Palm: Easing the Burden of
Analytical Performance Modeling

_ KEVIN BARKER, DARREN KERBYSON, ADOLFY HOISIE

Pacific Northwest National Lab

ISC ’15: Performance Modeling: Methods & Applications

Analytical Modeling of Performance is Hard -

» Analytical model of performance

B Quantitatively explains and predicts application execution time

r statistical | ML
analytical simulation Smalytiea simulation

evaluation time (high)

insight (high)

B Diagnose performance-limiting resources, design machines, etc.

» How is application modeling difficult?

B Modeling requires expertise and labor
® model critical path:identify parameters for each critical path segment
® parameter reduction:represent ‘invariant’ code as measurement
@ validate:iterate until model captures all interestingbehavior
B Representing, reproducing and distributing models is ad hoc
® 1 modeler, N application variants
@® 1 application, N modelers

What can a tool automate? Can we pair model and source code?

Palm: How Can Tools Help?

» Identify and formalize best practices
» Make the simple easy and the difficult possible
B Provide a fully general framework (do not hinder)
B Automate routine tasks
» Facilitate a divide-and-conquer modeling strategy
B Construct model by composing sub-models
B Define model structure from static & dynamic code structure
» Assist reproducibility
B Generate same model given same input
B Generate model according to well-defined rules
» Assist validation (feedback loop)

B Generate contribution and error reports

Palm: Performance & Architecture Lab Modeling Tool

Outline

[» Qverview

» Scientific Workflows and Resource Contention
» Silicon Photonics’ Potential For Graph Applications

Palm: PAL Modeling Tool

N. Tallent & A. Hoisie. ICS 2014 \q/

reference & instrumented executables

Palm
Monitor

annotated Palm
source Compiler

static analysis

» Annotations guide modeling and express insight
B Develop model and application in tandem PR
B Decompose modeling task into sub-problems

B Reasonable because applications change slowly

» Generate model from (static/dynamic) annotation structure Palm
Generator

B Combine annotation expressions and measurements
» Models are ‘first class’ objects
» Generate same model given same input (reproducible)
» Generated model is an executable program EE—

B Instantiate with parametersto generate prediction

model

prediction & diagnostics (program)

refine as necessary

Simple Annotations for Nekbone (CG solver) -

program nekbone model: classify code block and model one
ISpal model init instance of its execution; if expression is

[caII init_dim, call init mesh, ... omitted, automatically synthesize one

!
[.Spal model cg loop: model several instances of a code block;
;:all cg(...) name block and model its trip count
en

subroutine cg(...) def: define model variable or function

- 1Spal loop ng, = S{n_iter}

do iter=1,n_iter S{x}: program value reference: capture x’s
value during program execution and
compute statistic across instances & ranks

. enddo

void halo _exchange(buf[n], n...) #pal def snd(sz) =..

#pragma pal loop ng.,q = S{n}[max] void isend(...size_t n, uint dst...)
for(i = 0; 1 < n; ++i) [#tpal model send = snd(S{n})
isend(..., buffi]...); MPI _Isend(... n, dst...)

Palm’s Model Matches Human-Generated Model

A model is a program.
— Here, it is a Ruby script.
class Model

def nekbone() (init() + cg() + k,) end synthesized model function
(from model & loop annotations
def init() k; end

and measurements)

def cg()
ne * (f() + reducey() + ... + reduces() +

cg() model’s form matches a
human-generated model:

26 * send
()) T + 3 Treduce +26 Tsend

end

def snd(sz) @machine.send(sz) end model function
end (from def annotation)

require ‘machine-pic.rb'
m = Model.new(PAL::ExecutionPIC.new(...))
m.eval(parameter-list)

machine parameters
(from model library)

evaluate to obtain runtime

Palm: Using Models

annotated Palm
source Compiler

reference & instrumented executables

Palm
Monitor

static analysis

» Models are (Ruby) programs

M scripting language is convenient; could use machine code profiles

B invoke by passing appropriate parameters (e.g., # cores)

B replace sub-models by re-defining functions
» Refine annotations using model diagnostics
B show contribution of each sub-model (expression)
@ quantitatively distinguish 15t-and 2"%-order effects

B show errorsof each sub-model w.r.t. measurements
©® understand effects of replacing a sub-model (function)
® example: new communication model

Palm
Generator

parameters

_ — . . model
prediction & diagnostics M "o%el

Modeling a Wavefront Application: Sweep3D %

» Sweep3D: 2D pipeline

B Wavefronts propagate in phases,
vielding active and idle states

M Idle (& pipeline) time depends on
ranks, phase, & pipeline stage

M(rank, phase, stage)

» Need more than static analysis
B pipeline formed dynamically ﬁ\ E/E JA
@ statevariablesand guarded code &
» Palm assists modeling the critical path — before it exists

B expressidle time as function of a pipeline stage’s model
® model critical path using a forward reference to a generated model

B Palm assembles model using dynamic analysis & composition rules

M(rank, phase, M(stage)) - M(rank, phase)
ool
9

ranks

time

human

Outline

» QOverview

[» Scientific Workflows and Resource Contention

» Silicon Photonics’ Potential For Graph Applications

10

High Energy Physics: Belle I|

»

23 countries/regions
97 institutes
577 colleagues

ATLAS, 38 cauntrles,u? 7V'; institutes, ~5000 members
CMS: 42 countries, 182 institutes, 4300 members
ALICE : 36 countries, 131 institutes, 1200 members

LHCb : 16 countries, 67 institues, 1060 members as of June 30,2014 "

" Asia:~45% N.America Europe:~407%
Japan:137 :~15% Germany : 83
Korea: 34 us: 63 Italy: 59
Taiwan: 22 Canada: 17 Russia: 37
India: 20 Slovenie: 14
China: 15 Austria: 14
Australia: 18 Poland: 11

e -

» “>

R
s

“High Energy Accelerator Reseach Organization *

Belle Il Experiments Require Extensive Analysis \?/

» Data! 25 PB/year of raw data
B Stored data expected to reach 350 PB

» Belle Il Workflow: Extensive data analysis

B Normalize data and ‘do physics’

» Many analysis pipelines run concurrently

B Goal: Predict (& mitigate) resource contention —
» Example analysis pipeline: data

) m
iTOP data € .es i :
file
Calibr. Tool Calibr. Tool

B Dynamically assembled modules (Python script) m W

Palm creates workflow model by composing models for each module

12

Outline

» Qverview
» Scientific Workflows and Resource Contention

[» Silicon Photonics’ Potential For Graph Applications

13

Assessing the Impact of Silicon Photonics

» Question: What is the impact of silicon photonics on graph-based
workloads in the 4—-6 year timeframe?
» Methodology

B Work with architects; Identify silicon-photonics enabled systems
® IBM TOPS (64 nodes, fully connected): photonics off node
® Oracle Macronode (32 nodes, fully connected): photonics on & off node

B Draw workloads from PNNLs experience with graph applications
B Comparessilicon-photonics systems with electrical counterpart
@ fix footprint; fix power
B Large, distributed graphs (“require a rank”)
@ Validate at scale 34; Project at scale 40
® Scale £ log,(edges)
B Models explore both performance and power
B Model intra-node and inter-node data movement

14

Two Workloads To Represent Important Use Cases

-ity Detection l Matching (7

» Input: Graph with weighted edges » Input: Graph with weighted edges
» Output: Disjoint sets of related vertices » Output: Maximal weighted matching
» Aggregated personalized all-to-all to » Two phases b/c of multi-step protocol
send each edge’s target info (~1 GB) B Based on locally dominant neighbor
» lterate until A-modularity < threshold » Phase 1:
B Each vertex initially its own community B Try matching each vertex
B For each vertex, determine whether B Aggregate messages between nodes
modularity increases by moving to > Phase 2:

neighboring community

B Try matching on “matched frontier”

Iter ntil all verti re match
Large, aggregated messages B Iterate until all vertices are matched

.. B Usevery small (24 B) messages
e Optimized for cluster networks Y () &
e Combine regs with same target vertex

| More computation_ TS

More computation

* Modularity requires collectives —
* Denser graph’ aggregation cost Scale'40 dIStI’IbUtEd graphS

15

Two Workloads To Represent Important Use Cases

I;- munity Detection l
» Input: Graph with weighted edges Using Palm...

» Output: Disjoint sets of related vertices

» Aggregated personalized all-to-all to Annotations convey
send each edge’s target info (~1 GB) insight about input graph

» Iterate until A-modularity < threshold

B Each vertex initially its own community Capture important runtime

properties. E.g.: probability that

B For each vertex, determine whether

modularity increases by moving to communities are formed
neighboring community

Large, aggregated messages Swap network models
e Optimized for cluster networks

e Combine regs with same target vertex : :
Convenient representation
More computation

* Modularity requires collectives Challenge: Help specialize
» Denser graph; aggregation cost model for graph input class

16

Conclusions

» Ease burden of modeling

B Facilitate divide-and-conquer modeling strategy

B Automatically incorporate measurements

B Generate contribution and error reports
» Enable first-class models

B Coordinate models and source code

B Functions unify annotations, generated models, and measurements
» Expressive: elegantly represent non-trivial critical paths

B Annotations provide convenience within fully generic framework
» Reproducible: generate same model given same input

B Generate model according to well-defined rules

B Define model structure from static & dynamic code structure

» Future: Especially interested in more dynamic assistance

18

