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Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 Multicore tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks

 Hardware bottlenecks

 Node-level performance modeling (part I)

 The Roofline Model and dense MVM

 Lunch break

 Node-level performance modeling (part II)

 Case studies: Sparse MVM, Jacobi solver

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 OpenMP synchronization and multicores

 Pattern-driven performance engineering

(c) RRZE 2015 Node-Level Performance Engineering

G
W

JT
JT

G
W

JT

10:00

12:00

15:00

17:00

13:30

15:30

10:30

08:30

G
H

a
G

H
a

G
W

JT
JT

G
W

JT
G

H
a

G
H

a
G

W
JE

G
H

JE
G

H
JE

G
W

2



A conversation

From a student seminar on “Efficient programming of modern multi- and 

manycore processors”

Student: I have implemented this algorithm on the GPGPU, and it

solves a system with 26546 unknowns in 0.12 seconds, 

so it is really fast.

Me: What makes you think that 0.12 seconds is fast? 

Student: It is fast because my baseline C++ code on the CPU is about

20 times slower.
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Prelude:

Scalability 4 the win!



Scalability Myth: Code scalability is the key issue

(c) RRZE 2015 Node-Level Performance Engineering

Prepared for 
the highly 
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile 
options makes this code 
scalable on an 8-core chip

–O3 -xAVX
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Scalability Myth: Code scalability is the key issue

(c) RRZE 2015 Node-Level Performance Engineering

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency 
is key issue!

Upper limit from simple 
performance model:
35 GB/s & 24 Byte/update
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Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets 

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model  does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the 

situation
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How model-building works: Physics

(c) RRZE 2015

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓  𝑟, 𝑡 = 𝐻𝜓  𝑟, 𝑡

 𝐹 = 𝑚  𝑎

Nonrelativistic 
quantum 
mechanics

Fails @ even smaller scales!

Relativistic 

quantum 

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐
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Introduction:

Modern node architecture

Multi- and manycore chips and nodes

A glance at basic core fatures

Caches and data transfers through the memory hierarchy

Memory organization

Accelerators

Programming models



Multi-core today: Intel Xeon 2600v3 (2014)

 Xeon E5-2600v3 “Haswell EP”:

Up to 18 cores running at 2+ GHz (+ “Turbo Mode”: 3.5+ GHz)  

 Simultaneous Multithreading

 reports as 36-way chip

 5.7 Billion Transistors / 22 nm

 Die size: 662 mm2

2-socket server
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. . . . . .

Optional: 
“Cluster on Die” 
(CoD) mode



General-purpose cache based microprocessor core

 Implements “Stored 

Program Computer” 

concept (Turing 1936)

 Similar designs on all 

modern systems

 (Still) multiple potential 

bottlenecks

 The clock cycle is the 

“heartbeat” of the core
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Stored-program computer

Modern CPU core
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Pipelining of arithmetic/functional units 

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.: 
 floating point multiplication takes 5 cycles, but 

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback: 
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions 
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures
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5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!
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Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode 

instruction

Execute

Instruction

Hardware Pipelining on processor (all units can run concurrently):

Fetch Instruction 1

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4
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 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar & 

can perform 2 or 4 floating point operations per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode 

Instruction 5

Decode 

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way 

„superscalar“

t
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Core details: Simultaneous multi-threading (SMT)

“logical” cores  multiple threads/processes run concurrently
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SMT principle (2-way example):
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SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread 

(if possible) may achieve the same goal 

without SMT:

Thread 0:
do i=1,N

a(i) = a(i-1)*c

enddo

Dependency  pipeline 

stalls until previous MULT 

is over

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

b(i) = s*b(i-2)+d

enddo

Unrelated work in other 

thread can fill the pipeline 

bubbles

do i=1,N

a(i) = a(i-1)*c

b(i) = s*b(i-2)+d

enddo



Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands 

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point 

operands 
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R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2
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SIMD processing – Basics 

 Steps (done by the compiler) for “SIMD processing”

(c) RRZE 2015 Node-Level Performance Engineering

for(int i=0; i<n;i++) 

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

C[i]  =A[i]  +B[i];

C[i+1]=A[i+1]+B[i+1];

C[i+2]=A[i+2]+B[i+2];

C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

VLOAD R0  A[i]

VLOAD R1  B[i]

V64ADD[R0,R1]  R2

VSTORE R2  C[i]

ii+4

i<(n-4)? JMP LABEL1 

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to 
register R0

Add the corresponding 64 Bit entries in  R0 and R1 and 
store the 4 results to R2

Store R2 (256 Bit) to address 
starting at C[i]
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SIMD processing – Basics 

 No SIMD vectorization  for loops with data dependencies:

 “Pointer aliasing” may prevent  SIMDfication

 C/C++ allows that A  &C[-1] and B  &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD

 If “pointer aliasing” does not happen, tell it to the compiler:

 –fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

 restrict keyword (C only!):

(c) RRZE 2015 Node-Level Performance Engineering

for(int i=0; i<n;i++) 

A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {

for(int i=0; i<n; ++i) 

C[i] = A[i] + B[i];

}

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…}
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Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2 

(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp) 

(256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Putting it all together 

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code 

TOP500 rank 1 (1995)

Node-Level Performance Engineering



Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2015 Node-Level Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 

transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)
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Today: ccNUMA

Yesterday (2006): UMA

Commodity cluster nodes: From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA)

ccNUMA provides scalable bandwidth but: 

Where does my data finally end up?

(c) RRZE 2015 Node-Level Performance Engineering

2-socket server

. . . . . .

2-socket server

Haswell(++): 

“Cluster on Die” 

(CoD) mode



Interlude:

A glance at current accelerator technology
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NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.
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Intel Xeon Phi block diagram

(c) RRZE 2015 Node-Level Performance Engineering

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP 

peak

 0.5 MB 

L2/core

 GDDR5

 2:1 SP:DP 

performance

64 byte/cy
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Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD 

FMA unit  480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center 

for Advanced Computing

(c) RRZE 2015 Node-Level Performance Engineering

 NVIDIA Kepler K20

 15 SMX units each with 

192 “cores” 

960/2880 DP/SP “cores” 

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW:  ~ 250 GB/s (GDDR5)

 Threads to execute: 10,000+

 Programming: 

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National 

Laboratory

TOP500

rankings

Nov 2012 
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Trading single thread performance for parallelism:

GPGPUs vs. CPUs

GPU vs. CPU 

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

Intel Core i5 – 2500 

(“Sandy Bridge”)

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”)

NVIDIA K20x 

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device

(c) RRZE 2015 Node-Level Performance Engineering



Node topology and 

programming models
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Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2015 Node-Level Performance Engineering
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Parallel programming models

on modern compute nodes

 Shared-memory (intra-node)

 Good old MPI

 OpenMP

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 “Accelerated”

 OpenMP 4.0+

 CUDA

 OpenCL

 OpenACC

 Distributed-memory (inter-node)

 MPI

 PGAS (CAF, UPC, …)

 Hybrid

 Pure MPI + X, X == <you name it>

All models require 

awareness of topology

and affinity issues for 

getting best 

performance out of the 

machine!
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Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology
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Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology
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Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise”

OpenMP threads pinned

“round robin” across 

cores in node

Two MPI processes / socket

OpenMP threads 

on same socket

(c) RRZE 2015 Node-Level Performance Engineering



Conclusions about architecture

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s) 

 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

 Performance of programming models is sensitive to architecture

 Topology/affinity influences overheads

 Standards do not contain (many) topology-aware features

 Apart from overheads, performance features are largely independent of the 
programming model
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Multicore Performance and Tools
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Tools for Node-level Performance Engineering

 Gather Node Information 

hwloc, likwid-topology, likwid-powermeter

 Affinity control and data placement                                                

OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

 Runtime Profiling                                                                    

Compilers, gprof, HPC Toolkit, …

 Performance Profilers                                                                       

Intel VtuneTM, likwid-perfctr, PAPI based tools, Linux perf, …

 Microbenchmarking

STREAM, likwid-bench, lmbench

(c) RRZE 2015 Node-Level Performance Engineering



LIKWID performance tools

LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

Open source tool collection 

(developed at RRZE):

https://github.com/RRZE-HPC/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite for x86 
multicore environments. PSTI2010, Sep 13-16, 2010, 
San Diego, CA            http://arxiv.org/abs/1004.4431
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Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-powermeter: Measure energy consumption

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-bench: Microbenchmarking tool and environment

 … some more
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Output of  likwid-topology –g
on one node of Intel Haswell-EP

--------------------------------------------------------------------------------

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU stepping: 2

********************************************************************************

Hardware Thread Topology

********************************************************************************

Sockets: 2

Cores per socket: 14

Threads per core: 2

--------------------------------------------------------------------------------

HWThread Thread Core Socket Available

0 0 0 0 *

1 0 1 0 *

…
43              1 1 1 *

44              1 2 1 *

--------------------------------------------------------------------------------

Socket 0: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )

Socket 1: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

--------------------------------------------------------------------------------

********************************************************************************

Cache Topology

********************************************************************************

Level: 1

Size: 32 kB

Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41

) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )

--------------------------------------------------------------------------------

Level: 2

Size: 256 kB

Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41

) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )

--------------------------------------------------------------------------------

Level: 3

Size: 17 MB

Cache groups: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 ) ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 ) ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )

( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

--------------------------------------------------------------------------------

All physical 

processor IDs
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Output of likwid-topology continued

(c) RRZE 2015 Node-Level Performance Engineering

********************************************************************************

NUMA Topology

********************************************************************************

NUMA domains: 4

--------------------------------------------------------------------------------

Domain: 0

Processors: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 )

Distances: 10 21 31 31

Free memory: 13292.9 MB

Total memory: 15941.7 MB

--------------------------------------------------------------------------------

Domain: 1

Processors: ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )

Distances: 21 10 31 31

Free memory: 13514 MB

Total memory: 16126.4 MB

--------------------------------------------------------------------------------

Domain: 2

Processors: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )

Distances: 31 31 10 21

Free memory: 15025.6 MB

Total memory: 16126.4 MB

--------------------------------------------------------------------------------

Domain: 3

Processors: ( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

Distances: 31 31 21 10

Free memory: 15488.9 MB

Total memory: 16126 MB

--------------------------------------------------------------------------------
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Output of likwid-topology continued

(c) RRZE 2015 Node-Level Performance Engineering

********************************************************************************

Graphical Topology

********************************************************************************

Socket 0:

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  0 28  | |  1 29  | |  2 30  | |  3 31  | |  4 32  | |  5 33  | |  6 34  | |  7 35  | |  8 36  | |  9 37  | | 10 38  | | 11 39 | | 12 40  | | 13 41  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB | |  32kB  | |  32kB  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

| |                                   17MB                                   | |                                   17MB        | |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

Socket 1:

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 14 42  | | 15 43  | | 16 44  | | 17 45  | | 18 46  | | 19 47  | | 20 48  | | 21 49  | | 22 50  | | 23 51  | | 24 52  | | 25 53 | | 26 54  | | 27 55  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB | |  32kB  | |  32kB  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

| |                                   17MB                                   | |                                   17MB        | |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

Cluster on die mode 

and SMT enabled!



Enforcing thread/process-core affinity 

under the Linux OS

Standard tools and OS affinity facilities under

program control

likwid-pin
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Example: STREAM benchmark on 16-core Sandy Bridge:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first, 

first socket first)

There are several reasons for caring 

about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention
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More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

Linux: sched_setaffinity()

Windows: SetThreadAffinityMask()

 Hwloc project (http://www.open-mpi.de/projects/hwloc/)

 Support for “semi-automatic” pinning in some 
compilers/environments

 All modern compilers with OpenMP support

 Generic Linux: taskset, numactl, likwid-pin (see below)

 OpenMP 4.0 (see OpenMP tutorial)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …
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Likwid-pin
Overview

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread

library  binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node

 Usage examples:

 likwid-pin -c 0-3,4,6 ./myApp parameters 

 likwid-pin -c S0:0-7 ./myApp parameters 

 likwid-pin –c N:0-15 ./myApp parameters
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LIKWID terminology
Thread group syntax

 The OS numbers all processors (hardware threads) on a node

 The numbering is enforced at boot time by the BIOS 

 LIKWID introduces thread groups consisting of processors sharing a 

topological entity (e.g. socket or shared cache)

 A thread group is defined by a single character + index

 Example for likwid-pin:
likwid-pin –c S1:0-3,6,7 ./a.out

 Thread group expression may be chained with @:

likwid-pin –c S0:0-3@S1:0-3 ./a.out

 Alternative expression based syntax:
likwid-pin –c E:S0:4:2:2 ./a.out

E:<thread domain>:<num threads>:<chunk size>:<stride>

 Xeon Phi: likwid-pin –c E:N:60:2:4 ./a.out

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| |  0 4| |  1 5| | 2 6 | | 3 7 | |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| |  32kB| |  32kB| |  32kB| |  32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| |                8MB              | |

| +---------------------------------+ |

+-------------------------------------+

Physical processors first!

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| |  0  4| |  1 5| | 2  6 | | 3  7 | |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| |  32kB| |  32kB| |  32kB| |  32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| |                8MB              | |

| +---------------------------------+ |

+-------------------------------------+

Block wise placement!
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Likwid
Currently available thread domains

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

(c) RRZE 2015 Node-Level Performance Engineering

Chipset

Memory

Default if –c is not 

specified!
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Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

$ likwid-pin -c S0:0-3 ./stream

[likwid-pin] Main PID -> core 0 - OK

----------------------------------------------

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

----------------------------------------------

Array size =   20000000

Offset     =         32

The total memory requirement is  457 MB

You are running each test  10 times

--

The *best* time for each test is used

*EXCLUDING* the first and last iterations

[pthread wrapper] [pthread wrapper] PIN_MASK: 0->1  1->2  2->3  

[pthread wrapper] SKIP MASK: 0x1

threadid 140370139711232 -> SKIP 

threadid 140370117211968 -> core 1 - OK

threadid 140370113013632 -> core 2 - OK

threadid 140369974597568 -> core 3 - OK

[... rest of STREAM output omitted ...]

Skip shepherd 

thread

Main PID always 

pinned

Pin all spawned 

threads in turn
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Intel KMP_AFFINITY environment variable

 KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

 modifier

 granularity=<specifier> takes the 

following specifiers: fine, thread, 

and core

 norespect

 noverbose

 proclist={<proc-list>}

 respect

 verbose

 Default: 

noverbose,respect,granularity=core

 type  (required)

 compact

 disabled

 explicit  (GOMP_CPU_AFFINITY)

 none

 scatter

 KMP_AFFINITY=verbose,none to list machine topology map

OS processor IDs

Respect an OS 

affinity  mask in place

(c) RRZE 2015 Node-Level Performance Engineering
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Intel KMP_AFFINITY examples

 KMP_AFFINITY=granularity=fine,compact

 KMP_AFFINITY=granularity=fine,scatter

Package means 

chip/socket

(c) Intel 

(c) Intel 

(c) RRZE 2015 Node-Level Performance Engineering
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Intel KMP_AFFINITY permute example

 KMP_AFFINITY=granularity=fine,compact,1,0

 KMP_AFFINITY=granularity=core,compact

(c) Intel 

(c) Intel 

Threads may float 

within core

(c) RRZE 2015 Node-Level Performance Engineering
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GNU GOMP_AFFINITY

 GOMP_AFFINITY=3,0-2  used with 6 threads

 Always operates with OS processor IDs

Round robin 

oversubscription

(c) Intel 

(c) RRZE 2015 Node-Level Performance Engineering



Multicore performance tools:

Probing performance behavior

likwid-perfctr
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likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof): Where are the hot spots?

2. Instrument hot spots (prepare for detailed measurement)

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive 

operations)

Goal: Come up with educated guess about a performance-limiting motif 

(Performance Pattern)

(c) RRZE 2015 Node-Level Performance Engineering
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Probing performance behavior

 How do we find out about the performance properties and 

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping 

counters

 Multiple measurement region 

support

 Preconfigured and extensible 

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio
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likwid-perfctr

Example usage with preconfigured metric group 

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

-------------------------------------------------------------

CPU type: Intel Core Lynnfield processor 

CPU clock: 2.93 GHz 

-------------------------------------------------------------

Measuring group FLOPS_DP

-------------------------------------------------------------

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+ 

Always 

measured

Derived 

metrics

Configured metrics 

(this group)
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likwid-perfctr

Best practices for runtime counter analysis 

Things to look at (in roughly this order)

 Excess work

 Load balance (flops, instructions, BW)

 In-socket memory BW saturation

 Flop/s, loads and stores per flop metrics

 SIMD vectorization

 CPI metric

 # of instructions, 

branches, mispredicted branches

Caveats

 Load imbalance may not show 

in CPI or # of instructions
 Spin loops in OpenMP

barriers/MPI blocking calls

 Looking at “top” or the Windows 

Task Manager does not tell you 

anything useful

 In-socket performance 

saturation may have various 

reasons

 Cache miss metrics are 

sometimes misleading

(c) RRZE 2015 Node-Level Performance Engineering
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likwid-perfctr

Marker API (C/C++ and Fortran)

 A marker API is available to restrict measurements to code regions

 The API only turns counters on/off. The configuration of the counters is still 
done by likwid-perfctr

 Multiple named region support, accumulation over multiple calls

 Inclusive and overlapping regions allowed

(c) RRZE 2015

#include <likwid.h>

. . .

LIKWID_MARKER_INIT; // must be called from serial region

#pragma omp parallel

{

LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}

. . .

LIKWID_MARKER_START(“Compute”);

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE;  // must be called from serial region

Node-Level Performance Engineering

Activate macros with
-DLIKWID_PERFMON



Measuring energy consumption

with LIKWID
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Measuring  energy consumption

likwid-powermeter and  likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”
-------------------------------------------------------------

CPU name:       Intel Core SandyBridge processor 

CPU clock:      3.49 GHz 

-------------------------------------------------------------

Base clock:     3500.00 MHz 

Minimal clock:  1600.00 MHz 

Turbo Boost Steps:

C1 3900.00 MHz 

C2 3800.00 MHz 

C3 3700.00 MHz 

C4 3600.00 MHz 

-------------------------------------------------------------

Thermal Spec Power: 95 Watts 

Minimum  Power: 20 Watts 

Maximum  Power: 95 Watts 

Maximum  Time Window: 0.15625 micro sec 

-------------------------------------------------------------

(c) RRZE 2015 Node-Level Performance Engineering
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Example:
A medical image reconstruction code on Sandy Bridge

(c) RRZE 2015 Node-Level Performance Engineering

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
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e
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Microbenchmarking for 

architectural exploration

Probing of the memory hierarchy

Saturation effects in cache and memory
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Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2015 Node-Level Performance Engineering

HPC plays here

Avoiding slow data 

paths is the key to 

most performance 

optimizations!
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The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

Prevents smarty-pants 

compilers from doing 

“clever” stuff



79

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2015 Node-Level Performance Engineering

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

4 W / iteration 

 128 GB/s

5 W / it.

 18 GB/s

(incl. write 

allocate)

Are the

performance

levels

plausible?

What about

multiple cores? 

Do the

bandwidths

scale?

Pattern!

Ineffective

instructions
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

(c) RRZE 2015 Node-Level Performance Engineering

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t?

Data far awaysmaller SIMD impact? 

Theoretical limit?

Theoretical limit?

Theoretical limits?

See later for 

answers!
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The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2015 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL
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Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2015 Node-Level Performance Engineering

Saturation effect

in memory

Scalable BW in 

L1, L2, L3 cache
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Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket 

CPU node

(c) RRZE 2015 Node-Level Performance Engineering

Pattern!

Bandwidth

saturation
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Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache
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Conclusions from the microbenchmarks

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

(c) RRZE 2015 Node-Level Performance Engineering



“Simple” performance modeling:

The Roofline Model(1)

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

Example: A 3D Jacobi solver

Model-guided optimization 

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext
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Prelude: Modeling customer dispatch in a bank

(c) RRZE 2015 Node-Level Performance Engineering

Revolving door 

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing 

capability:

Pmax [tasks/sec]
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Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: 

Best use of resources

 Roofline is an “optimistic” model:

(“light speed”)

(c) RRZE 2015 Node-Level Performance Engineering

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax
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The Roofline Model

(c) RRZE 2015 Node-Level Performance Engineering

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. Journal for Parallel and Distributed Computing 5(4), 

334 (1988). DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed   Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data 

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g.,  Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte   BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆

𝐵𝐶

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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Preliminary: Estimating Pmax

How to perform a instruction throughput analysis on the example of Intel’s 

port based scheduler model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

SandyBridge

16b 16b 16b

(c) RRZE 2015 Node-Level Performance Engineering

First-order assumption: All instructions in a loop are fed independently to the

various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools

(Intel IACA, Intel Amplifier)
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Throughput capabilities of the Intel Sandy Bridge core

 Per cycle with AVX

 1 load instruction (256 bits) AND ½ 

store instruction (128 bits)

 1 AVX MULT and 1 AVX ADD 

instruction 

(4 DP / 8 SP flops each)

 Per cycle with SSE or scalar

 2 load instruction OR 1 load and 1 

store instruction

 1 MULT and 1 ADD instruction

 Overall maximum of 4 micro-ops

 In practice, 3 is more realistic 

(c) RRZE 2015 Node-Level Performance Engineering

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE
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Example: Estimate Pmax of vector triad on SandyBridge

double  *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]

}

How many cycles to process one AVX-vectorized iteration

(one core)?

 Equivalent to 4 scalar iterations

Cycle 1:  LOAD + ½ STORE + MULT + ADD

Cycle 2:  LOAD + ½ STORE

Cycle 3:  LOAD                                       Answer:  3 cycles

(c) RRZE 2015 Node-Level Performance Engineering
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Example: Estimate Pmax of vector triad on SandyBridge

double  *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]

}

What is the performance in GFlops/s and the bandwidth in GBytes/s?

One AVX iteration (3 cycles) does 4 x 2 = 8 flops:

3.0 ∙ 109 cy/s

3 cy
∙ 4 updates ∙

2 flops

update
= 𝟖

Gflops

s

4 ∙ 109
updates

s
∙ 32

bytes

update
= 128

Gbyte

s

(c) RRZE 2015 Node-Level Performance Engineering

Homework 
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Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 3 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.04 % of peak performance)

 Ppeak = 192 Gflop/s (8 FP units x (4+4) Flops/cy x 3.0 GHz)

 Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 64,2.0  GFlop s
= 2.0  GFlop s

(c) RRZE 2015 Node-Level Performance Engineering
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A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2015 Node-Level Performance Engineering

ADD peak  

(best possible 

code)

no SIMD

3-cycle latency 

per ADD if not 

pipelined

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we

get these?

 See next!

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak  

(ADD+MULT)

Out of reach for this 

code

P 
(better loop code)
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Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop: 

LOAD r2.0  a(i)

ADD r1.0  r1.0+r2.0

++i ? loop

result  r1.0

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 1/24 of ADD peak

S
IM

D
 l

a
n

e
s

Pattern!

Pipelining

issues
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Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop: 

LOAD r4.0  a(i)

LOAD r5.0  a(i+1)

LOAD r6.0  a(i+2)

ADD r1.0  r1.0 + r4.0

ADD r2.0  r2.0 + r5.0

ADD r3.0  r3.0 + r6.0

i+=3 ? loop

result  r1.0+r2.0+r3.0

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 1/8 of ADD peak
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Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7]  [0,…,0]

LOAD [r2.0,…,r2.7]  [0,…,0]

LOAD [r3.0,…,r3.7]  [0,…,0]

i  1

loop: 

LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]

LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]

LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)]

ADD r1  r1 + r4

ADD r2  r2 + r5

ADD r3  r3 + r6

i+=24 ? loop

result  r1.0+r1.1+...+r3.6+r3.7

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 ADD peak

Pattern! ALU 

saturation
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Input to the roofline model

… on the example of       do i=1,N; s=s+a(i); enddo

in single precision

(c) RRZE 2015 Node-Level Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s
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Prerequisites for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications

 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer

 Slowest limiting factor “wins”; all others are assumed to have no impact

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2015 Node-Level Performance Engineering
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Exercise: Dense matrix-vector multiplication in DP (AVX)

 Assume C = R ≈ 10,000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

do c = 1 , C 

do r = 1 , R

y(r)=y(r) + A(r,c)* x(c)

enddo

enddo

(c) RRZE 2015 Node-Level Performance Engineering

do c = 1 , C 

tmp=x(c)

do r = 1 , R

y(r)=y(r) + A(r,c)* tmp

enddo

enddo
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 Vectorization strategy: 4-way inner loop unrolling

 One register holds tmp in each of its 4 entries (“broadcast”)

 Loop kernel requires/consume 3 AVX registers 

Exercise: DMVM (DP) – AVX vectorization

(c) RRZE 2015 Node-Level Performance Engineering

do c = 1,C 

tmp=x(c)

do r = 1, R , 4  ! R is multiple of 4

y(r)   = y(r)   + A(r,c)  * tmp

y(r+1) = y(r+1) + A(r+1,c)* tmp

y(r+2) = y(r+2) + A(r+2,c)* tmp

y(r+3) = y(r+3) + A(r+3,c)* tmp

enddo

enddo
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DMVM (DP) – Single core performance vs. column height

(c) RRZE 2015 Node-Level Performance Engineering

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, Core Ppeak=18.4 GF/s, Caches: 32 KB / 256 KB / 34 MB

PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Performance drops as number 

of rows (inner loop length) 

increases.

Does computational intensity 

change?!
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DMVM (DP) – Single core data traffic analysis

(c) RRZE 2015 Node-Level Performance Engineering

size(y(1:R)) 

= 160 KB

size(y(1:R)) 

= 16 KB

y Exceeding inner cache size: 

 (8+8) Byte for LD + ST on y

BC = 8B / 2F for 

Roofline
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DMVM (DP) – Reducing traffic by inner loop blocking

 “1D blocking” for inner loop

 Blocking factor Rb  cache level

 Fully reuse subset of y(rbS:rbE)

from L1/L2 cache

(c) RRZE 2015 Node-Level Performance Engineering

do rb = 1 , R , Rb

rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C 

do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)

enddo

enddo

enddo

L2 cache 

blocking

L1 cache 

blocking
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DMVM (DP) – Validation of blocking optimization

(c) RRZE 2015 Node-Level Performance Engineering

Rb= 2000



108

DMVM data traffic visualization

(c) RRZE 2015 Node-Level Performance Engineering

A(r,c)

do c = 1 , C 

tmp=x(c)

do r = 1 , R

y(r)=y(r) + A(r,c)* tmp

enddo

enddo

do rb = 1 , R , Rb
rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C 

do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)

enddo

enddo

enddo

R

Rb

y(:) may

not fit into

some cache

 more

traffic for

lower level

y(rbS:rbE) 

may fit into

some cache if
Rb is small

enough

 traffic

reduction
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DMVM (DP) – OpenMP parallelization

(c) RRZE 2015 Node-Level Performance Engineering

!$omp parallel do reduction(+:y)

do c = 1 , C 

do r = 1 , R

y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo

!$omp end parallel do

!$omp parallel do private(rbS,rbE) reduction(+:y)  

do rb = 1 , R , Rb
rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C 

do r = rbS , rbE

y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo ; enddo

!$omp end parallel do

plain code

blocked code



110

DMVM (DP) – OpenMP parallelization

(c) RRZE 2015 Node-Level Performance Engineering

blocking good for

single thread

performance

memory traffic

unchanged

 saturation

unchanged!

saturation influenced

by clock speed and

serial performance

Intel Xeon E5 2695 v3 (Haswell-EP) 

2.3 GHz base clock speed, bS = 32 GB/s 

Roofline limit

BC = 4 Byte/Flop

bS = 32GB/s

So, is blocking

useless? 

 NO (see later)

Can we do 

nothing to

improve BC?

 NO, not here



112

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Perl  Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking  see later)

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias  see later)

5. Shift Pmax by accessing

additional hardware features or

using a different 

algorithm/implementation
(e.g., scalar  SIMD)

(c) RRZE 2015 Node-Level Performance Engineering
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Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption” 

 Cache line transfers and core execution do sometimes not overlap perfectly

 It is not sufficient to measure single-core STREAM to make it work

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 In-cache performance is not correctly

predicted

 The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

(c) RRZE 2015 Node-Level Performance Engineering

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring 

performance and power properties of modern multicore chips 

via simple machine models. Concurrency and Computation: 

Practice and Experience (2013). 

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://youtu.be/Z8a513NCFjs

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://youtu.be/Z8a513NCFjs


Case study:

Sparse Matrix Vector Multiplication



Sparse Matrix Vector Multiplication (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

(c) RRZE 2015 Node-Level Performance Engineering

= + • Nr

General case: 
some indirect 
addressing 
required!

115



SpMVM characteristics

 For large problems, spMVM is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMVM is easily parallelizable in shared and distributed memory

 Data storage format is crucial for performance properties

 Most useful general format on CPUs: 

Compressed Row Storage (CRS)

 Depending on compute architecture

(c) RRZE 2015 Node-Level Performance Engineering 116



…

CRS matrix storage scheme

(c) RRZE 2015 Node-Level Performance Engineering

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length 
Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting index 
of each new row in val[] (length: Nr)

117
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Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

c(i) = c(i) + val(j) * b(col_idx(j)) 

enddo

enddo

!$OMP parallel do

!$OMP end parallel do
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Performance characteristics

(c) RRZE 2015 Node-Level Performance Engineering

 Strongly memory-bound for large data sets  saturating performance 

across cores on the chip

 Performance seems to depend on the matrix

 Can we explain

this?

 Is there a

“light speed”

for spMVM?

 Optimization?

???
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Example: SpMVM node performance model

 Sparse MVM in

double precision 

w/ CRS data storage:

 DP CRS comp. intensity

 α quantifies traffic

for loading RHS

 α = 0  RHS is in cache

 α = 1/Nnzr  RHS loaded once

 α = 1  no cache

 α > 1  Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring performance and actual memory traffic

 Maximum memory BW may not be achieved with spMVM

(c) RRZE 2015 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
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Determine RHS traffic

 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-

perfctr)

 Solve for 𝛼:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

  RHS is loaded 3.1 times from memory

 and: 

(c) RRZE 2015 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=

𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic

optimization potential!
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Now back to the start…

(c) RRZE 2015

 𝑏𝑆 = 39  GB s

 𝐵𝑐
𝑚𝑖𝑛 = 6  B F

 Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 6.5  GF s

  DLR1 causes minimum code 

balance!

 sAMG matrix code balance:

𝐵𝑐 ≤
𝑏𝑆

4.5  GF s
= 8.7  B F

 Why is this only an upper limit?

 What is the next step?

 Could we have predicted this 

qualitative difference?

Node-Level Performance Engineering



126

Sparse matrix testcases

“DLR1” (A. Basermann, DLR)

Adjoint problem computation 

(turbulent transonic flow 

over a wing) with the TAU 

CFD system of the German 

Aerospace Center (DLR)

Avg. non-zeros/row ~150

“sAMG” (K. Stüben, FhG-SCAI) 

Matrix from FhG’s adaptive 

multigrid code sAMG

for the irregular 

discretization of a Poisson 

problem on a car geometry.

Avg. non-zeros/row ~ 7

(c) RRZE 2015 Node-Level Performance Engineering
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Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model does not “work” for spMVM due to the RHS 

traffic uncertainties

We have “turned the model around” and measured the actual 

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: Modeling is not always 100% predictive. It‘s

all about learning more about performance properties!

(c) RRZE 2015 Node-Level Performance Engineering



Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking
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Stencil schemes

 Stencil schemes frequently occur in PDE solvers on regular lattice 

structures

 Basically it is a sparse matrix vector multiply (spMVM) embedded 

in an iterative scheme (outer loop) 

 but the regular access structure allows for matrix free coding

 Complexity of implementation and performance depends on

 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, … 

 spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2015 Node-Level Performance Engineering

do iter = 1, max_iterations

Perform sweep over regular grid: y(:)  x(:)

Swap y  x 

enddo

y x



132

Jacobi-type 5-pt stencil in 2D

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo

j

k

s
w
e
e
p

Lattice 

Update

(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)
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Jacobi 5-pt stencil in 2D: data transfer analysis

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo

S
W
E
E
P

LD+ST y(j,k)

(incl. write 

allocate)
LD x(j+1,k)

Available in cache 

(used 2 updates before)

LD x(j,k+1)LD x(j,k-1)
Naive balance (incl. write allocate): 

x( :, :) : 3 LD + 

y( :, :) : 1 ST+ 1LD

 BC = 5 Words / LUP = 40 B / LUP  (assuming double precision)
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Jacobi 5-pt stencil in 2D: Single core performance

(c) RRZE 2015 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (BC) 

measured with likwid-perfctr

Intel Compiler 

ifort V13.1

jmax

Questions:

1. How to achieve 

24 B/LUP also 
for large jmax?

2. How to sustain 

>600 MLUP/s for 
jmax > 104 ?



Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking
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Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid

(assume “Least Recently Used” replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
a
lo

 c
e
ll

s
H

a
lo

 c
e
ll

s
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Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid

(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)
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Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

Reduce inner (j-) 

loop dimension

successively

Best case: 3 

„layers“ of grid fit 

into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)
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Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo 3 * jmax * 8B < CacheSize/2

“Layer condition” 

double

precision

3 rows of 
jmax Safety margin 

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)

• No strict guideline (cache associativity – data traffic for y not included)

• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)  
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Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

(c) RRZE 2015 Node-Level Performance Engineering

3 * jmax * 8B < CacheSize/2

Layer condition fulfilled? 

y: (1 LD + 1 ST) / LUP x: 1 LD / LUP

BC = 24 B / LUP

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo

YES

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo BC = 40 B / LUP

y: (1 LD + 1 ST) / LUP

NO

x: 3 LD / LUP



142

Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

 Establish layer condition for all domain sizes 

 Idea: Spatial blocking

 Reuse elements of x() as long as they stay in cache

 Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2015 Node-Level Performance Engineering

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

do k=1,kmax

do j= jb, (jb+jblock-1) ! Length of inner loop: jblock

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo

enddo New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B
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Establish the layer condition by blocking

(c) RRZE 2015 Node-Level Performance Engineering

Split up

domain into

subblocks:

e.g. block 

size = 5
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Establish the layer condition by blocking

(c) RRZE 2015 Node-Level Performance Engineering

Additional data 

transfers (overhead) 

at block boundaries!
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Establish layer condition by spatial blocking

(c) RRZE 2015 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

L1: 32 KB 

L2: 256 KB 

L3: 25 MBjmax

Which cache to block for?

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler 

ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333) L3: CS=25 MB

jblock=min(jmax,533333)
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Layer condition & spatial blocking: Memory code balance

(c) RRZE 2015 Node-Level Performance Engineering

jmax

Measured main memory

code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler 

ifort V13.1

Blocking factor 

(CS=25 MB) still a 

little too large

Main memory access is not 

reason for different performance

(but L3 access is!)

jmax
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Jacobi Stencil – OpenMP parallelization

!$OMP PARALLEL DO SCHEDULE(STATIC)

do k=1,kmax

do j=1,jmax

y(j,k) = 1/4.*(x(j-1,k) +x(j+1,k) &

+ x(j,k-1) +x(j,k+1) ) 

enddo

enddo

“Layer condition”: nthreads * 3 *imax * 8B < CS/2

Basic guideline:

Parallelize outermost loop 

Equally large chunks in k-direction

 “Layer condition” for each thread

(c) RRZE 2015 Node-Level Performance Engineering
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Socket scaling – validate Roofline model

(c) RRZE 2015 Node-Level Performance Engineering

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler 

ifort V13.1

OpenMP Parallel

bS = 48 GB/s

BC= 24 B/LUP

BC= 40 B/LUP

𝑃 = min(𝑃max,  𝑏𝑆 𝐵𝐶) What is 𝑃max here?  homework!

Pattern!

Excess data

volume
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Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs. 

problem size

 “Layer conditions” lead to predictions of code balance

 “What part of the data comes from where” is a crucial question

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable 

layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

 Food for thought

 Multi-dimensional loop blocking – would it make sense?

 Can we choose a “better” OpenMP loop schedule?

 What would change if we parallelized inner loops?

(c) RRZE 2015 Node-Level Performance Engineering



Coding for 

SingleInstructionMultipleData processing
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SIMD processing – Basics 

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers. 

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands 

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point operands 

(c) RRZE 2015 Node-Level Performance Engineering
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2
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Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2.

 To enable specific SIMD extensions use the –x option:

 -xSSE2 vectorize for SSE2 capable machines

Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX

 -xAVX on Sandy Bridge processors

Recommended option:

 -xHost will optimize for the architecture you compile on

On AMD Opteron: use plain –O3 as the  -x options may involve CPU 
type  checks.
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Vectorization compiler options

 Controlling non-temporal stores (part of the SIMD extensions)

 -opt-streaming-stores always|auto|never

always use NT stores, assume application is memory

bound (use with caution!)

auto compiler decides when to use NT stores

never do not use NT stores unless activated by

source code directive
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Vectorization source code directives

 Fine-grained control of loop vectorization

 Use !DEC$ (Fortran)  or  #pragma (C/C++) sentinel to start a compiler 

directive

 #pragma vector always

vectorize even if it seems inefficient (hint!)

 #pragma novector

do not vectorize even if possible

 #pragma vector nontemporal

use NT stores when allowed (i.e. alignment conditions are met)

 #pragma vector aligned

specifies that all array accesses are aligned to 16-byte boundaries 

(DANGEROUS! You must not lie about this!)
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User mandated vectorization

 Since Intel Compiler 12.0 the simd pragma is available

 #pragma simd enforces vectorization where the other pragmas fail

 Prerequesites:

 Countable loop

 Innermost loop

 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses:  reduction, vectorlength, private

 Refer to the compiler manual for further details

 NOTE: Using the #pragma simd the compiler may generate incorrect code if 

the loop violates the vectorization rules!

#pragma simd reduction(+:x)

for (int i=0; i<n; i++) {

x = x + A[i];

}
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x86 Architecture:

SIMD and Alignment

 Alignment issues

 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte) 

boundaries to allow packed aligned loads and NT stores (for Intel 

processors)

 AMD has a scalar nontemporal store instruction

 Otherwise the compiler will revert to unaligned loads and not use NT 
stores – even if you say vector nontemporal

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but 

Xeon Phi relies heavily on it!

 How is manual alignment accomplished?

 Dynamic allocation of aligned memory (align = alignment
boundary):

#define _XOPEN_SOURCE 600

#include <stdlib.h>

int posix_memalign(void **ptr,

size_t align,

size_t size);



Reading x86 assembly code and 

exploiting SIMD parallelism

Understanding SIMD execution by inspecting  

assembly code

SIMD vectorization how-to

Intel compiler options and features for SIMD



181(c) RRZE 2015 Node-Level Performance Engineering

Why and how?

Why check the assembly code?

 Sometimes the only way to make sure the compiler  “did the right 

thing”

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads & 

Stores may still be scalar! 

 Get the assembler code (Intel compiler):

icc –S –masm=intel –O3  -xHost triad.c -o a.out

 Disassemble Executable:

objdump –d  ./a.out | less

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5
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Basics of the x86-64 ISA

 Instructions have 0 to 4 operands

 Operands can be registers, memory references or immediates

 Opcodes (binary representation of instructions) vary from 1 to 17 

bytes

 There are two syntax forms: Intel (left) and AT&T (right)

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT

 C:  A[i] equivalent to *(A+i)  (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

401b9f: 0f 29 5c c7 30     movaps %xmm3,0x30(%rdi,%rax,8)

401ba4: 48 83 c0 08        add $0x8,%rax

401ba8: 78 a6              js 401b50 <triad_asm+0x4b>

movaps    %xmm4, 48(%rdi,%rax,8) 

addq $8, %rax

js   ..B1.4 
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Basics of the x86-64 ISA

16 general Purpose Registers (64bit):  

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight  32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15  SSE (128bit)   alias with 256-bit registers

ymm0-ymm15  AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix:  v

Operation: mul, add, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)

Width: scalar (s), packed (p)

Data type: single (s),  double  (d)
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Case Study: Vector Triad (DP) on IvyBridge-EP

for (int i = 0; i < length; i++) {

A[i] = B[i] + D[i] * C[i];

}

Assembly code (-O1):

LBB0_3

movsd xmm0, [rdx]

mulsd xmm0, [rcx]

addsd xmm0, [rsi]

movsd [rax], xmm0

add rsi, 8

add rdx, 8

add rcx, 8

add rax, 8

dec edi

jne LBB0_3
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To get  object code use 
objdump –d on object file or 

executable or compile with -S

..B1.6:                         

movsd xmm0, [r12+rax*8]

mulsd xmm0, [r13+rax*8]

addsd xmm0, [r14+rax*8]

movsd [r15+rax*8], xmm0

inc rax

cmp rax, rbx

jl ..B1.6

C
L

A
N

G

IC
C

.L4:

movsd xmm0,[rbx+rax]

mulsd xmm0,[r12+rax]

addsd xmm0,[r13+0+rax]

movsd [rbp+0+rax],xmm0

add rax, 8

cmp rax, r14

jne .L4

G
C

C

7 instructions per loop 
iteration
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Case Study: Vector Triad (DP) –O3 (Intel compiler)

..B1.19:

movsd xmm0,  [r15+rsi*8]

movsd xmm3,  [16+r15+rsi*8]

movsd xmm5,  [32+r15+rsi*8]

movsd xmm7,  [48+r15+rsi*8]

movhpd xmm0,  [8+r15+rsi*8]

movhpd xmm3,  [24+r15+rsi*8]

movhpd xmm5,  [40+r15+rsi*8]

movhpd xmm7,  [56+r15+rsi*8]

mulpd xmm0,  [r14+rsi*8]

mulpd xmm3,  [16+r14+rsi*8]

mulpd xmm5,  [32+r14+rsi*8]

mulpd xmm7,  [48+r14+rsi*8]

movsd xmm2,  [r13+rsi*8]

movsd xmm4,  [16+r13+rsi*8]

movsd xmm6,  [32+r13+rsi*8]

movsd xmm8,  [48+r13+rsi*8]

movhpd xmm2,  [8+r13+rsi*8]

movhpd xmm4,  [24+r13+rsi*8]

movhpd xmm6,  [40+r13+rsi*8]

movhpd xmm8,  [56+r13+rsi*8]
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addpd xmm2, xmm0

addpd xmm4, xmm3

addpd xmm6, xmm5

addpd xmm8, xmm7

movaps [rdx+rsi*8], xmm2

movaps [16+rdx+rsi*8], xmm4

movaps [32+rdx+rsi*8], xmm6

movaps [48+rdx+rsi*8], xmm8

add rsi, 8

cmp rsi, r9

jb ..B1.19

3.86 instructions per 
loop iteration
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Case Study: Vector Triad (DP) –O3 –xHost

..B1.15:        

vmovupd xmm2, [r15+rsi*8]        

vmovupd xmm10, [32+r15+rsi*8]        

vmovupd xmm3, [rdx+rsi*8]        

vmovupd xmm11, [32+rdx+rsi*8]        

vmovupd xmm0, [r14+rsi*8]        

vmovupd xmm9, [32+r14+rsi*8]        

vinsertf128 ymm4, ymm2,[16+r15+rsi*8], 1        

vinsertf128 ymm12,ymm10,[48+r15+rsi*8],1        

vinsertf128 ymm5, ymm3,[16+rdx+rsi*8], 1        

vinsertf128 ymm13,ymm11,[48+rdx+rsi*8],1        

vmulpd ymm7, ymm4, ymm5         

vmulpd ymm15, ymm12, ymm13        

vmovupd xmm4, [64+rdx+rsi*8]        

vmovupd xmm12, [96+rdx+rsi*8]        

vmovupd xmm3, [64+r15+rsi*8]        

vmovupd xmm11, [96+r15+rsi*8]        

vmovupd xmm2, [64+r14+rsi*8]        

vmovupd xmm10, [96+r14+rsi*8]        

vinsertf128 ymm14,ymm9,[48+r14+rsi*8], 1        

vinsertf128 ymm6,ymm0,[16+r14+rsi*8], 1        

vaddpd ymm8, ymm6, ymm7  

vaddpd ymm0, ymm14, ymm15
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vmovupd [r13+rsi*8], ymm8    

vmovupd [32+r13+rsi*8], ymm0        

vinsertf128 ymm5, ymm3, [80+r15+rsi*8], 1        

vinsertf128 ymm13,ymm11,[112+r15+rsi*8], 1        

vinsertf128 ymm6, ymm4,  [80+rdx+rsi*8], 1        

vinsertf128 ymm14,ymm12,[112+rdx+rsi*8], 1        

vmulpd ymm8, ymm5, ymm6           

vmulpd ymm0, ymm13, ymm14       

vinsertf128 ymm7, ymm2, [80+r14+rsi*8], 1        

vinsertf128 ymm15,ymm10,[112+r14+rsi*8], 1        

vaddpd ymm9, ymm7, ymm8           

vaddpd ymm2, ymm15, ymm0         

vmovupd [64+r13+rsi*8], ymm9        

vmovupd [96+r13+rsi*8], ymm2          

add rsi, 16        

cmp rsi, r9 

jb ..B1.15

2.44 instructions per 
loop iteration

Benefit of SIMD limited by serial fraction!
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Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned

..B1.7:        

movaps xmm0, [r13+rcx*8]        

movaps xmm2, [16+r13+rcx*8]        

movaps xmm3, [32+r13+rcx*8]        

movaps xmm4, [48+r13+rcx*8]        

mulpd xmm0, [rbp+rcx*8]         

mulpd xmm2, [16+rbp+rcx*8]        

mulpd xmm3, [32+rbp+rcx*8]        

mulpd xmm4, [48+rbp+rcx*8]        

addpd xmm0, [r12+rcx*8]         

addpd xmm2, [16+r12+rcx*8]        

addpd xmm3, [32+r12+rcx*8]        

addpd xmm4, [48+r12+rcx*8]        

movaps [r15+rcx*8], xmm0

movaps [16+r15+rcx*8], xmm2        

movaps [32+r15+rcx*8], xmm3        

movaps [48+r15+rcx*8], xmm4        

add rcx, 8        

cmp rcx, rsi

jb ..B1.7
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..B1.7:        

vmovupd ymm0, [r15+rcx*8]         

vmovupd ymm4, [32+r15+rcx*8]        

vmovupd ymm7, [64+r15+rcx*8]        

vmovupd ymm10,[96+r15+rcx*8]        

vmulpd ymm2, ymm0, [rdx+rcx*8]        

vmulpd ymm5, ymm4, [32+rdx+rcx*8]        

vmulpd ymm8, ymm7, [64+rdx+rcx*8]        

vmulpd ymm11, ymm10, [96+rdx+rcx*8]        

vaddpd ymm3, ymm2, [r14+rcx*8]        

vaddpd ymm6, ymm5, [32+r14+rcx*8]        

vaddpd ymm9, ymm8, [64+r14+rcx*8]        

vaddpd ymm12, ymm11, [96+r14+rcx*8]        

vmovupd [r13+rcx*8], ymm3         

vmovupd [32+r13+rcx*8], ymm6        

vmovupd [64+r13+rcx*8], ymm9        

vmovupd [96+r13+rcx*8], ymm12 

add rcx, 16     

cmp rcx, rsi

jb ..B1.7

2.38 instructions per 
loop iteration

1.19 instructions per 
loop iteration



188

Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned on Haswell-EP

..B1.7:

vmovupd ymm2, [r15+rcx*8]        

vmovupd ymm4, [32+r15+rcx*8]        

vmovupd ymm6, [64+r15+rcx*8]        

vmovupd ymm8, [96+r15+rcx*8]        

vmovupd ymm0, [rdx+rcx*8]        

vmovupd ymm3, [32+rdx+rcx*8]        

vmovupd ymm5, [64+rdx+rcx*8]        

vmovupd ymm7, [96+rdx+rcx*8]        

vfmadd213pd ymm2, ymm0, [r14+rcx*8]        

vfmadd213pd ymm4, ymm3, [32+r14+rcx*8]        

vfmadd213pd ymm6, ymm5, [64+r14+rcx*8]        

vfmadd213pd ymm8, ymm7, [96+r14+rcx*8]        

vmovupd [r13+rcx*8], ymm2

vmovupd [32+r13+rcx*8], ymm4        

vmovupd [64+r13+rcx*8], ymm6        

vmovupd [96+r13+rcx*8], ymm8        

add rcx, 16                    

cmp rcx, rsi

jb ..B1.7
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1.19 instructions per 
loop iteration

23 uops vs. 27 µops (AVX) 

On  X86 ISA instruction are 

converted to so-called µops

(elementary ops like load, add, 

mult). For performance the 
number of µops is important.
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Mapping the ISA on a Microarchitecture

(c) RRZE 2015 Node-Level Performance Engineering

Analysis performed for Haswell-EP

Throughput for arithmetic instructions:

Instruction mix Execution time

1 ADD 1 cy

2 ADD 2 cy

1 MUL 1 cy

2 MUL 1 cy

1 ADD + 1 MUL 1 cy

2 FMA 1 cy

Throughput for loads and stores:

• Throughput performance for steady state optimal execution

• Instruction throughput for scalar or SIMD instructions

• Load/Store units on Haswell are 32 byte wide. Was 16 bytes on previous 

Intel architectures.

Instruction mix Execution time

1 LOAD 1 cy

1 STORE 2 cy

1 LOAD and 1 STORE 1 cy

2 LOADs and 1 STORE 1 cy
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SIMD processing – The whole picture

(c) RRZE 2015 Node-Level Performance Engineering

SIMD influences instruction 

execution in the core – other 

runtime contributions stay the 

same!

AVX example:
Scalar 12

SSE      6

AVX      3

15 cy

21

Execution Cache Memory

Per-cacheline (8 

iterations) cycle 

counts

Execution Units

Caches

Memory 21 cy

3 cy

15

Total runtime with data loaded 

from memory:

Scalar 48

SSE     42

AVX     39

SIMD only effective if runtime is dominated 
by instructions execution!

Comparing total execution time:
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How to leverage SIMD: your options

Alternatives:

 The compiler does it for you (but: aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in  assembler

To use intrinsics the following headers are available:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all extensions)
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for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);

t1 = _mm_loadu_ps(data+j+4);

t2 = _mm_loadu_ps(data+j+8);

t3 = _mm_loadu_ps(data+j+12);

sum0 = _mm_add_ps(sum0, t0);

sum1 = _mm_add_ps(sum1, t1);

sum2 = _mm_add_ps(sum2, t2);

sum3 = _mm_add_ps(sum3, t3);

}
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Rules for vectorizable loops

1. Countable

2. Single entry and single exit

3. Straight line code

4. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing 

Obstacles for vectorization:

1. Non-contiguous memory access

2. Data dependencies



Efficient parallel programming 

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy
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ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local" 

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more)

C C C C

M M

C C C C

M M
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Intel Broadwell EP node

2 chips, 2 sockets, 11 cores per ccNUMA domain (CoD mode)

 ccNUMA map: Bandwidth penalties for remote access

 Run 11 threads per ccNUMA domain (half chip)

 Place memory in different domain  4x4 combinations

 STREAM copy benchmark using standard stores
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numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

 Examples:

for m in `seq 0 3`; do

for c in `seq 0 3`; do 

env OMP_NUM_THREADS=8 \

numactl --membind=$m --cpunodebind=$c ./stream

enddo

enddo

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

ccNUMA map scan
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ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the 

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example: 

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not 

mapped here yet

Mapping takes 

place here
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Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization 



203(c) RRZE 2015 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O
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Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order

 See below

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly 

placed copies of global data

 C++: Arrays of objects and std::vector<> are by default 

initialized sequentially

 STL allocators provide an elegant solution
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Coding for Data Locality:

Placement of static arrays or arrays of objects

 Don't forget that constructors tend to touch the data members of 

an object. Example:

class D {

double d;

public:

D(double _d=0.0) throw() : d(_d) {}

inline D operator+(const D& o) throw() {

return D(d+o.d);

}

inline D operator*(const D& o) throw() {

return D(d*o.d);

}

...

};

→ placement problem with 
D* array = new D[1000000];
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Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via 

“placement new”

void* D::operator new[](size_t n) {

char *p = new char[n];    // allocate

size_t i,j;

#pragma omp parallel for private(j) schedule(...)

for(i=0; i<n; i += sizeof(D))

for(j=0; j<sizeof(D); ++j)

p[i+j] = 0;

return p;

}

void D::operator delete[](void* p) throw() {

delete [] static_cast<char*>p;

}

parallel first 

touch
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Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

T* allocate(size_type numObjects, const void  

*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);

void *m = malloc(len);

char *p = static_cast<char*>(m);

int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) << PAGE_BITS;

p[ofs]=0;

}

return static_cast<pointer>(m);

}

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)
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Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality 

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Running with  numactl --interleave might give you a hint

 See later

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Westmere dual-socket system (Core i7, hex-core):

env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out
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Using performance counters for diagnosing bad ccNUMA 

access locality

 Intel Westmere EP node (2x6 cores):

Only one memory BW 

per socket (“Uncore”)

Half of BW comes from 

other socket!

+-----------------------------+----------+----------+     +----------+----------+

|           Metric            |  core 0  |  core 1  |     |  core 6  |  core 7  |

+-----------------------------+----------+----------+     +----------+----------+

|         Runtime [s]         | 0.730168 | 0.733754 |     | 0.732808 | 0.732943 |

|             CPI             | 10.4164  | 10.2654  |     | 10.5002  | 10.7641  |

| Memory bandwidth [MBytes/s] | 11880.9  |    0     | ... | 11732.4  |    0     | ...

|  Remote Read BW [MBytes/s]  |   4219 |    0     |     | 4163.45 |    0     |

| Remote Write BW [MBytes/s]  | 1706.19 |    0     |     | 1705.09 |    0     |

|    Remote BW [MBytes/s]     | 5925.19 |    0     |     | 5868.54 |    0     |

+-----------------------------+----------+----------+     +----------+----------+
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If all fails…

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters  may still achieve some access 

parallelism (see later)

 OS has filled memory with buffer cache data:

# numactl --hardware    # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached
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ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory, 

apps will probably allocate from 

foreign domains

  non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels
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DLR1 matrix on 2x 8-core Sandy Bridge node

Back to the spMVM code: a little riddle
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parallel first touch init. serial init.
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The curse and blessing of interleaved placement: 

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via  numactl –m 0

 Interleaved:  numactl --interleave <LD range>
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The curse and blessing of interleaved placement: 

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via  numactl –m 0

 Interleaved:  numactl --interleave <LD range>
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Summary on ccNUMA issues

 Identify the problem

 Is ccNUMA an issue in your code?

 Simple test: run with numactl --interleave 

 Apply first-touch placement

 Look at initialization loops

 Consider loop lengths and static scheduling

 C++ and global/static objects may require special care

 If dynamic scheduling cannot be avoided

 Distribute the data anyway, just do not use sequential placement!

 Not shown here: OS file buffer cache may impact proper 

placement
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OpenMP performance issues on multicore

Barrier synchronization overhead

Topology dependence
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The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop
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double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier
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OpenMP vector triad on Sandy Bridge sockets (3 GHz)
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sync 

overhead 

grows with # 

of threads

bandwidth 

scalability 

across 

memory 

interfaces

L1 core limit

Pattern!

OpenMP barrier

overhead
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Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slides: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)
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Thread synchronization overhead on SandyBridge-EP 
Barrier overhead in CPU cycles

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898
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Thread synchronization overhead on Intel Xeon Phi 
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

Still the pain may be much larger, as more work can be done in one cycle

on Phi compared to a full Sandy Bridge node

3.75x cores (16 vs 60) on Phi

2x more operations per cycle on Phi

 2 ∙ 3.75 = 7.5x more work done on Xeon Phi per cycle

2.7x more barrier penalty (cycles) on Phi

 One barrier causes 2.7 ∙ 7.5 ≈ 20x more pain .

2 threads on 

distinct cores: 

1936



Pattern-driven 

Performance Engineering

Basics of Benchmarking

Performance Patterns

Signatures
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Basics of optimization

1. Define relevant test cases

2. Establish a sensible performance metric

3. Acquire a runtime profile (sequential)

4. Identify hot kernels (Hopefully there are any!)

5. Carry out optimization process for each kernel

Motivation:

• Understand observed performance

• Learn about code characteristics and machine capabilities

• Deliberately decide on optimizations

Iteratively

(c) RRZE 2015 Node-Level Performance Engineering
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Best practices for benchmarking

 Preparation

 Reliable timing (minimum time which can be measured?)

 Document code generation (flags, compiler version)

 Get access to an exclusive system

 System state (clock speed, turbo mode, memory, caches)

 Consider to automate runs with a script (shell, python, perl)

 Doing

 Affinity control

 Check: Is the result reasonable?

 Is result deterministic and reproducible?

 Statistics: Mean, Best ?

 Basic variants: Thread count, affinity, working set size

Node-Level Performance Engineering(c) RRZE 2015
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Thinking in bottlenecks

• A bottleneck is a performance limiting setting

• Microarchitectures expose numerous bottlenecks

Observation 1:

Most applications face a single bottleneck at a time!

Observation 2:

There is a limited number of relevant bottlenecks!

(c) RRZE 2015 Node-Level Performance Engineering
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Performance Engineering Process: Analysis

Node-Level Performance Engineering

Pattern

Microbenchmarking
Hardware/Instruction 

set architecture

Algorithm/Code 

Analysis

Application 

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance 

patterns are 

typical 

performance 

limiting motifs 

The set of input data indicating 

a pattern is its signature

(c) RRZE 2015
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Performance Engineering Process: Modeling

Node-Level Performance Engineering

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn
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Performance Engineering Process: Optimization

Node-Level Performance Engineering

Optimize for better 

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance 

improves until next 

bottleneck is hit

Improves 

Performance

Step 3 Optimization: Improve utilization of available resources

(c) RRZE 2015
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Performance pattern classification

1. Maximum resource utilization

(computing at a bottleneck)

2. Hazards

(something “goes wrong”)

3. Work related 

(too much work or too inefficiently done)

(c) RRZE 2015 Node-Level Performance Engineering
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Patterns (I): Bottlenecks & hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Bandwidth saturation
Saturating speedup across 

cores sharing a data path

Bandwidth meets BW of suitable 

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of 

cycles to specific instruction 

count(s) (FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume
Simple bandwidth performance 

model much too optimistic

Low BW utilization / Low cache hit 

ratio, frequent CL evicts or 

replacements (CACHE, DATA, 

MEM)
Latency-bound 

access

Micro-architectural

anomalies

Large discrepancy from simple 

performance model based on 

LD/ST and arithmetic 

throughput

Relevant events are very 

hardware-specific, e.g., memory 

aliasing stalls, conflict misses, 

unaligned LD/ST, requeue events

Jacobi

In-L1 sum

optimal code

spMVM RHS 

access
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Patterns (II): Hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

False sharing of cache

lines

Large discrepancy from 

performance model in parallel case, 

bad scalability

Frequent (remote) CL evicts 

(CACHE)

Bad ccNUMA page

placement

Bad or no scaling across NUMA 

domains, performance improves 

with interleaved page placement

Unbalanced bandwidth on 

memory interfaces / High remote 

traffic (MEM)

Pipelining issues
In-core throughput far from design 

limit, performance insensitive to 

data set size

(Large) integral ratio of cycles to 

specific instruction count(s), bad 

(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss 

ratio (BRANCH)

No parallel 

initialization

In-L1 sum w/o 

unrolling
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Patterns (III): Work-related

Pattern Performance behavior
Metric signature, LIKWID 

performance group(s)

Load imbalance / serial

fraction
Saturating/sub-linear speedup

Different amount of “work” on the 

cores (FLOPS_*); note that 

instruction count is not reliable!

Synchronization overhead

Speedup going down as more cores 

are added / No speedup with small 

problem sizes / Cores busy but low 

FP performance

Large non-FP instruction count 

(growing with number of cores 

used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good 

scaling across cores, performance 

insensitive to problem size

Low CPI near theoretical limit / 

Large non-FP instruction count 

(constant vs. number of cores) 

(FLOPS_*, DATA, CPI)

Code 

composition

Expensive 

instructions

Similar to instruction overhead

Many cycles per instruction (CPI) 

if the problem is large-latency 

arithmetic

Ineffective 

instructions

Scalar instructions dominating in 

data-parallel loops (FLOPS_*, 

CPI)

L1 OpenMP

vector triad

C/C++ aliasing 

problem

(c) RRZE 2015 Node-Level Performance Engineering



236

Patterns conclusion

 Pattern signature = performance behavior + hardware metrics 

 Patterns are applies hotspot (loop) by hotspot

 Patterns map to typical execution bottlenecks

 Patterns are extremely helpful in classifying performance issues

 The first pattern is always a hypothesis

 Validation by tanking data (more performance behavior, HW metrics)

 Refinement or change of pattern

 Performance models are crucial for most patterns

 Model follows from pattern

(c) RRZE 2015 Node-Level Performance Engineering
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Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters  pinning/binding is essential

 Bandwidth bottlenecks  inefficiency is often made on the chip level

 Topology dependence of performance features  know your hardware!

 Put cores to good use

 Bandwidth bottlenecks  surplus cores  functional parallelism!?

 Shared caches  fast communication/synchronization  better

implementations/algorithms?

 Simple modeling techniques and patterns help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Simple tools get you 95% of the way

 e.g., with the LIKWID tool suite

(c) RRZE 2015 Node-Level Performance Engineering

Most 

powerful 

tool?
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THANK YOU.
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Abstract

 SC14 tutorial: Node-Level Performance Engineering

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein

 ABSTRACT:

The advent of multi- and manycore chips has led to a further opening of the gap between 

peak and application performance for many scientific codes. This trend is accelerating as 

we move from petascale to exascale. Paradoxically, bad node-level performance helps to 

“efficiently” scale to massive parallelism, but at the price of increased overall time to 

solution. If the user cares about time to solution on any scale, optimal performance on the 

node level is often the key factor. We convey the architectural features of current 

processor chips, multiprocessor nodes, and accelerators, as far as they are relevant for 

the practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches, 

bandwidth bottlenecks, and ccNUMA characteristics are introduced, and the influence of 

system topology and affinity on the performance of typical parallel programming 

constructs is demonstrated. Performance engineering and performance patterns are 

suggested as powerful tools that help the user understand the bottlenecks at hand and to 

assess the impact of possible code optimizations. A cornerstone of these concepts is the 

roofline model, which is described in detail, including useful case studies, limits of its 

applicability, and possible refinements.
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