# Server Resource Provisioning for Real-Time Analytics using Iso-Metrics

Dimitrios S. Nikolopoulos

School of Electronics, Electrical Engineering and Computer Science Queen's University of Belfast

July 15, 2015

#### Outline





#### Motivation: Servers and Micro-Servers

2 Micro-servers for Real-Time Financial Analytics

3 Iso-Metrics in HPC





# Diversity in the Server Landscape



Transactional throughput

## Diversity in Workloads







#### How do we choose the right server?



#### Queen's University Belfast

# QoS aware resource provisioning

- Quality of Service (QoS)
  - End-user metric of performance
- Real-time analytics define QoS requirements
  - Online requests trigger analytic computations
  - User-driven, market-driven deadlines
- QoS aware resource provisioning
  - Energy savings from energy proportional execution
  - Better utilisation from multi-tenancy of services

### Outline





#### 2 Micro-servers for Real-Time Financial Analytics

#### 3 Iso-Metrics in HPC



#### Real-time option pricing Georgakoudis et al. WHPCF'14, PPL



- Binomial Option Pricing: Black-Scholes generalisation in discrete time
- Symbol price change triggers options computation
- Deadline: compute all option contracts before next symbol change
- $QoS = \frac{Successful Pricings}{Total Pricings}$
- Inter-arrival time of price changes (Δt) varies per symbol



#### Option Pricing Kernels Georgakoudis et al. WHPCF'14, PPL



- Not particularly compute- or data-intensive, low-latency and data-parallel workloads
  - ${\, \bullet \,}$  Instance runs in ms or  $\mu {\rm s},$  must complete before next trade
  - Heavily traded symbols trigger Koptions/session

Price = 
$$(-1)^{p} \left( SN((-1)^{p} d_{1}) - Pe^{-rT}N((-1)^{p} d_{2}) \right)$$
 (1)

$$\operatorname{Price} = \frac{\mathrm{e}^{-rT}}{N} \sum_{i=1}^{N} \max\left(0, S - P \mathrm{e}^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}x_i}\right)$$
(2)

$$u = e^{\sigma\sqrt{T}}$$
 and  $d = \frac{1}{u}$  (3)

# QoS in Detail



#### WHPCF'14, PPL



Cumulative frequency distribution of Facebook and Google stock price updates for full trading sessions on July 7th and 15th 2014

# Iso-QoS and Energy



$$QoS(t) = 1 - e^{-\lambda} \sum_{i=0}^{t} \frac{\lambda^{t}}{\lfloor t \rfloor} \qquad (4)$$

$$G \ge N_{\mathrm{opt}} \times S_{\mathrm{opt}}$$
 (5)

$$E_{\mathrm{gap}} = N_{\mathrm{opt}} \times J_{\mathrm{opt}}$$
 (6)

- Time/option: User-side, end-to-end latency.
- **QoS:** Calculating option before new price arrives; unknown deadline.

$$N_{\text{gaps}} = \lfloor Y \times \text{session updates} \rfloor$$
(7)

$$E_{
m QoS=Y} = N_{
m gaps} \times E_{
m gap}$$
 (8)



# Feed Handling



Financial trace data measurement setup



#### Queen's University Belfast

## Servers vs. Micro-Servers



#### Qos aware dynamic concurrency throttling

- Supervisor with a QoS target manages execution
  - Receive QoS feedback from pricers
  - Send number of computation threads to pricers
- Simple Feedback-driven DCT policy
  - +1 thread (up to maximum), if  $QoS < QoS_{target}$
  - -1 thread, if  $QoS > (QoS_{target} + Threshold)$



### Results

- Experiment on a micro-server node, 4 imes Cortex A9, 4GB RAM
- Compare MAX policy (maximum number of threads) vs. QoS-aware DCT policy
- DCT QoS = 92%, 15% less peak power consumption, fewer active threads





#### Outline





2 Micro-servers for Real-Time Financial Analytics

#### Iso-Metrics in HPC

#### 4 Conclusion

#### New low-power computing paradigms Nikolopulos et al. IEEE Computer



#### • Approximate computation:

- Deliberately drop computation
- Effective in signal processing algorithms
- Active research in language, compiler, runtime, architecture support

#### • Significance-driven computation:

- Generalisation of approximate computing
- Invests more resources in the efficient execution of most significant instructions

# Case study: self-stabilising CG EEHCO'15, IET CDT



- Periodic step that corrects the state of the algorithm
- Convergence if healing step accurate
- No assumption about convergence rate

#### Hybrid architecture - A15 + NA7

- One reliable A15, N unreliable A7
- Healing step on A15 core, normal steps on A7 cores

| case study      | #A7 clusters | GFLOPS | Power |
|-----------------|--------------|--------|-------|
| iso-performance | 5.51         | 2.09   | 1.24  |
| iso-power       | 38.85        | 13.49  | 5.44  |
| iso-capacity    | 4            | 1.57   | 1.05  |

Evaluation of performance, power and energy on the target architectures



# Case study: self-stabilising CG EEHCO'15, IET CDT





# Case study: fault-tolerant GMRES EEHCO'15, IET CDT





D. Nikolopoulos (EEECS@QUB)

Iso-Metrics, ISC'15

### Outline





2 Micro-servers for Real-Time Financial Analytics

3 Iso-Metrics in HPC



# Conclusion



- Efficiency best understood through platform-agnostic metrics and methodologies
- Iso-metrics provide fair ranking of algorithms, architectures, systems
- Mathematical formulation of QoS metrics for real-time analytics
- Iso-QoS produces surprising server rankings for real-time applications
- New low power heterogeneous computing paradigms driven by iso-metrics







- EU (Grants: 323872, 610509), EPSRC (Grants: L000055/1, L004232/1)
- Collaborators: Kirk Cameron, Sandra Catalán, Charalambos Chalios, Giorgis Georgakoudis, Charles Gillan, Ahmad Hassan, George Karakonstantis, Dong Li, Enrique Quintana Ortií, Martin Schulz, Ivor Spence, Bronis R. de Supinski, George Tzenakis, Hans Vandierendonck, Vassilis Papaefstathiou, and the NanoStreams, SCoRPiO, ALEA, ENPOWER project consortia.