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The PMaC Lab

Research the complex interactions between HPC
systems and applications and use that to
understand the factors that affect performance and
power on current and projected HPC platforms.
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Motivation: Entering the era of Exascale - many
core systems with strict power budgeting

e Trend towards multi- and many-core systems has
accelerated over the last decade —

— Multi-core designs allow for greater energy efficiency

e Increase the compute performance through many simple and
more energy savings cores

— More cores/processor = less memory BW per core

e In particular the off-chip bandwidth which is limited by pin
constraints and slowly rising memory speeds

e Exascale comes with strict power budgeting
— Power capping on the memory sub-system
— Reduced power = reduced performance

Understand HPC applications sensitivities to these
performance/power changes to the memory sub-system

Performance & Power Models
SDSC provide this understanding
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Memory sensitivity models -
Modeling an HPC application’s sensitivity to
power/performance changes in memory sub-system

Models that capture:

o Application’s sensitivity to reduced per core
memory BW (e.g. many core)

e Application’s sensitivity to power capped
memory sub-system

Model development:
e |ldentify software parameters that determine
application’s sensitivity to changes

— How sensitive are different types of computations?

— Are certain algorithms less sensitive and would
result in improved energy efficiency/performance?

SDSC PMaC
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Overview

e Brief description of modeling
technique:

—Application characterization
—Training the model
—Validation of model
—Results

—Use cases
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HPC Application Model Development -
predicting power & performance

Main goal:

e Develop model that predicts power and performance of
application given a change in memory sub-system:
— Reduced per core memory bandwidth
— Power capped memory sub-system

Application

Model of Performance & power
Syi:]e;gg";'th draw of application
on system
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HPC Application Model Development -
characterizing the application
e Break large scale application into computational phases

Application Func. foo

Func. foo

L1: <lyvy, lvy, ...

| .
L2: <l,vq, vy, ...

Phase |
L3: <lgvy, Ivy, ...
}lav,>

L4: <l,vq, [,vy ...

i Phase Il

L5: <lgvy, IgVy, ... V>
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HPC Application Model Development -
characterizing the application

e Break large scale application into computational phases
e |dentify software parameters that determine computational

phase’s sensitivity to change (e.g. characterization vector):
— Data movement of computation (location, stride, type), computation metrics, etc.

Application Func. foo

Func. foo

L1: <lyvq, IV, ...

Characterization vector =

<data movement location, data
movement stride, data movement
type, computation metrics>

| .
L2: <l,vq, vy, ...

Phase |
L3: <lgvy, Ivy, ...
}lav,>

L4: <lpvq, vy ...

i Phase Il

L5: <lgvy, IsVyy «.. IV, >
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HPC Application Model Development -
characterizing the application

e Break large scale application into computational phases
e |dentify software parameters that determine computational

phase’s sensitivity to change (e.g. characterization vector):
— Data movement of computation (location, stride, type), computation metrics, etc.

Application Func. foo

Func. foo

L1: <lyvq, IV, ...

Characterization vector =

<cache hit rates, stride, load/store,
FP/mem, # inst., etc. >

| .
L2: <l,vq, vy, ...

Phase |
L3: <lgvy, Ivy, ...
}lav,>

L4: <lpvq, vy ...

i Phase Il

L5: <lgvy, IsVyy «.. IV, >
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HPC Application Model Development -
characterizing the application

e Break large scale application into computational phases
e l|dentify software parameters that determine computational

phase’s sensitivity to change (e.g. characterization vector):
— Data movement of computation (location, stride, type), computation metrics, etc.

Application Func. foo
Func. foo
L1: <lyvq, IV, ... ] _
| L2: <lvy, v, o Phase | Characterlzatlc_)n vector for
L3: <lavy, [gVsy, .. each computational phase =
 lovn> P1. <pyVy, P1Vyy --e P1Vy™
L4: <l,vy, [V, ... P2: <pyVy, PoVyy -ox PoVp>
L5: <lgvy, IsVyy «.. IV, > Phase Il

Automated full-scale production application collection via

PEBIL (PMaC'’s Efficient Binary Instrumentor for Linux)
SDSC static & dynamic analysis
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Modeling Methodology

e Training set: use HPC computational kernels &

benchmarks (applications are not part of training set)

e Capture computation vector per kernel
Kernel 1: <k,v,, kv, ... Kv,>
Kernel 2: <k,v,, KoV, ..o KoV >
Kernel 3: <kgv,, Kgv,, ... K3v,>

e Measure performance of each kernel for target system under
change (e.g. reduced per core BW, power cap)

SDSC
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Kernel 1:

Kernel 2:

<Perf, 0,Cap90%,k,v,, kyVo, ...
<Perf, g0,Cap80%,k,v,, kyVo, ...
<Perf, ;0,Cap70%,k,v,, kyVo, ...

<Perf, 40,Cap90%,k,v,, K,vo, ...
<Perf, g0,Cap80%,k,v,, K,V ...
<Perf, ;0,Cap70%,k,v,, KV, ...

kv >
kv >
kv >

k,v >
k,v >
kZVn>
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Modeling Methodology

Training set:

<Perf,; 40,Cap90%,k,v,,
<Perf, g0,Cap80%,k,v,,
<Perf,; 70,Cap70%,k,v,,

<Perf, 40,Cap90%,k,v,,
<Perf, g5,Cap80%,k,v;,
<Perf, ;0,Cap70%,k,v,,

KiVy, ...
KyVsp, ...
KiVy, ...

Kovy, ...
Kovy, ...
KoV, ...

k1Vn>
k1Vn>
k1Vn>

Kov,>
KoVv,>
k2vn>

e Modeling technique Cubist (e.g., tree of linear regression

models) & Gradient Boosting
e Prevent over-fitting:

— Split the empirical dataset into training and validation sets
e 60%-40% split: 60% used for training the model and 40% for validation

— 10-fold cross validation to avoid over-fitting during model training

e Variable importance analysis to determine which
predictors have the most impact on performance

degradation
SDSC
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Modeling reduced per core memory BW

System Configuration for Validation
testing with the Imbench benchmark

e How to approximate reduced per core memory BW?
— Change the memory bus frequency (set at boot time)

¢ One node of the SDSC’s Gordon Supercomputer
— Sandy Bridge — 2 procs, 8 cores/proc, 64GB DDR3-1333MHz memory
— Available bus freq. — 1333 MHz (max & default), 1067 MHz, 800 MHz

Simulating the reduction in memory bandwidth via memory bus frequency throttling
Read Bandwidth as Measured by Imbench

1333 MHz ===
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MEM BW (theoret|cal) =FxLxXxWxI BW when frequency is reduced
where, by 40%

F: DRAM clock frequency
L: Number of lines per clock (2 for DDRN)

SDSC W: Bus Width (64 bits)
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Are all computations sensitive to per core
bandwidth?

Ratio of training set kernels and benchmark’s
performance at max relative to reduced BW
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Model accuracy on training Set for reduced per

core memory BW model
prediction of ratio of degradation
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Evaluation of modeling methodology

e Evaluation uses several applications —
— NPBs (CG, LU, FT and MG)
— SMG2000 (Semi-coarsening multigrid)
— AMG (Algebraic multigrid)

— Mantevo Miniapps
e MiniFE
e MiniGhost

— CoMD

e Hotspot selection based on dynamic
Instruction count attributed to loops

e Verify model on dominant loop(s)/phase(s) of
application-> collect characterization vector

SDSC PMaC
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Model validation - Mantevo & CoMD

Mantevo Miniapps (MiniGhost and MiniFE) and CoMD, 16 Cores
Performance Sensitivity of dominant phases (256 x 256 x 256)
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Model validation: AMG

AMG, 16 Cores
Performance Sensitivity of 4 dominant phases (256 x 256 x 256)
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Model validation : Mean Error of all phases

Histogram of Prediction Accuracy for Test Application’s Phases

Mean Error: 3.8%
Max Error: 18%

30

91% of the evaluated phases
(Error < 10%)

20

Outliers (total 8 phase-freq pairs):
Small grid size runs for
miniGhost and SMG2000

One phase from NPB FT.

Frequency

10

Application Phases
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Use-Case: Algorithm selection

e Exascale systems will most likely have
reduced per core memory bandwidth-models
help identify optimal algorithms for these
systems

Determining the correct algorithm for future Exascale systems using
performance models

15

+ AMG - measured — AMG - modeled

39— i = e
e e Perasails has s
o34 e - N
i T - TT—— < performance g% S S Tt
< / Parasails'most 2% T~
2.4 sensitive to 5..._ 1.0 =
N reductions in BW 5

0.9

P

€ Reduced pler core membry BW < Reduced per core memory BW

Performance models can identify algorithmic choices that
are less optimal as hardware changes in future systems.
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Test bed for power capping

e Dual Intel SandyBridge processor, 8 cores per
processor, 64 GB RAM, Turbo-Boost off, SMT
off

e Power capping using Running Average Power
Limit (RAPL) interface

— Enables the collection of (modeled) power
measurements for CPU and DRAM subsystems

— Allows users to set power limits on these domains
and the underlying hardware infrastructure
enforces these power limits

SDSC
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Results: Model Accuracy for
power capping

Predicted vs. Actual Slowdowns

60%-40% split of the empirical
data.

60% used for training the
model

40% makes up the
test/validation set.

SDSC

SAN DIEGO SUPERCOMPUTER CENTER

Predicted Slowdown

25

+ O

Error=0%
Error=10 %
Error =20 %
train

test

Actual Slowdown
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Results: Evaluation on Mini-apps
e Evaluation done using two mini-apps —

— MiniGhost (Finite Difference)
— CoMD (Molecular Dynamics)

e Multiple input sizes

e Loop selection based on dynamic instruction
count attributed to loops

— Compare actual performance loss due to different
power caps to modeled performance loss

SDSC
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Results: Evaluation on Mini-apps

Prediction Accuracy on Mini Applications

15
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Average absolute error: 6%

Count
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Use-case: Auto-tuning in power-

capped environment

e Search-based auto-tuning framework

— Generate a set of alternative implementations of a
given piece of code and select the one that
performs the best

— The code variant that performs the best in base-
case (i.e., with no power capping) might not be
the best in power-capped environment

— Model can be used to inform such explorations
e Demonstration using one computation kernel

— Select 100 random variants, evaluate the
performance of those variants in multiple power
capping levels

Models identify optimal variant
SDSC for given power cap
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Use-case: Auto-tuning

Models identify code optimal code variant for a given power budget.

X-axis shows small subset of 100 code variants, Y-axis different DRAM power
reductions relative to base

Green dot shows fastest code variant for each power bounds

Red dot only case where models didn’t identify fastest code variant
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Summary

e Exascale will have multi-core designs and power capped
environment that will expose new performance challenges to
HPC application developers

e Models help developers and centers enhance their readiness
for Exascale systems and beyond,;
— For their key workloads, models can identify code-sections that need to
be re-examined to exploit drastic changes in Exascale hardware design

e Presented models that are highly accurate in predicting the
performance sensitivity of various HPC computations for
power caps DRAM domains as well as reduce per core
memory BW

e Presented use cases for both types of models.

Thank you for your attention!
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