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Overview 

• Our community has major challenges in HPC as we move to extreme 
scale 
– Power, Performance, Resilience, Productivity 

– New technologies emerging to address some of these challenges 
• Heterogeneous computing 

• Nonvolatile memory 

– Not just HPC: Most uncertainty in at least two decades 

• We need performance prediction and engineering tools now more than 
ever! 

• Aspen is a tool for structured design and analysis 
– Co-design applications and architectures for performance, power, resiliency  

– Automatic model generation 

– Scalable to distributed scientific workflows 

– DVF – a new twist on resiliency modeling 
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Notional Future Architecture 

Interconnection 

Network 

See ISC30 talks 
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Workflow within the Exascale Ecosystem 

“(Application driven) co-design is the process 

where scientific problem requirements influence 

computer architecture design, and technology 

constraints inform formulation and design of 

algorithms and software.” – Bill Harrod (DOE) 

Slide courtesy of ExMatEx Co-design team. 
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Prediction Techniques Ranked 
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Prediction Techniques Ranked 
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Aspen: Abstract Scalable Performance Engineering Notation 

Creation 

• Static analysis via compilers 

• Empirical, Historical 

• Manual for future applications 

Use 

• Interactive tools for graphs, queries 

• Design space optimization 

• Drive simulators 

• Feedback to runtime systems 

Representation in Aspen 

• Modular 

• Sharable 

• Composable 

• Reflects prog structure 

Existing models for MD, UHPC CP 1, 

Lulesh, 3D FFT, CoMD, VPFFT, … 

Source code 
Aspen code 

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in SC12: ACM/IEEE International Conference for High Performance 

Computing, Networking, Storage, and Analysis, 2012 

Researchers are using Aspen for parallel applications, scientific workflows, capacity planning, quantum computing, etc 
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Manual Example of LULESH 
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Aspen allows Multiresolution Modeling 

Distributed Scientific Workflows 
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Node Scale Modeling with COMPASS 
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COMPASS System Overview 

• Detailed Workflow of the COMPASS Modeling Framework 

source code 
Input Program 

Analyzer 

Aspen machine 

model 

OpenARC IR with 

Aspen annotations 
Aspen IR Generator 

ASPEN IR 

Aspen IR 

Postprocessor 

Aspen application 

model 
Aspen 

Performance 

Prediction Tools 

Program 

characteristics 

(flops, loads, stores, 

etc.) 

Runtime prediction 

Optional feedback for advanced users 

Other program 

analysis 

 
 

 

 

 

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM 

International Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220. 
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MM example generated from COMPASS 
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Input MatMul Code Annotated to Use an Alternative 

Algorithm 

int N = 1024; 

#pragma aspen control execute flops(N^2.372, traits(sp)) \ 

  stores(N*N*floatS:to(A):traits(stride(1))) \     

  loads(N*N*floatS:from(B):traits(stride(1)), ...) … 

void matmul(float * A, float * B, float * C) { 

    ... //the original function body is here. 

} //end of matmul() 

 

int main() 

{ 

  ... //the original main code is here. 

} 

• The original MatMul code uses a simple algorithm with O(N3) load operations. 

• The new Aspen directive overrides the result produced by the analysis framework for the matmul() function 

to use the Coppersmith-Winograd algorithm that requires only O(N2.372) operations, generating a new 

Aspen application model without rewriting the input program. 
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Annotation Overhead 

Benchmark Name Lines of Code Lines of Annotation 
Annotation Overhead 

(%) 
JACOBI  241  2 0.8 

MATMUL  128  1 0.7 

SPMUL  423  10 2.3 

LAPLACE2D  210  7 3.3 

CG  1511  10 0.6 

EP  759  9 1.1 

BACKPROP  1074  4 0.3 

BFS  435  16 3.6 

CFD  752  9 1.1 

HOTSPOT  525  11 2.0 

KMEANS  1822  11 0.6 

LUD  421  6 1.4 

NW  478  8 1.7 

SRAD  550  12 2.1 

LULESH  3743  125 3.3 
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Example: LULESH (10% of 1 kernel) 

kernel IntegrateStressForElems 
{ 
   execute [numElem_CalcVolumeForceForElems] 
   { 
       loads [((1*aspen_param_int)*8)] from elemNodes as stride(1) 
       loads [((1*aspen_param_double)*8)] from m_x 
       loads [((1*aspen_param_double)*8)] from m_y 
       loads [((1*aspen_param_double)*8)] from m_z 
       loads [(1*aspen_param_double)] from determ as stride(1) 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       loads [(1*aspen_param_double)] as stride(0) 
       stores [(1*aspen_param_double)] as stride(0) 
       loads [(1*aspen_param_double)] as stride(0) 
       stores [(1*aspen_param_double)] as stride(0) 
       loads [(1*aspen_param_double)] as stride(0) 
       . . . . . . 

- Input LULESH program: 3700 lines 

of C codes 

- Output Aspen model: 2300 lines of 

Aspen codes 
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Model Validation 

FLOPS LOADS STORES 
MATMUL 15% <1% 1% 

LAPLACE2D 7% 0% <1% 

SRAD 17% 0% 0% 

JACOBI 6% <1% <1% 

KMEANS 0% 0% 8% 

LUD 5% 0% 2% 

BFS <1% 11% 0% 

HOTSPOT 0% 0% 0% 

LULESH 0% 0% 0% 

0% means that prediction fell between measurements from optimized 

and unoptimized runs of the code. 
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Model Scaling Validation (LULESH) 
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Example Queries 



Performance Modeling 

for Distributed 

Scientific Workflows 
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Aspen allows Multiresolution Modeling 

Distributed Scientific Workflows 
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PANORAMA Overview 
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E. Deelman, C. Carothers et al., “PANORAMA: An Approach to Performance Modeling and Diagnosis of Extreme Scale Workflows,” International Journal of 

High Performance Computing Applications, (to appear), 2015,  
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Workflow: 

ACME 

Climate 

Modeling 
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Workflow: SNS 
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Automatically Generate Aspen from Pegasus DAX; 

Use Aspen Predictions to Inform/Monitor Decisions 
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Workflow Monitoring Dashboard – pegasus-dashboard 

Status, statistics, timeline of jobs 

 

 

Helps pinpoint errors 



End-to-end Resiliency Design using 

Aspen 
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Data Vulnerability Factor: Why a new metric and 

methodology? 

• Analytical model of resiliency that includes important features of 
architecture and application 

– Fast 

– Flexible 

• Balance multiple design dimensions 

– Application requirements 

– Architecture (memory capacity and type) 

• Focus on main memory initially 

• Prioritize vulnerabilities of application data 

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in 

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana: 

IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62. 
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DVF Defined 

 

𝑁𝑒𝑟𝑟𝑜𝑟 = 𝐹𝐼𝑇 ∗ 𝑇 ∗ 𝑆𝑑  

Hardware Failure Rate ( 𝐹𝐼𝑇 ) Execution Time ( 𝑇 ) Footprint Size ( 𝑆𝑑 ) 

Hardware Effects  Number of Errors ( 𝑵𝒆𝒓𝒓𝒐𝒓 )   

Hardware Access Pattern 

Application Effects  Number of Hardware Accesses ( 𝑵𝒉𝒂 )   

𝑁ℎ𝑎 Hardware Access Pattern 

Data Structure Vulnerability →  𝐷𝑉𝐹𝑑 = 𝑁𝑒𝑟𝑟𝑜𝑟 ∗ 𝑁ℎ𝑎 

Application Vulnerability →  𝐷𝑉𝐹𝑎 =  𝐷𝑉𝐹𝑑𝑖
𝑛
𝑖=1  

Hardware Access Pattern 

Application Effects  Number of Hardware Accesses ( 𝑵𝒉𝒂 )   
We focus on a specific hardware 

component, the main memory, in this work 

Larger DVF indicates higher vulnerability, 
and vice versa 
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Implementing DVF 

• Extend Aspen performance modeling language 

• Specify memory access patterns 

• Combine error rates with memory regions and performance 

• Assign DVF to each application memory region, Sum for application 
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Workflow to calculate Data Vulnerability Factor 
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An Example of Aspen Program for DVF 

 procedure VM(A,B,C) 
    for i  1, 1000 do 
        C[i]  C[i] + A[i*4] * B[i*8] 
    end for 
end procedure 

Pseudocode 

kernel vecmul { 
    execute mainblock2 [1] 
    { 
    flops [2*(n^3)] as sp, fmad, simd 
    access {1000} from {matA} as stream(4,16) 
    access {4000} from {matB} as stream(4,32) 
    access {8000} from {matC} as stream(4,4) 
    } 
} 

Extended Aspen Statements  

Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
 

Syntax Tree 

Data structure A: 
Number of errors: 30,400 
Number of memory accesses: 51 
DVF: 105504e+06 
…  

Resilience Modeling Results 

Extended 

Parser 

Extended 

Complier 
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DVF Results Provides insight for balancing interacting factors 



37 

DVF: next steps 

• Evaluated different 
architectures 

– How much no-ECC, ECC, NVM? 

• Evaluate software and 
applications 

– ABFT 

– C/R 

– TMR 

– Containment domains 

– Fault tolerant MPI 

• End-to-End analysis 

– Where should we bear the cost 
for resiliency? 

• Not everwhere! 
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Summary 

• Our community has major challenges in HPC as we move to extreme 
scale 
– Power, Performance, Resilience, Productivity 

– New technologies emerging to address some of these challenges 
• Heterogeneous computing 

• Nonvolatile memory 

– Not just HPC: Most uncertainty in at least two decades 

• We need performance prediction and engineering tools now more than 
ever! 

• Aspen is a tool for structured design and analysis 
– Co-design applications and architectures for performance, power, resiliency  

– Automatic model generation 

– Scalable to distributed scientific workflows 

– DVF – a new twist on resiliency modeling 
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Notional Exascale Architecture Targets 

(From Exascale Arch Report 2009) 

System attributes 2001 2010 “2015” “2018” 

System peak 10 Tera 2 Peta 200 Petaflop/sec 1 Exaflop/sec 

Power ~0.8 MW 6 MW 15 MW 20 MW 

System memory 0.006 PB 0.3 PB 5 PB 32-64 PB 

Node performance 0.024 TF 0.125 TF 0.5 TF 7 TF 1 TF 10 TF 

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec 

Node concurrency 16 12 O(100) O(1,000) O(1,000) O(10,000) 

System size (nodes) 416 18,700 50,000 5,000 1,000,000 100,000 

Total Node 

Interconnect BW 

1.5 GB/s 150 GB/sec 1 TB/sec 250 GB/sec 2 TB/sec 

 

MTTI day O(1 day) O(1 day) 

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/  

Parallel I/O ?? 

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/
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Today’s Status 
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(Un-)Balanced Systems ?? 

System attributes 2001 2010 2014 est 2018 Summit/Titan

Name Seaborg3 Jaguar Titan SUMMIT

System peak 10 Tera 2 27 136 5.0

Power (MW) 0.8 6 9 10 1.1

Node main memory (GB) 16 38 512 13.5

System memory (PB) 0.006 0.3 0.7106 1.7408 2.4

Node Persistent Memory (GB) 800 inf

System Persistent Memory (PB) 2.72 inf

Node performance (TF) 0.024 0.125 1.4 0.5 7 40 28.6 1 10

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 16 12 O(100) O(1,000) *POWER9s + *VOLTAs O(1,000) O(10,000)

System size (nodes) 416 18700 18700 50000 5000 3400 0.2 1000000 100000

Total Node Interconnect BW (GB/s) 1.5 GB/s 150 GB/sec 1 TB/sec 250 GB/sec 2 TB/sec

injection bandwidth per node (GB/s) 7.6 20 23 1.2

File system capacity (PB) 6 32 120 3.8

File system bandwidth (TB/s) 0.3 1 1 1.0

MTTI day O(1 day) O(1 day)

“2015” “2018”

200 1 Exaflop/sec

15 20

5 32-64

• Power is constant 
• 1/5 of the node count 
• Heterogeneous 
• I/O and NIC bandwidth has plateaued 
• NVM is new! 


