in
MEM BW (theoretical) = Fx L x W x | BW when frequency is reduced

where, by 40%
F: DRAM clock frequency

L: Number of lines per clock (2 for DDRN)

SDSC W: Bus Width (64 bits)
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Are all computations sensitive to per core
bandwidth?

Ratio of training set kernel s
performance at max relative to reduced BW

Effect of Memory Bus Frequency on Execution Time Effect of Memory Bus Frequency on Execution Time
) ~
I
s =
(22}
55 3 .
S i 5 ] i
> z s
2 1333 MHz -> 1067 MHz 5 1333 MHz -> 800 MHz
g S ER”
o | g < 7 |
L i
3 : v
g Ratio of 1 g . |
e 4 o
5 o means 3 S
o | g
performance 2 o
£ S i -
. not aﬁeCtEd E Unaffected: 35 %
N
Z Unaffected: 43 % g 8
o o
S 8- 2
= — © -
B S S R .a—l i i A B i ) - |
E E
= E
§ S - S ol L™
S ‘ 3 < |
(5] ' :
5 T T T T T T % T T 1 T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Tests Tests

SDSC

SAN DIEGO SUPERCOMPUTER CENTER

Performance Modeling and Characterization



Model accuracy on training Set for reduced per

Modeled
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Evaluation of modeling methodology

{ Evaluation uses several applications 1
i NPBs (CG, LU, FT and MG)
I SMG2000 (Semi-coarsening multigrid)
I AMG (Algebraic multigrid)
|

" Mantevo Miniapps
T MiniFE
1 MiniGhost

I CoMD

T Hotspot selection based on dynamic
Instruction count attributed to loops

1 Verify model on dominant loop(s)/phase(s) of
applicationA collect characterization vector

SDSC PMaC
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Model validation d Mantevo & CoMD

Mantevo Miniapps (MiniGhost and MiniFE) and CoMD, 16 Cores
Performance Sensitivity of dominant phases (256 x 256 x 256)
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Model validation: AMG

AMG, 16 Cores
Performance Sensitivity of 4 dominant phases (256 x 256 x 256)
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Model validation : Mean Error of all phases

Hi st ogram of Prediction Accuracy for

Mean Error: 3.8%
Max Error: 18%

g 9 91% of the evaluated phases
3 (Error= 10%) Outliers (total 8 phase-freq pairs):
- Small grid size runs for
miniGhost and SMG2000
S - One phase from NPB FT.

Application Phases
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Use -Case: Algorithm selection

{ Exascale systems will most likely have
reduced per core memory bandwidth-models
help identify optimal algorithms for these
systems

Determining the correct algorithm for future Exascale systems using
performance models

15

+ AMG - measured — AMG - modeled
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P

a Reduced per core memory BW a Reduced per core memory BW

Performance models can identify algorithmic choices that
are less optimal as hardware changes in future systems.
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Test bed for power capping

{1 Dual Intel SandyBridge processor, 8 cores per
processor, 64 GB RAM, Turbo-Boost off, SMT

off

1 Power capping using Running Average Power
Limit (RAPL) interface

I Enables the collection of (modeled) power
measurements for CPU and DRAM subsystems

I Allows users to set power limits on these domains
and the underlying hardware infrastructure
enforces these power limits

SDSC PMaC
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Results: Model Accuracy for
power capping

60%-40% split of the empirical
data.

60% used for training the
model

40% makes up the
test/validation set.
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