S

Empirical Roofline
Toolkit (ERT)

Brian Van Straalen

Terry Ligocki, Linda Lo, Wyatt Spear, Matt Cordery,
Sam Williams, Leonid Oliker, Nick Wright

Lawrence Berkeley National Laboratory

BVStraalen@lbl.gov

e _ AWRENCE BERKELEY NATIONAL LABORATORY =—n

S

««2) Review: The Roofline Model

< The Roofline model
provides an intuitive
model and figure for
understanding kernel
performance on
various architectures.

< Unfortunately, the
approach suffers from
three factors....

¢ “Roofline: An Insightful Visual
Performance Model for Floating-
Point Programs and Multicore
Architectures”, Williams, Waterson,
Patterson. 2008

LAWRENCE BERKELEY NATIONAL LABORATORY 2

S

Rooflines are hard to build

1. HW Characterization: Construction of the roofline model requires
expert knowledge of the target processor microarchitecture (ILP, TLP,
DLP, issue policies, cache/memory capacities/bandwidths, ...). This
can be hard to come by (limited documentation and requires experts to
convert into the model).

2. Execution Monitoring: In order to read the figure, one must know the
associated characteristics of the kernel. Today, performance
characterization of kernels often degenerates into just run time. We
need to know #flop’s, SIMDization rates, ILP, TLP, actual data
movement. On most machines, performance counters often fail to
accurately report DRAM data movement (BGQ’'s HPM is the only
success thus far).

3. SW Characterization: We need a target of what is theoretically
possible for a kernel. This requires an expert in the architecture and
the algorithm to predict the performance of the HW/SW stack when
compiling/running this routine.

Instead of an Oracle, why not try to assess the realizable Roofline empirically with a suite
of suitably transparent benchmarks?

» Empirical Roofline Toolkit (or ERT).
LAWRENCE BERKELEY NATIONAL LABORATORY 3

S

Roofline Toolkit

< DOE SciDAC Institutes FastMath (Math Algorithms) and SUPER
(Performance Computing) have been developing new algorithms which are
more compute intensive in order to avoid the memory bottleneck.

< However, they need to know the characteristics of architectures (today and
in the future) in order to bound how aggressive their new algorithms should
be.

< To that end, SUPER and FastMath wrote a white paper to fund a Roofline
augmentation for SUPER

< This involved the creation of a Roofline Toolkit that automates the
construction of theoretical and execution Roofline models and figures.

>

D)

> The funded Roofline augmentation was split among LBL, U Oregon, and
Argonne National Lab.

D)

LAWRENCE BERKELEY NATIONAL LABORATORY 4

S

, \ _ :
:% Roofline Toolkit

< The Roofline Toolkit has four components

< This talk will primarily focus on the ERT
» designed to be a portable machine characterization framework

» implemented as MPI+OpenMP in order to verify users can run hybrid implementations
correctly (i.e. correct mpirun/aprun/... affinity options)

= variable working set designed to highlight cache hierarchy
= variable compute intensity kernels

= produces a JSON file for database and visualization

» internal release in November, 2014

= external release in March, 2015

Empirical Roofline
Toolkit (ERT)
(LBL/CRD)

LAWRENCE BERKELEY NATIONAL LABORATORY 5

= A -
:% Simple benchmarks

Bandwidth

GFlops

void Kernel (uint64_t size, unit64_t
trials, double * _ restrict A) {
double alpha = 0.5;
uinte4 t i, j;
for (j = ©0; j < trials; ++j) {
for (1 = 0; i < nsize; ++i) {
A[i] = A[i] + alpha;
}
alpha = alpha * 0.5;
3}

void Kernel (uint64 t size, unit64 t trials,
double * restrict A) {
double alpha = 0.5;
uinte4 _t i, j;
for (j = ©0; j < trials; ++j) {
for (i = 0; 1 < nsize; ++i) {
double bete = 0.8;
#if FLOPPERITER ==
beta = beta * A[i] + alpha;
#elif FLOPPERITER ==
beta = beta * A[i] + alpha;
beta = beta * A[i] + alpha;
#elif FLOPPERITER ==

#endif
A[i] = beta;
}
alpha = alpha * 0.5;
}}

LAWRENCE BERKELEY NATIONAL LABORATORY

S

' A
e § ERT Results

< Consider Edison (2P IVB) with MPI+OpenMP...

= theoretical flops = 460 GFlop/s
» theoretical L1 =1.8TB/s (1:1)
» theoretical DRAM = 102 GB/s

< The attained performance departs slightly from the theoretical performance
but is a better measure of what the computing system (Processor +
Compiler + Runtime) can deliver on real applications.

< Similar experiments have

0

been run On BGQ and MIC Empirical Roofline Graph (Results.Edison.MPI+OpenMP/Run.001)
and are now being 1000
automated in the ERT. 353.8 GFLOPs/sec (Maximum)
= Results on BGQ suggest... o
write-thru L1 cache g cgﬁc"c;b\:
good compilers £ 100 ¥ g'b%fib\
need for TLP g 5 &
» Results on MIC required 7 o
o)
extreme Al to attain peak A
&
Q
10
0.01 0.1 1 10 100
FLOPs / Byte

e _ AWRENCE BERKELEY NATIONAL LABORATORY =sss—mpio

S

receeee| |

Edison (Intel Ivy Bridge CPU) Mira (IBM Blue Gene/Q)

1e+04 . . ; 1e+04 T T
—~ X m »
0 -~
P \"‘h\ ' D1e+03
g1e+03 l‘{. X--h-"& 9 ><_____,_>‘(
X

1e+02

1e+02 \5, |

Total Bandwidth
Total Bandwidth
“\

empirial bandwidth —«

empirial bandwidth ——

theoretical bandwidth - x- 0 theoretical bandwidth - x-
+ .) h
Ter q1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09 © 1e+03 1e+04 1e+95 1e+0(_3 1e+07 1e+08 1e+09
Working Set Size (bytes) Working Set Size (bytes)

Babbage (Intel Xeon Phi) Titan (Nvidia K20x)

1e+04 T T T
1e+04 T T T
PEEEEEE --X ‘
_ miox | b,
2 M . _1e+03 [£ 5]
o1e+03 X -y o
et ‘ e
3 ¥ j; £ ¥
F—3 I S I N S R N == f
e W | %1e+02 + . ; B
a I — 5 ;
Fle+02 - - — ¥ theoretical bandwidth - x-
o g / global_tinside(64, 224) ——
F1e+01 global_tInside(32, 224) —x— -
" global_tOutside(64, 224)
7 global_tOutside(32, 224)
th empt'”a: ga”g‘”'gm == ; sharemem(64, 224)
e icoretical bandwidi) = X~ tov00 L& sharemem(32, 224)
10403 10+04 10+05 1e+06 1e+07 1o+08 1+09 ©*0%+03 10+04 10405 1e+06 1e+07 16408 16409
Working Set Size (bytes) Working Set Size (bytes)

e _ AWRENCE BERKELEY NATIONAL LABORATORY =s—

S

CUDA Unified Memory

» CUDA is continually evolving

» Older versions of CUDA required
user managed copying of data to/

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Coz

Memory Ping-Pong Study, Dirac
Pageable Host (Explicit Copy)

128

100
B 64

3
b3

from the device... - -8 -8
= pageable (malloc) g "5 i’ "5
] pinned memory (Cuda ma"oc) é 10 933 1236 1254 1250 % §l1 8 %
% Recently, CUDA introduced... 5 | -
» Unified Virtual Addressing , 1
1KB 16 KBVVZoS:(il:g S‘:etMSBizeM MB 1GB
= Zero Copy Memory
= Unified (managed) Memory Memory Ping-Pong Study, Dirac Memory Ping-Pong Study, Dirag
. Page-locked Host (Zero Copy) Unified Memory Management (ZerasCep
‘:‘ These pUSh the mlsmanagement Of 100 6.17 6.23 6.37 - 100 4.80 38.33 64.28 6! e -
data locality into the driver. 8 B 3
- 20 'i 20
,:, Programmers need automated % 50 619 626 641 16§ % 50 2600 3659 3613 3219 16§
technologies to characterize 5 & 5 &
performance as a function of ... 2 g .3
0] w 5 [

8.27 8.46 8.55 2 1

= memory allocation :
= spatial locality

» temporal locality

= interconnect (PCle vs NVLINK)

< YuJung (Linda) Lo, et al, PMBS’14
eeeeeeesessssss L AWRENCE BERKELEY NATIONAL LABORATORY =i

1KB 16KB 256 KB 4MB 64MB 1GB 1KB 16KB 256 KB 4MB 64MB 1GB
Working Set Size Working Set Size

D)

ceeee) ; Temporal vs. Spatial Locality

vs. Threading Costs

< We can extend the same spatial vs. temporal
experiments conducted for CUDA unified CPU Memory Locality Study, Edison

CPU Memory Locality Study, Mira

. Outside Reuse loop, 4GB Working Set Outside Reuse Loop, 4 GB Working Set
memory to any cache hierarchy
.) 1000 1852 1890 1864 1087 1046 642 365 1000
< We may define... g . -
£ o 38 o
" large total Working set (TWS) to flush caches % 100 1506 1865 1797 1046 909 636 28 1000% E 100 10003
. . . . 3 t 8 3
= active working set (AWS) = spatial locality 4 23 2
n reuse (tempora' |oca||ty) E 10 337 471 571 363 242 244 188 " E g, 10 " E
", > 8 2 8
< Additionally, we can capture thread 5 i i
. . 1 1
synchronization costs...
10 10
= coarse-grained synchronization B S ive Working Set Size o T oive Working Set Size
(synchronize once per AWS)
» fine-grained synchronization CPU Memory Locality Study, Babbage GPU Memory Locality Study, Titan
(once per AWS update) Outside Reuse Loop, 4 GB Working Set Reuse within the kenel, Shared Memory
. . 1000 2046 2279 2108 1155 673 142 1000 214 311 143 24
< We can also run a similar code on the GPUs S _
. . g @ E @
to measure their cache behavior... E o .
' 1469 1741 1567 1048 695 143 % % 100 297 137 23 %
» interestingly ‘global’ memory dramatically 4 - H
underperforms conventional wisdom for small Za’ <~ . . e % 2 N &
100 = 0 2
problems 5 52 =
. . o o &
»= ‘shared’ memory attains reuse in the L2 for 1 B N RN
large problems (better than GDDR BW) °
. 480 KB 960 KB.1920 KB. 3MB 3.0 MB 300 MB 392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB
= must exploit ‘shared’ memory to get good Active Working Set Size Active Working Set Size
performance for small problems (terrible for
large)

< Original Roofline BW ceilings were

basically the top row
e L AWRENCE BERKELEY NATIONAL LABORATORY =t

S

oo § Visualization and

‘ Eclipse Integration

» Wyatt Spear / UO

< Roofline charts implemented in JavaFX.
Allows for portable, standalone viewer

o

Roofline data is stored in JSON files
= performance metrics and metadata
» facilitates search/comparison between trials, systems and benchmarks

0’0

Remote database for community access to Roofline data

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t

S

— _
’N Roofline Ul

0:0 ROOfline UI Can real F Edit Source Refactor Naviga Sech Pje(t un window Help
data from remote
repo Or Iocal diSk = [2¢ Problems ¥ Tasks B Console E Properties | @ Roofline View X o

] Mira v || Load | Load Remote | http://nic.uoregon.edu/-

Roofline: Mira

% quick/easy selection : o

from multiple data " /
3% O O

sets

Attainable GFlops/sec
@)

4

% values are shown on
mouse-over (more ’ e

Fpec: GFLOP/s © Spec: L1 O Spec: RAM o+ O */+ oLl oL2

precise on log-log) o

e _ AWRENCE BERKELEY NATIONAL LABORATORY =i

S

Under Development...
Roofline-Eclipse Integration

frreeeer ‘m

. . % C/C++ - Eclipse SDK
’:’ SeleCt appllcatlon File Edit Source Refactor Navigate Search Project Run Window Help

i~ BSvQ v wig ey lfy G~ NIy Q@S

events in Eclipse a | & | &me (Bgces
source OUtllne @5 Project X = O « (& main.cpp X = B8 |Zoutline X ©MakeTa = B

Bg * =int [FXT(int argc, char** argv) { 2B R o % ¥
) o miniFE::Parameters params; — -
» & External Plug-in Lib miniFE::get parameters(argc, argv, params); © mainfink charkk) -ink
> & hello o : OpenDeclaration
> &S miniFE ir_lt'nur!ulalrogs'= 1, myproc = 6;) ° i Open Call Hierarchy ctrl
miniFE::initialize mpi(argc, argv, numprocs, myproc); Open Include Browser Cct

< Display values from =™ T

Declarations

TAU d b d ata base O n aciss-roofline.aciss v || Load || Load Remote o

Roofline: aciss-roofline.aciss Toggle Breakpoint

Roofline chart oo

= D Properties
g 32
@
@
S 16
G - l G
< Not yet part of officia s .
c
g 4
release <
2
1
.06 12 19 25.31 44 .56 .75 1125 175 253354 5 6789 1214 18 24
Operational Intensity (Flops/Byte)
O GFLOPs L1
oL2 O DRAM

O int main(int, char **) [{main.cpp} {86,1}-{188,1}]

roofline v || Application-miniFE.x.03 ¥ | Select Trials

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t

~
A
frreeeer ‘m

BERKELEY LAB

< The data sets hiding behind the Roofline key metrics offer a view of

a darker future

Storm on the Horizon

Empirical Roofline Graph (Results.Linux.Intel.pureOpenMP/Run.001)

400

350 +

300

250

200

GFLOPs / sec

150

100

50 -

4.83e+05 ——
2.44e+06
1.64e+07 ——

P |

— S | i i PR SrErr |

Working Set Size -

4.19e+08 ——]

0.1 1 10
FLOPs / Byte

» jcc compiler stops vectorizing. Fine, I'll vectorize it myself

e _AWRENCE BERKELEY NATIONAL LABORATORY =—n

100

S

' A
% Another bonk....

Roofline kernel varying Al - C and AVX unrolled

400 — S —— e
C roofline
C ——
| AVXunroll 2 |
350 I AvX unroll 4 —— e e
AVXunroll 6 —— 9. N/
V!
300 |- [L |
/ ,:’." ’
£
oy B
250 g, s . -
o : ;
@ L
0 »
P ! &
o 200 I~ Te -
O / ;4 .
- ' N 'Y
w 4 . .
O n'l ‘: » ,
1 50 - ‘,;'o j"' e i -
100 |- ol .
——
50 |- -
0 —aal A " ia g aal " A PR | A A PR T T T Y
0.01 0.1 1 10 100

FLOPs / Byte
Manually vectorizing means you are now unrolling by hand
» The Out-of-Order limitations now kick in. (ROB limits).

LAWRENCE BERKELEY NATIONAL LABORATORY =i

What to do about it?

“Extending the Roofline Model: Bottleneck Analysis with
Microarchitectural Constraints” Cabezas & Puschel (ETH). 2014

= Roofline specific to algorithm Perbrwnce Flogn Gyl
. . = f : F ~ .
= Microarchitecture emulated L Sk L L mea ey
Q-&&o ; , l’ 1’
v:’y»vﬁ-—‘—u«—,’»-a-o—ola‘-‘du““’b-nn——.’o”—“—-“—w‘
| .Q’ Q‘J , 4 I’ l‘ Lsency
66" -Q;\\:" ’,’ . I’ <'l - S -
c'P j; Il ’ /I
% 4 w3 P =
V'. ,7’ 4 4 4 .- riap
. § r e LLC Boency NI YIS,
o " ~ SELs e Wierey
‘é ‘s 4 sl 12 RO0
45‘ T e LLC ROS
,L{,(r " '-‘ ’I SRR (e O LLFP corvnnn

2
0.001 33 o |
Oceve 2en bwevany hopn Bhie)

(b) Roofline plot foe FFT, size 1048576, warm cache
2 parameter Roofline cartoon needs to become higher dimension
= Needs register memory line
» Things to be quantified: Out-of-Order, load/store slots, launch, synch.
= 2D slices of Roofline will likely remain illustrative
LAWRENCE BERKELEY NATIONAL LABORATORY 16

S

Beyond The Roofline Model

< Roofline is a streaming performance model...
(presumes bandwidth dominates latency and overhead)

< Roofline assumes a simple locality model (giant, data-parallel working sets)

< Although these assumptions are often true today, they may not hold in the
future...
= although applications teams will still weak-scale with respect to the number of
nodes, many want to strong-scale with respect to he number of cores on a node

in the future. (i.e. keep the problem size per node fixed, but replace frequency
scaling with multithreading).

» The cost of thread/device synchronization increases (<1us on Edison, >10us on
MIC/GPUs) with parallelism.

» Real applications have complex locality patterns with finite working set sizes and
limited reuse at each level.

<+ We need to examine ways of extending the Roofline model to capture
the effects of high synchronization costs and complex locality
patterns and present the performance implications concisely

LAWRENCE BERKELEY NATIONAL LABORATORY 17

S

Summary and Next Steps

<+ We have an initial public release of the ERT available for download

< We are actively collaborating on application characterization
(theoretical and empirical) and visualization.

= visualizer can plot roofline data from database
= continued Eclipse integration
= suggestions on analysis and performance counters are welcome

< We plan on generalizing the locality vs. synchronization benchmarks
and including them in the ERT.

= what else are we missing?

s _ AWRENCE BERKELEY NATIONAL LABORATORY =t

