
Node-Level Performance

Engineering

Georg Hager, Jan Eitzinger, Gerhard Wellein
Erlangen Regional Computing Center (RRZE)
and Department of Computer Science

University of Erlangen-Nuremberg

SC15 full-day tutorial

November 16, 2014

Austin, TX, USA

For final slides and example code see:

http://goo.gl/73RsCu

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 Multicore tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks

 Hardware bottlenecks

 Node-level performance modeling (part I)

 The Roofline Model and dense MVM

 Lunch break

 Node-level performance modeling (part II)

 Case studies: Sparse MVM, Jacobi solver

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 OpenMP synchronization and multicores

 Pattern-driven performance engineering

(c) RRZE 2015 Node-Level Performance Engineering

G
W

JT
JT

G
W

JT

10:00

12:00

15:00

17:00

13:30

15:30

10:30

08:30

G
H

a
G

H
a

G
W

JT
JT

G
W

JT
G

H
a

G
H

a
G

W
JE

G
H

JE
G

H
JE

G
W

2

A conversation

From a student seminar on “Efficient programming of modern multi- and

manycore processors”

Student: I have implemented this algorithm on the GPGPU, and it

solves a system with 26546 unknowns in 0.12 seconds,

so it is really fast.

Me: What makes you think that 0.12 seconds is fast?

Student: It is fast because my baseline C++ code on the CPU is about

20 times slower.

(c) RRZE 2015 Node-Level Performance Engineering 3

Prelude:

Scalability 4 the win!

Scalability Myth: Code scalability is the key issue

(c) RRZE 2015 Node-Level Performance Engineering

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile
options makes this code
scalable on an 8-core chip

–O3 -xAVX

6

Scalability Myth: Code scalability is the key issue

(c) RRZE 2015 Node-Level Performance Engineering

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

7

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the

situation

(c) RRZE 2015 Node-Level Performance Engineering 8

How model-building works: Physics

(c) RRZE 2015

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

 𝐹 = 𝑚 𝑎

Nonrelativistic
quantum
mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Node-Level Performance Engineering 9

Introduction:

Modern node architecture

Multi- and manycore chips and nodes

A glance at basic core fatures

Caches and data transfers through the memory hierarchy

Memory organization

Accelerators

Programming models

Multi-core today: Intel Xeon 2600v3 (2014)

 Xeon E5-2600v3 “Haswell EP”:

Up to 18 cores running at 2+ GHz (+ “Turbo Mode”: 3.5+ GHz)

 Simultaneous Multithreading

 reports as 36-way chip

 5.7 Billion Transistors / 22 nm

 Die size: 662 mm2

2-socket server

(c) RRZE 2015 Node-Level Performance Engineering 12

.

Optional:
“Cluster on Die”
(CoD) mode

General-purpose cache based microprocessor core

 Implements “Stored

Program Computer”

concept (Turing 1936)

 Similar designs on all

modern systems

 (Still) multiple potential

bottlenecks

 The clock cycle is the

“heartbeat” of the core

(c) RRZE 2015 Node-Level Performance Engineering

Stored-program computer

Modern CPU core

14

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2015 Node-Level Performance Engineering 15

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2015 Node-Level Performance Engineering 16

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Hardware Pipelining on processor (all units can run concurrently):

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2015 Node-Level Performance Engineering 17

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 or 4 floating point operations per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2015 Node-Level Performance Engineering 18

Core details: Simultaneous multi-threading (SMT)

“logical” cores multiple threads/processes run concurrently

(c) RRZE 2015 Node-Level Performance Engineering

S
ta

n
d
a
rd

 c
o
re

2
-w

a
y
 S

M
T

SMT principle (2-way example):

19

20(c) RRZE 2015 Node-Level Performance Engineering

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may achieve the same goal

without SMT:

Thread 0:
do i=1,N

a(i) = a(i-1)*c

enddo

Dependency pipeline

stalls until previous MULT

is over

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

b(i) = s*b(i-2)+d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

a(i) = a(i-1)*c

b(i) = s*b(i-2)+d

enddo

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2015 Node-Level Performance Engineering
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

28

SIMD processing – Basics

 Steps (done by the compiler) for “SIMD processing”

(c) RRZE 2015 Node-Level Performance Engineering

for(int i=0; i<n;i++)

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

C[i] =A[i] +B[i];

C[i+1]=A[i+1]+B[i+1];

C[i+2]=A[i+2]+B[i+2];

C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

VLOAD R0 A[i]

VLOAD R1 B[i]

V64ADD[R0,R1] R2

VSTORE R2 C[i]

ii+4

i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to
register R0

Add the corresponding 64 Bit entries in R0 and R1 and
store the 4 results to R2

Store R2 (256 Bit) to address
starting at C[i]

29

SIMD processing – Basics

 No SIMD vectorization for loops with data dependencies:

 “Pointer aliasing” may prevent SIMDfication

 C/C++ allows that A &C[-1] and B &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency No SIMD

 If “pointer aliasing” does not happen, tell it to the compiler:

 –fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

 restrict keyword (C only!):

(c) RRZE 2015 Node-Level Performance Engineering

for(int i=0; i<n;i++)

A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {

for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];

}

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…}

30

31(c) RRZE 2015

Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

(256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Putting it all together

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code

TOP500 rank 1 (1995)

Node-Level Performance Engineering

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2015 Node-Level Performance Engineering

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)

32

33

Today: ccNUMA

Yesterday (2006): UMA

Commodity cluster nodes: From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

ccNUMA provides scalable bandwidth but:

Where does my data finally end up?

(c) RRZE 2015 Node-Level Performance Engineering

2-socket server

.

2-socket server

Haswell(++):

“Cluster on Die”

(CoD) mode

Interlude:

A glance at current accelerator technology

38

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

(c) RRZE 2015 Node-Level Performance Engineering

39

Intel Xeon Phi block diagram

(c) RRZE 2015 Node-Level Performance Engineering

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP DP

peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

40

Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit 480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 TOP7: “Stampede” at Texas Center

for Advanced Computing

(c) RRZE 2015 Node-Level Performance Engineering

 NVIDIA Kepler K20

 15 SMX units each with

192 “cores”

960/2880 DP/SP “cores”

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10,000+

 Programming:

CUDA, OpenCL, (OpenACC)

 TOP1: “Titan” at Oak Ridge National

Laboratory

TOP500

rankings

Nov 2012

41

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device

(c) RRZE 2015 Node-Level Performance Engineering

Node topology and

programming models

43

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2015 Node-Level Performance Engineering

44(c) RRZE 2015 Node-Level Performance Engineering

Parallel programming models

on modern compute nodes

 Shared-memory (intra-node)

 Good old MPI

 OpenMP

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 “Accelerated”

 OpenMP 4.0+

 CUDA

 OpenCL

 OpenACC

 Distributed-memory (inter-node)

 MPI

 PGAS (CAF, UPC, …)

 Hybrid

 Pure MPI + X, X == <you name it>

All models require

awareness of topology

and affinity issues for

getting best

performance out of the

machine!

45(c) RRZE 2015 Node-Level Performance Engineering

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

46(c) RRZE 2015 Node-Level Performance Engineering

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

47

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2015 Node-Level Performance Engineering

Conclusions about architecture

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

 Performance of programming models is sensitive to architecture

 Topology/affinity influences overheads

 Standards do not contain (many) topology-aware features

 Apart from overheads, performance features are largely independent of the
programming model

(c) RRZE 2015 Node-Level Performance Engineering 48

Multicore Performance and Tools

50

Tools for Node-level Performance Engineering

 Gather Node Information

hwloc, likwid-topology, likwid-powermeter

 Affinity control and data placement

OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

 Runtime Profiling

Compilers, gprof, HPC Toolkit, …

 Performance Profilers

Intel VtuneTM, likwid-perfctr, PAPI based tools, Linux perf, …

 Microbenchmarking

STREAM, likwid-bench, lmbench

(c) RRZE 2015 Node-Level Performance Engineering

LIKWID performance tools

LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

Open source tool collection

(developed at RRZE):

https://github.com/RRZE-HPC/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite for x86
multicore environments. PSTI2010, Sep 13-16, 2010,
San Diego, CA http://arxiv.org/abs/1004.4431

(c) RRZE 2015 Node-Level Performance Engineering 51

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-powermeter: Measure energy consumption

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-bench: Microbenchmarking tool and environment

 … some more

(c) RRZE 2015 Node-Level Performance Engineering 52

53(c) RRZE 2015 Node-Level Performance Engineering

Output of likwid-topology –g
on one node of Intel Haswell-EP

--

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU stepping: 2

**

Hardware Thread Topology

**

Sockets: 2

Cores per socket: 14

Threads per core: 2

--

HWThread Thread Core Socket Available

0 0 0 0 *

1 0 1 0 *

…
43 1 1 1 *

44 1 2 1 *

--

Socket 0: (0 28 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41)

Socket 1: (14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55)

--

**

Cache Topology

**

Level: 1

Size: 32 kB

Cache groups: (0 28) (1 29) (2 30) (3 31) (4 32) (5 33) (6 34) (7 35) (8 36) (9 37) (10 38) (11 39) (12 40) (13 41

) (14 42) (15 43) (16 44) (17 45) (18 46) (19 47) (20 48) (21 49) (22 50) (23 51) (24 52) (25 53) (26 54) (27 55)

--

Level: 2

Size: 256 kB

Cache groups: (0 28) (1 29) (2 30) (3 31) (4 32) (5 33) (6 34) (7 35) (8 36) (9 37) (10 38) (11 39) (12 40) (13 41

) (14 42) (15 43) (16 44) (17 45) (18 46) (19 47) (20 48) (21 49) (22 50) (23 51) (24 52) (25 53) (26 54) (27 55)

--

Level: 3

Size: 17 MB

Cache groups: (0 28 1 29 2 30 3 31 4 32 5 33 6 34) (7 35 8 36 9 37 10 38 11 39 12 40 13 41) (14 42 15 43 16 44 17 45 18 46 19 47 20 48)

(21 49 22 50 23 51 24 52 25 53 26 54 27 55)

--

All physical

processor IDs

54

Output of likwid-topology continued

(c) RRZE 2015 Node-Level Performance Engineering

**

NUMA Topology

**

NUMA domains: 4

--

Domain: 0

Processors: (0 28 1 29 2 30 3 31 4 32 5 33 6 34)

Distances: 10 21 31 31

Free memory: 13292.9 MB

Total memory: 15941.7 MB

--

Domain: 1

Processors: (7 35 8 36 9 37 10 38 11 39 12 40 13 41)

Distances: 21 10 31 31

Free memory: 13514 MB

Total memory: 16126.4 MB

--

Domain: 2

Processors: (14 42 15 43 16 44 17 45 18 46 19 47 20 48)

Distances: 31 31 10 21

Free memory: 15025.6 MB

Total memory: 16126.4 MB

--

Domain: 3

Processors: (21 49 22 50 23 51 24 52 25 53 26 54 27 55)

Distances: 31 31 21 10

Free memory: 15488.9 MB

Total memory: 16126 MB

--

55

Output of likwid-topology continued

(c) RRZE 2015 Node-Level Performance Engineering

**

Graphical Topology

**

Socket 0:

+---+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 0 28 | | 1 29 | | 2 30 | | 3 31 | | 4 32 | | 5 33 | | 6 34 | | 7 35 | | 8 36 | | 9 37 | | 10 38 | | 11 39 | | 12 40 | | 13 41 | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--+ +--+ |

| | 17MB | | 17MB | |

| +--+ +--+ |

+---+

Socket 1:

+---+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 14 42 | | 15 43 | | 16 44 | | 17 45 | | 18 46 | | 19 47 | | 20 48 | | 21 49 | | 22 50 | | 23 51 | | 24 52 | | 25 53 | | 26 54 | | 27 55 | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--+ +--+ |

| | 17MB | | 17MB | |

| +--+ +--+ |

+---+

Cluster on die mode

and SMT enabled!

Enforcing thread/process-core affinity

under the Linux OS

Standard tools and OS affinity facilities under

program control

likwid-pin

57(c) RRZE 2015 Node-Level Performance Engineering

Example: STREAM benchmark on 16-core Sandy Bridge:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

first socket first)

There are several reasons for caring

about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

58(c) RRZE 2015 Node-Level Performance Engineering

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

Linux: sched_setaffinity()

Windows: SetThreadAffinityMask()

 Hwloc project (http://www.open-mpi.de/projects/hwloc/)

 Support for “semi-automatic” pinning in some
compilers/environments

 All modern compilers with OpenMP support

 Generic Linux: taskset, numactl, likwid-pin (see below)

 OpenMP 4.0 (see OpenMP tutorial)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

59(c) RRZE 2015 Node-Level Performance Engineering

Likwid-pin
Overview

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread

library binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node

 Usage examples:

 likwid-pin -c 0-3,4,6 ./myApp parameters

 likwid-pin -c S0:0-7 ./myApp parameters

 likwid-pin –c N:0-15 ./myApp parameters

60(c) RRZE 2015 Node-Level Performance Engineering

LIKWID terminology
Thread group syntax

 The OS numbers all processors (hardware threads) on a node

 The numbering is enforced at boot time by the BIOS

 LIKWID introduces thread groups consisting of processors sharing a

topological entity (e.g. socket or shared cache)

 A thread group is defined by a single character + index

 Example for likwid-pin:
likwid-pin –c S1:0-3,6,7 ./a.out

 Thread group expression may be chained with @:

likwid-pin –c S0:0-3@S1:0-3 ./a.out

 Alternative expression based syntax:
likwid-pin –c E:S0:4:2:2 ./a.out

E:<thread domain>:<num threads>:<chunk size>:<stride>

 Xeon Phi: likwid-pin –c E:N:60:2:4 ./a.out

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 4| | 1 5| | 2 6 | | 3 7 | |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Physical processors first!

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 4| | 1 5| | 2 6 | | 3 7 | |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Block wise placement!

61

Likwid
Currently available thread domains

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

(c) RRZE 2015 Node-Level Performance Engineering

Chipset

Memory

Default if –c is not

specified!

62(c) RRZE 2015 Node-Level Performance Engineering

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

$ likwid-pin -c S0:0-3 ./stream

[likwid-pin] Main PID -> core 0 - OK

--

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

--

Array size = 20000000

Offset = 32

The total memory requirement is 457 MB

You are running each test 10 times

--

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper] [pthread wrapper] PIN_MASK: 0->1 1->2 2->3

[pthread wrapper] SKIP MASK: 0x1

threadid 140370139711232 -> SKIP

threadid 140370117211968 -> core 1 - OK

threadid 140370113013632 -> core 2 - OK

threadid 140369974597568 -> core 3 - OK

[... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

63

Intel KMP_AFFINITY environment variable

 KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

 modifier

 granularity=<specifier> takes the

following specifiers: fine, thread,

and core

 norespect

 noverbose

 proclist={<proc-list>}

 respect

 verbose

 Default:

noverbose,respect,granularity=core

 type (required)

 compact

 disabled

 explicit (GOMP_CPU_AFFINITY)

 none

 scatter

 KMP_AFFINITY=verbose,none to list machine topology map

OS processor IDs

Respect an OS

affinity mask in place

(c) RRZE 2015 Node-Level Performance Engineering

64

Intel KMP_AFFINITY examples

 KMP_AFFINITY=granularity=fine,compact

 KMP_AFFINITY=granularity=fine,scatter

Package means

chip/socket

(c) Intel

(c) Intel

(c) RRZE 2015 Node-Level Performance Engineering

65

Intel KMP_AFFINITY permute example

 KMP_AFFINITY=granularity=fine,compact,1,0

 KMP_AFFINITY=granularity=core,compact

(c) Intel

(c) Intel

Threads may float

within core

(c) RRZE 2015 Node-Level Performance Engineering

66

GNU GOMP_AFFINITY

 GOMP_AFFINITY=3,0-2 used with 6 threads

 Always operates with OS processor IDs

Round robin

oversubscription

(c) Intel

(c) RRZE 2015 Node-Level Performance Engineering

Multicore performance tools:

Probing performance behavior

likwid-perfctr

68

likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof): Where are the hot spots?

2. Instrument hot spots (prepare for detailed measurement)

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive

operations)

Goal: Come up with educated guess about a performance-limiting motif

(Performance Pattern)

(c) RRZE 2015 Node-Level Performance Engineering

lik
w

id
-p

e
rf

c
tr

c
a
n

h
e
lp

h
e
re

69(c) RRZE 2015 Node-Level Performance Engineering

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

70(c) RRZE 2015 Node-Level Performance Engineering

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

71

likwid-perfctr

Best practices for runtime counter analysis

Things to look at (in roughly this order)

 Excess work

 Load balance (flops, instructions, BW)

 In-socket memory BW saturation

 Flop/s, loads and stores per flop metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show

in CPI or # of instructions
 Spin loops in OpenMP

barriers/MPI blocking calls

 Looking at “top” or the Windows

Task Manager does not tell you

anything useful

 In-socket performance

saturation may have various

reasons

 Cache miss metrics are

sometimes misleading

(c) RRZE 2015 Node-Level Performance Engineering

72

likwid-perfctr

Marker API (C/C++ and Fortran)

 A marker API is available to restrict measurements to code regions

 The API only turns counters on/off. The configuration of the counters is still
done by likwid-perfctr

 Multiple named region support, accumulation over multiple calls

 Inclusive and overlapping regions allowed

(c) RRZE 2015

#include <likwid.h>

. . .

LIKWID_MARKER_INIT; // must be called from serial region

#pragma omp parallel

{

LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}

. . .

LIKWID_MARKER_START(“Compute”);

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

Node-Level Performance Engineering

Activate macros with
-DLIKWID_PERFMON

Measuring energy consumption

with LIKWID

74

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor

CPU clock: 3.49 GHz

Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz

Turbo Boost Steps:

C1 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts

Minimum Power: 20 Watts

Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

(c) RRZE 2015 Node-Level Performance Engineering

75

Example:
A medical image reconstruction code on Sandy Bridge

(c) RRZE 2015 Node-Level Performance Engineering

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
a
s
te

r c
o

d
e

le

s
s
 e

n
e
rg

y

Microbenchmarking for

architectural exploration

Probing of the memory hierarchy

Saturation effects in cache and memory

77

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2015 Node-Level Performance Engineering

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

78(c) RRZE 2015 Node-Level Performance Engineering

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

79

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2015 Node-Level Performance Engineering

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

4 W / iteration

 128 GB/s

5 W / it.

 18 GB/s

(incl. write

allocate)

Are the

performance

levels

plausible?

What about

multiple cores?

Do the

bandwidths

scale?

Pattern!

Ineffective

instructions

80

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

(c) RRZE 2015 Node-Level Performance Engineering

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t?

Data far awaysmaller SIMD impact?

Theoretical limit?

Theoretical limit?

Theoretical limits?

See later for

answers!

81

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2015 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

82

Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2015 Node-Level Performance Engineering

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

83

Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket

CPU node

(c) RRZE 2015 Node-Level Performance Engineering

Pattern!

Bandwidth

saturation

84(c) RRZE 2015 Node-Level Performance Engineering

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

85

Conclusions from the microbenchmarks

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

(c) RRZE 2015 Node-Level Performance Engineering

“Simple” performance modeling:

The Roofline Model(1)

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

Example: A 3D Jacobi solver

Model-guided optimization

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

87

Prelude: Modeling customer dispatch in a bank

(c) RRZE 2015 Node-Level Performance Engineering

Revolving door

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing

capability:

Pmax [tasks/sec]

88

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆:

Best use of resources

 Roofline is an “optimistic” model:

(“light speed”)

(c) RRZE 2015 Node-Level Performance Engineering

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax

89

The Roofline Model

(c) RRZE 2015 Node-Level Performance Engineering

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. Journal for Parallel and Distributed Computing 5(4),

334 (1988). DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆

𝐵𝐶

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

90

Preliminary: Estimating Pmax

How to perform a instruction throughput analysis on the example of Intel’s

port based scheduler model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

SandyBridge

16b 16b 16b

(c) RRZE 2015 Node-Level Performance Engineering

First-order assumption: All instructions in a loop are fed independently to the

various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools

(Intel IACA, Intel Amplifier)

91

Throughput capabilities of the Intel Sandy Bridge core

 Per cycle with AVX

 1 load instruction (256 bits) AND ½

store instruction (128 bits)

 1 AVX MULT and 1 AVX ADD

instruction

(4 DP / 8 SP flops each)

 Per cycle with SSE or scalar

 2 load instruction OR 1 load and 1

store instruction

 1 MULT and 1 ADD instruction

 Overall maximum of 4 micro-ops

 In practice, 3 is more realistic

(c) RRZE 2015 Node-Level Performance Engineering

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

93

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]

}

How many cycles to process one AVX-vectorized iteration

(one core)?

 Equivalent to 4 scalar iterations

Cycle 1: LOAD + ½ STORE + MULT + ADD

Cycle 2: LOAD + ½ STORE

Cycle 3: LOAD Answer: 3 cycles

(c) RRZE 2015 Node-Level Performance Engineering

94

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]

}

What is the performance in GFlops/s and the bandwidth in GBytes/s?

One AVX iteration (3 cycles) does 4 x 2 = 8 flops:

3.0 ∙ 109 cy/s

3 cy
∙ 4 updates ∙

2 flops

update
= 𝟖

Gflops

s

4 ∙ 109
updates

s
∙ 32

bytes

update
= 128

Gbyte

s

(c) RRZE 2015 Node-Level Performance Engineering

Homework

95

Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 3 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.04 % of peak performance)

 Ppeak = 192 Gflop/s (8 FP units x (4+4) Flops/cy x 3.0 GHz)

 Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 64,2.0 GFlop s
= 2.0 GFlop s

(c) RRZE 2015 Node-Level Performance Engineering

96

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2015 Node-Level Performance Engineering

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

pipelined

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we

get these?

 See next!

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

97

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0

i 1

loop:

LOAD r2.0 a(i)

ADD r1.0 r1.0+r2.0

++i ? loop

result r1.0

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 1/24 of ADD peak

S
IM

D
 l

a
n

e
s

Pattern!

Pipelining

issues

98

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0 0

LOAD r2.0 0

LOAD r3.0 0

i 1

loop:

LOAD r4.0 a(i)

LOAD r5.0 a(i+1)

LOAD r6.0 a(i+2)

ADD r1.0 r1.0 + r4.0

ADD r2.0 r2.0 + r5.0

ADD r3.0 r3.0 + r6.0

i+=3 ? loop

result r1.0+r2.0+r3.0

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 1/8 of ADD peak

99

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7] [0,…,0]

LOAD [r2.0,…,r2.7] [0,…,0]

LOAD [r3.0,…,r3.7] [0,…,0]

i 1

loop:

LOAD [r4.0,…,r4.7] [a(i),…,a(i+7)]

LOAD [r5.0,…,r5.7] [a(i+8),…,a(i+15)]

LOAD [r6.0,…,r6.7] [a(i+16),…,a(i+23)]

ADD r1 r1 + r4

ADD r2 r2 + r5

ADD r3 r3 + r6

i+=24 ? loop

result r1.0+r1.1+...+r3.6+r3.7

(c) RRZE 2015 Node-Level Performance Engineering

ADD pipes utilization:

 ADD peak

Pattern! ALU

saturation

100

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

in single precision

(c) RRZE 2015 Node-Level Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

101

Prerequisites for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer

 Slowest limiting factor “wins”; all others are assumed to have no impact

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2015 Node-Level Performance Engineering

102

Exercise: Dense matrix-vector multiplication in DP (AVX)

 Assume C = R ≈ 10,000

 Applicable peak performance?

 Relevant data path?

 Computational Intensity?

do c = 1 , C

do r = 1 , R

y(r)=y(r) + A(r,c)* x(c)

enddo

enddo

(c) RRZE 2015 Node-Level Performance Engineering

do c = 1 , C

tmp=x(c)

do r = 1 , R

y(r)=y(r) + A(r,c)* tmp

enddo

enddo

103

 Vectorization strategy: 4-way inner loop unrolling

 One register holds tmp in each of its 4 entries (“broadcast”)

 Loop kernel requires/consume 3 AVX registers

Exercise: DMVM (DP) – AVX vectorization

(c) RRZE 2015 Node-Level Performance Engineering

do c = 1,C

tmp=x(c)

do r = 1, R , 4 ! R is multiple of 4

y(r) = y(r) + A(r,c) * tmp

y(r+1) = y(r+1) + A(r+1,c)* tmp

y(r+2) = y(r+2) + A(r+2,c)* tmp

y(r+3) = y(r+3) + A(r+3,c)* tmp

enddo

enddo

104

DMVM (DP) – Single core performance vs. column height

(c) RRZE 2015 Node-Level Performance Engineering

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, Core Ppeak=18.4 GF/s, Caches: 32 KB / 256 KB / 34 MB

PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Performance drops as number

of rows (inner loop length)

increases.

Does computational intensity

change?!

105

DMVM (DP) – Single core data traffic analysis

(c) RRZE 2015 Node-Level Performance Engineering

size(y(1:R))

= 160 KB

size(y(1:R))

= 16 KB

y Exceeding inner cache size:

 (8+8) Byte for LD + ST on y

BC = 8B / 2F for

Roofline

106

DMVM (DP) – Reducing traffic by inner loop blocking

 “1D blocking” for inner loop

 Blocking factor Rb cache level

 Fully reuse subset of y(rbS:rbE)

from L1/L2 cache

(c) RRZE 2015 Node-Level Performance Engineering

do rb = 1 , R , Rb

rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C

do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)

enddo

enddo

enddo

L2 cache

blocking

L1 cache

blocking

107

DMVM (DP) – Validation of blocking optimization

(c) RRZE 2015 Node-Level Performance Engineering

Rb= 2000

108

DMVM data traffic visualization

(c) RRZE 2015 Node-Level Performance Engineering

A(r,c)

do c = 1 , C

tmp=x(c)

do r = 1 , R

y(r)=y(r) + A(r,c)* tmp

enddo

enddo

do rb = 1 , R , Rb
rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C

do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)

enddo

enddo

enddo

R

Rb

y(:) may

not fit into

some cache

 more

traffic for

lower level

y(rbS:rbE)

may fit into

some cache if
Rb is small

enough

 traffic

reduction

109

DMVM (DP) – OpenMP parallelization

(c) RRZE 2015 Node-Level Performance Engineering

!$omp parallel do reduction(+:y)

do c = 1 , C

do r = 1 , R

y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo

!$omp end parallel do

!$omp parallel do private(rbS,rbE) reduction(+:y)

do rb = 1 , R , Rb
rbS = rb

rbE = min((rb+Rb-1), R)

do c = 1 , C

do r = rbS , rbE

y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo ; enddo

!$omp end parallel do

plain code

blocked code

110

DMVM (DP) – OpenMP parallelization

(c) RRZE 2015 Node-Level Performance Engineering

blocking good for

single thread

performance

memory traffic

unchanged

 saturation

unchanged!

saturation influenced

by clock speed and

serial performance

Intel Xeon E5 2695 v3 (Haswell-EP)

2.3 GHz base clock speed, bS = 32 GB/s

Roofline limit

BC = 4 Byte/Flop

bS = 32GB/s

So, is blocking

useless?

 NO (see later)

Can we do

nothing to

improve BC?

 NO, not here

112

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Perl Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking see later)

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias see later)

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation
(e.g., scalar SIMD)

(c) RRZE 2015 Node-Level Performance Engineering

113

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap perfectly

 It is not sufficient to measure single-core STREAM to make it work

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 In-cache performance is not correctly

predicted

 The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

(c) RRZE 2015 Node-Level Performance Engineering

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring

performance and power properties of modern multicore chips

via simple machine models. Concurrency and Computation:

Practice and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://youtu.be/Z8a513NCFjs

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://youtu.be/Z8a513NCFjs

Case study:

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

(c) RRZE 2015 Node-Level Performance Engineering

= + • Nr

General case:
some indirect
addressing
required!

115

SpMVM characteristics

 For large problems, spMVM is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMVM is easily parallelizable in shared and distributed memory

 Data storage format is crucial for performance properties

 Most useful general format on CPUs:

Compressed Row Storage (CRS)

 Depending on compute architecture

(c) RRZE 2015 Node-Level Performance Engineering 116

…

CRS matrix storage scheme

(c) RRZE 2015 Node-Level Performance Engineering

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

117

118(c) RRZE 2015 Node-Level Performance Engineering

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

c(i) = c(i) + val(j) * b(col_idx(j))

enddo

enddo

!$OMP parallel do

!$OMP end parallel do

119

Performance characteristics

(c) RRZE 2015 Node-Level Performance Engineering

 Strongly memory-bound for large data sets saturating performance

across cores on the chip

 Performance seems to depend on the matrix

 Can we explain

this?

 Is there a

“light speed”

for spMVM?

 Optimization?

???

123

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 DP CRS comp. intensity

 α quantifies traffic

for loading RHS

 α = 0 RHS is in cache

 α = 1/Nnzr RHS loaded once

 α = 1 no cache

 α > 1 Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring performance and actual memory traffic

 Maximum memory BW may not be achieved with spMVM

(c) RRZE 2015 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte

124

Determine RHS traffic

 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-

perfctr)

 Solve for 𝛼:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

 𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

 RHS is loaded 3.1 times from memory

 and:

(c) RRZE 2015 Node-Level Performance Engineering

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=

𝑁𝑛𝑧 ∙ 2 flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic

optimization potential!

125

Now back to the start…

(c) RRZE 2015

 𝑏𝑆 = 39 GB s

 𝐵𝑐
𝑚𝑖𝑛 = 6 B F

 Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 6.5 GF s

 DLR1 causes minimum code

balance!

 sAMG matrix code balance:

𝐵𝑐 ≤
𝑏𝑆

4.5 GF s
= 8.7 B F

 Why is this only an upper limit?

 What is the next step?

 Could we have predicted this

qualitative difference?

Node-Level Performance Engineering

126

Sparse matrix testcases

“DLR1” (A. Basermann, DLR)

Adjoint problem computation

(turbulent transonic flow

over a wing) with the TAU

CFD system of the German

Aerospace Center (DLR)

Avg. non-zeros/row ~150

“sAMG” (K. Stüben, FhG-SCAI)

Matrix from FhG’s adaptive

multigrid code sAMG

for the irregular

discretization of a Poisson

problem on a car geometry.

Avg. non-zeros/row ~ 7

(c) RRZE 2015 Node-Level Performance Engineering

129

Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model does not “work” for spMVM due to the RHS

traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: Modeling is not always 100% predictive. It‘s

all about learning more about performance properties!

(c) RRZE 2015 Node-Level Performance Engineering

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

131

Stencil schemes

 Stencil schemes frequently occur in PDE solvers on regular lattice

structures

 Basically it is a sparse matrix vector multiply (spMVM) embedded

in an iterative scheme (outer loop)

 but the regular access structure allows for matrix free coding

 Complexity of implementation and performance depends on

 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, …

 spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2015 Node-Level Performance Engineering

do iter = 1, max_iterations

Perform sweep over regular grid: y(:) x(:)

Swap y x

enddo

y x

132

Jacobi-type 5-pt stencil in 2D

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

j

k

s
w
e
e
p

Lattice

Update

(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

133

Jacobi 5-pt stencil in 2D: data transfer analysis

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

S
W
E
E
P

LD+ST y(j,k)

(incl. write

allocate)
LD x(j+1,k)

Available in cache

(used 2 updates before)

LD x(j,k+1)LD x(j,k-1)
Naive balance (incl. write allocate):

x(:, :) : 3 LD +

y(:, :) : 1 ST+ 1LD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

135

Jacobi 5-pt stencil in 2D: Single core performance

(c) RRZE 2015 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (BC)

measured with likwid-perfctr

Intel Compiler

ifort V13.1

jmax

Questions:

1. How to achieve

24 B/LUP also
for large jmax?

2. How to sustain

>600 MLUP/s for
jmax > 104 ?

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

137

Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid

(assume “Least Recently Used” replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
a
lo

 c
e
ll

s
H

a
lo

 c
e
ll

s

138

Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid

(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)

139

Analyzing the data flow

(c) RRZE 2015 Node-Level Performance Engineering

Reduce inner (j-)

loop dimension

successively

Best case: 3

„layers“ of grid fit

into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

140

Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

(c) RRZE 2015 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo 3 * jmax * 8B < CacheSize/2

“Layer condition”

double

precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)

• No strict guideline (cache associativity – data traffic for y not included)

• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)

141

Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

(c) RRZE 2015 Node-Level Performance Engineering

3 * jmax * 8B < CacheSize/2

Layer condition fulfilled?

y: (1 LD + 1 ST) / LUP x: 1 LD / LUP

BC = 24 B / LUP

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

YES

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo BC = 40 B / LUP

y: (1 LD + 1 ST) / LUP

NO

x: 3 LD / LUP

142

Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

 Establish layer condition for all domain sizes

 Idea: Spatial blocking

 Reuse elements of x() as long as they stay in cache

 Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2015 Node-Level Performance Engineering

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

do k=1,kmax

do j= jb, (jb+jblock-1) ! Length of inner loop: jblock

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

enddo New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B

143

Establish the layer condition by blocking

(c) RRZE 2015 Node-Level Performance Engineering

Split up

domain into

subblocks:

e.g. block

size = 5

144

Establish the layer condition by blocking

(c) RRZE 2015 Node-Level Performance Engineering

Additional data

transfers (overhead)

at block boundaries!

146

Establish layer condition by spatial blocking

(c) RRZE 2015 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

L1: 32 KB

L2: 256 KB

L3: 25 MBjmax

Which cache to block for?

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333) L3: CS=25 MB

jblock=min(jmax,533333)

147

Layer condition & spatial blocking: Memory code balance

(c) RRZE 2015 Node-Level Performance Engineering

jmax

Measured main memory

code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

Blocking factor

(CS=25 MB) still a

little too large

Main memory access is not

reason for different performance

(but L3 access is!)

jmax

156

Jacobi Stencil – OpenMP parallelization

!$OMP PARALLEL DO SCHEDULE(STATIC)

do k=1,kmax

do j=1,jmax

y(j,k) = 1/4.*(x(j-1,k) +x(j+1,k) &

+ x(j,k-1) +x(j,k+1))

enddo

enddo

“Layer condition”: nthreads * 3 *imax * 8B < CS/2

Basic guideline:

Parallelize outermost loop

Equally large chunks in k-direction

 “Layer condition” for each thread

(c) RRZE 2015 Node-Level Performance Engineering

157

Socket scaling – validate Roofline model

(c) RRZE 2015 Node-Level Performance Engineering

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler

ifort V13.1

OpenMP Parallel

bS = 48 GB/s

BC= 24 B/LUP

BC= 40 B/LUP

𝑃 = min(𝑃max, 𝑏𝑆 𝐵𝐶) What is 𝑃max here? homework!

Pattern!

Excess data

volume

172

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 “What part of the data comes from where” is a crucial question

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable

layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

 Food for thought

 Multi-dimensional loop blocking – would it make sense?

 Can we choose a “better” OpenMP loop schedule?

 What would change if we parallelized inner loops?

(c) RRZE 2015 Node-Level Performance Engineering

Coding for

SingleInstructionMultipleData processing

174

SIMD processing – Basics

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers.

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point operands

(c) RRZE 2015 Node-Level Performance Engineering
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

175(c) RRZE 2015 Node-Level Performance Engineering

Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2.

 To enable specific SIMD extensions use the –x option:

 -xSSE2 vectorize for SSE2 capable machines

Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX

 -xAVX on Sandy Bridge processors

Recommended option:

 -xHost will optimize for the architecture you compile on

On AMD Opteron: use plain –O3 as the -x options may involve CPU
type checks.

176(c) RRZE 2015 Node-Level Performance Engineering

Vectorization compiler options

 Controlling non-temporal stores (part of the SIMD extensions)

 -opt-streaming-stores always|auto|never

always use NT stores, assume application is memory

bound (use with caution!)

auto compiler decides when to use NT stores

never do not use NT stores unless activated by

source code directive

177(c) RRZE 2015 Node-Level Performance Engineering

Vectorization source code directives

 Fine-grained control of loop vectorization

 Use !DEC$ (Fortran) or #pragma (C/C++) sentinel to start a compiler

directive

 #pragma vector always

vectorize even if it seems inefficient (hint!)

 #pragma novector

do not vectorize even if possible

 #pragma vector nontemporal

use NT stores when allowed (i.e. alignment conditions are met)

 #pragma vector aligned

specifies that all array accesses are aligned to 16-byte boundaries

(DANGEROUS! You must not lie about this!)

178(c) RRZE 2015 Node-Level Performance Engineering

User mandated vectorization

 Since Intel Compiler 12.0 the simd pragma is available

 #pragma simd enforces vectorization where the other pragmas fail

 Prerequesites:

 Countable loop

 Innermost loop

 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses: reduction, vectorlength, private

 Refer to the compiler manual for further details

 NOTE: Using the #pragma simd the compiler may generate incorrect code if

the loop violates the vectorization rules!

#pragma simd reduction(+:x)

for (int i=0; i<n; i++) {

x = x + A[i];

}

179(c) RRZE 2015 Node-Level Performance Engineering

x86 Architecture:

SIMD and Alignment

 Alignment issues

 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte)

boundaries to allow packed aligned loads and NT stores (for Intel

processors)

 AMD has a scalar nontemporal store instruction

 Otherwise the compiler will revert to unaligned loads and not use NT
stores – even if you say vector nontemporal

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but

Xeon Phi relies heavily on it!

 How is manual alignment accomplished?

 Dynamic allocation of aligned memory (align = alignment
boundary):

#define _XOPEN_SOURCE 600

#include <stdlib.h>

int posix_memalign(void **ptr,

size_t align,

size_t size);

Reading x86 assembly code and

exploiting SIMD parallelism

Understanding SIMD execution by inspecting

assembly code

SIMD vectorization how-to

Intel compiler options and features for SIMD

181(c) RRZE 2015 Node-Level Performance Engineering

Why and how?

Why check the assembly code?

 Sometimes the only way to make sure the compiler “did the right

thing”

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads &

Stores may still be scalar!

 Get the assembler code (Intel compiler):

icc –S –masm=intel –O3 -xHost triad.c -o a.out

 Disassemble Executable:

objdump –d ./a.out | less

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

182(c) RRZE 2015 Node-Level Performance Engineering

Basics of the x86-64 ISA

 Instructions have 0 to 4 operands

 Operands can be registers, memory references or immediates

 Opcodes (binary representation of instructions) vary from 1 to 17

bytes

 There are two syntax forms: Intel (left) and AT&T (right)

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT

 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)

401ba4: 48 83 c0 08 add $0x8,%rax

401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm4, 48(%rdi,%rax,8)

addq $8, %rax

js ..B1.4

183(c) RRZE 2015 Node-Level Performance Engineering

Basics of the x86-64 ISA

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256-bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

184

Case Study: Vector Triad (DP) on IvyBridge-EP

for (int i = 0; i < length; i++) {

A[i] = B[i] + D[i] * C[i];

}

Assembly code (-O1):

LBB0_3

movsd xmm0, [rdx]

mulsd xmm0, [rcx]

addsd xmm0, [rsi]

movsd [rax], xmm0

add rsi, 8

add rdx, 8

add rcx, 8

add rax, 8

dec edi

jne LBB0_3

(c) RRZE 2015 Node-Level Performance Engineering

To get object code use
objdump –d on object file or

executable or compile with -S

..B1.6:

movsd xmm0, [r12+rax*8]

mulsd xmm0, [r13+rax*8]

addsd xmm0, [r14+rax*8]

movsd [r15+rax*8], xmm0

inc rax

cmp rax, rbx

jl ..B1.6

C
L

A
N

G

IC
C

.L4:

movsd xmm0,[rbx+rax]

mulsd xmm0,[r12+rax]

addsd xmm0,[r13+0+rax]

movsd [rbp+0+rax],xmm0

add rax, 8

cmp rax, r14

jne .L4

G
C

C

7 instructions per loop
iteration

185

Case Study: Vector Triad (DP) –O3 (Intel compiler)

..B1.19:

movsd xmm0, [r15+rsi*8]

movsd xmm3, [16+r15+rsi*8]

movsd xmm5, [32+r15+rsi*8]

movsd xmm7, [48+r15+rsi*8]

movhpd xmm0, [8+r15+rsi*8]

movhpd xmm3, [24+r15+rsi*8]

movhpd xmm5, [40+r15+rsi*8]

movhpd xmm7, [56+r15+rsi*8]

mulpd xmm0, [r14+rsi*8]

mulpd xmm3, [16+r14+rsi*8]

mulpd xmm5, [32+r14+rsi*8]

mulpd xmm7, [48+r14+rsi*8]

movsd xmm2, [r13+rsi*8]

movsd xmm4, [16+r13+rsi*8]

movsd xmm6, [32+r13+rsi*8]

movsd xmm8, [48+r13+rsi*8]

movhpd xmm2, [8+r13+rsi*8]

movhpd xmm4, [24+r13+rsi*8]

movhpd xmm6, [40+r13+rsi*8]

movhpd xmm8, [56+r13+rsi*8]

(c) RRZE 2015 Node-Level Performance Engineering

addpd xmm2, xmm0

addpd xmm4, xmm3

addpd xmm6, xmm5

addpd xmm8, xmm7

movaps [rdx+rsi*8], xmm2

movaps [16+rdx+rsi*8], xmm4

movaps [32+rdx+rsi*8], xmm6

movaps [48+rdx+rsi*8], xmm8

add rsi, 8

cmp rsi, r9

jb ..B1.19

3.86 instructions per
loop iteration

186

Case Study: Vector Triad (DP) –O3 –xHost

..B1.15:

vmovupd xmm2, [r15+rsi*8]

vmovupd xmm10, [32+r15+rsi*8]

vmovupd xmm3, [rdx+rsi*8]

vmovupd xmm11, [32+rdx+rsi*8]

vmovupd xmm0, [r14+rsi*8]

vmovupd xmm9, [32+r14+rsi*8]

vinsertf128 ymm4, ymm2,[16+r15+rsi*8], 1

vinsertf128 ymm12,ymm10,[48+r15+rsi*8],1

vinsertf128 ymm5, ymm3,[16+rdx+rsi*8], 1

vinsertf128 ymm13,ymm11,[48+rdx+rsi*8],1

vmulpd ymm7, ymm4, ymm5

vmulpd ymm15, ymm12, ymm13

vmovupd xmm4, [64+rdx+rsi*8]

vmovupd xmm12, [96+rdx+rsi*8]

vmovupd xmm3, [64+r15+rsi*8]

vmovupd xmm11, [96+r15+rsi*8]

vmovupd xmm2, [64+r14+rsi*8]

vmovupd xmm10, [96+r14+rsi*8]

vinsertf128 ymm14,ymm9,[48+r14+rsi*8], 1

vinsertf128 ymm6,ymm0,[16+r14+rsi*8], 1

vaddpd ymm8, ymm6, ymm7

vaddpd ymm0, ymm14, ymm15

(c) RRZE 2015 Node-Level Performance Engineering

vmovupd [r13+rsi*8], ymm8

vmovupd [32+r13+rsi*8], ymm0

vinsertf128 ymm5, ymm3, [80+r15+rsi*8], 1

vinsertf128 ymm13,ymm11,[112+r15+rsi*8], 1

vinsertf128 ymm6, ymm4, [80+rdx+rsi*8], 1

vinsertf128 ymm14,ymm12,[112+rdx+rsi*8], 1

vmulpd ymm8, ymm5, ymm6

vmulpd ymm0, ymm13, ymm14

vinsertf128 ymm7, ymm2, [80+r14+rsi*8], 1

vinsertf128 ymm15,ymm10,[112+r14+rsi*8], 1

vaddpd ymm9, ymm7, ymm8

vaddpd ymm2, ymm15, ymm0

vmovupd [64+r13+rsi*8], ymm9

vmovupd [96+r13+rsi*8], ymm2

add rsi, 16

cmp rsi, r9

jb ..B1.15

2.44 instructions per
loop iteration

Benefit of SIMD limited by serial fraction!

187

Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned

..B1.7:

movaps xmm0, [r13+rcx*8]

movaps xmm2, [16+r13+rcx*8]

movaps xmm3, [32+r13+rcx*8]

movaps xmm4, [48+r13+rcx*8]

mulpd xmm0, [rbp+rcx*8]

mulpd xmm2, [16+rbp+rcx*8]

mulpd xmm3, [32+rbp+rcx*8]

mulpd xmm4, [48+rbp+rcx*8]

addpd xmm0, [r12+rcx*8]

addpd xmm2, [16+r12+rcx*8]

addpd xmm3, [32+r12+rcx*8]

addpd xmm4, [48+r12+rcx*8]

movaps [r15+rcx*8], xmm0

movaps [16+r15+rcx*8], xmm2

movaps [32+r15+rcx*8], xmm3

movaps [48+r15+rcx*8], xmm4

add rcx, 8

cmp rcx, rsi

jb ..B1.7

(c) RRZE 2015 Node-Level Performance Engineering

..B1.7:

vmovupd ymm0, [r15+rcx*8]

vmovupd ymm4, [32+r15+rcx*8]

vmovupd ymm7, [64+r15+rcx*8]

vmovupd ymm10,[96+r15+rcx*8]

vmulpd ymm2, ymm0, [rdx+rcx*8]

vmulpd ymm5, ymm4, [32+rdx+rcx*8]

vmulpd ymm8, ymm7, [64+rdx+rcx*8]

vmulpd ymm11, ymm10, [96+rdx+rcx*8]

vaddpd ymm3, ymm2, [r14+rcx*8]

vaddpd ymm6, ymm5, [32+r14+rcx*8]

vaddpd ymm9, ymm8, [64+r14+rcx*8]

vaddpd ymm12, ymm11, [96+r14+rcx*8]

vmovupd [r13+rcx*8], ymm3

vmovupd [32+r13+rcx*8], ymm6

vmovupd [64+r13+rcx*8], ymm9

vmovupd [96+r13+rcx*8], ymm12

add rcx, 16

cmp rcx, rsi

jb ..B1.7

2.38 instructions per
loop iteration

1.19 instructions per
loop iteration

188

Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned on Haswell-EP

..B1.7:

vmovupd ymm2, [r15+rcx*8]

vmovupd ymm4, [32+r15+rcx*8]

vmovupd ymm6, [64+r15+rcx*8]

vmovupd ymm8, [96+r15+rcx*8]

vmovupd ymm0, [rdx+rcx*8]

vmovupd ymm3, [32+rdx+rcx*8]

vmovupd ymm5, [64+rdx+rcx*8]

vmovupd ymm7, [96+rdx+rcx*8]

vfmadd213pd ymm2, ymm0, [r14+rcx*8]

vfmadd213pd ymm4, ymm3, [32+r14+rcx*8]

vfmadd213pd ymm6, ymm5, [64+r14+rcx*8]

vfmadd213pd ymm8, ymm7, [96+r14+rcx*8]

vmovupd [r13+rcx*8], ymm2

vmovupd [32+r13+rcx*8], ymm4

vmovupd [64+r13+rcx*8], ymm6

vmovupd [96+r13+rcx*8], ymm8

add rcx, 16

cmp rcx, rsi

jb ..B1.7

(c) RRZE 2015 Node-Level Performance Engineering

1.19 instructions per
loop iteration

23 uops vs. 27 µops (AVX)

On X86 ISA instruction are

converted to so-called µops

(elementary ops like load, add,

mult). For performance the
number of µops is important.

189

Mapping the ISA on a Microarchitecture

(c) RRZE 2015 Node-Level Performance Engineering

Analysis performed for Haswell-EP

Throughput for arithmetic instructions:

Instruction mix Execution time

1 ADD 1 cy

2 ADD 2 cy

1 MUL 1 cy

2 MUL 1 cy

1 ADD + 1 MUL 1 cy

2 FMA 1 cy

Throughput for loads and stores:

• Throughput performance for steady state optimal execution

• Instruction throughput for scalar or SIMD instructions

• Load/Store units on Haswell are 32 byte wide. Was 16 bytes on previous

Intel architectures.

Instruction mix Execution time

1 LOAD 1 cy

1 STORE 2 cy

1 LOAD and 1 STORE 1 cy

2 LOADs and 1 STORE 1 cy

190

SIMD processing – The whole picture

(c) RRZE 2015 Node-Level Performance Engineering

SIMD influences instruction

execution in the core – other

runtime contributions stay the

same!

AVX example:
Scalar 12

SSE 6

AVX 3

15 cy

21

Execution Cache Memory

Per-cacheline (8

iterations) cycle

counts

Execution Units

Caches

Memory 21 cy

3 cy

15

Total runtime with data loaded

from memory:

Scalar 48

SSE 42

AVX 39

SIMD only effective if runtime is dominated
by instructions execution!

Comparing total execution time:

191

How to leverage SIMD: your options

Alternatives:

 The compiler does it for you (but: aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in assembler

To use intrinsics the following headers are available:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all extensions)

(c) RRZE 2015 Node-Level Performance Engineering

for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);

t1 = _mm_loadu_ps(data+j+4);

t2 = _mm_loadu_ps(data+j+8);

t3 = _mm_loadu_ps(data+j+12);

sum0 = _mm_add_ps(sum0, t0);

sum1 = _mm_add_ps(sum1, t1);

sum2 = _mm_add_ps(sum2, t2);

sum3 = _mm_add_ps(sum3, t3);

}

194(c) RRZE 2015 Node-Level Performance Engineering

Rules for vectorizable loops

1. Countable

2. Single entry and single exit

3. Straight line code

4. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:

1. Non-contiguous memory access

2. Data dependencies

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

196(c) RRZE 2015 Node-Level Performance Engineering

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

197

Intel Broadwell EP node

2 chips, 2 sockets, 11 cores per ccNUMA domain (CoD mode)

 ccNUMA map: Bandwidth penalties for remote access

 Run 11 threads per ccNUMA domain (half chip)

 Place memory in different domain 4x4 combinations

 STREAM copy benchmark using standard stores

(c) RRZE 2015 Node-Level Performance Engineering

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

200(c) RRZE 2015 Node-Level Performance Engineering

numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node>

and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across

all <nodes>

 Examples:

for m in `seq 0 3`; do

for c in `seq 0 3`; do

env OMP_NUM_THREADS=8 \

numactl --membind=$m --cpunodebind=$c ./stream

enddo

enddo

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

ccNUMA map scan

201(c) RRZE 2015 Node-Level Performance Engineering

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

202(c) RRZE 2015 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

203(c) RRZE 2015 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

204(c) RRZE 2015 Node-Level Performance Engineering

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 See below

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 C++: Arrays of objects and std::vector<> are by default

initialized sequentially

 STL allocators provide an elegant solution

205(c) RRZE 2015 Node-Level Performance Engineering

Coding for Data Locality:

Placement of static arrays or arrays of objects

 Don't forget that constructors tend to touch the data members of

an object. Example:

class D {

double d;

public:

D(double _d=0.0) throw() : d(_d) {}

inline D operator+(const D& o) throw() {

return D(d+o.d);

}

inline D operator*(const D& o) throw() {

return D(d*o.d);

}

...

};

→ placement problem with
D* array = new D[1000000];

206(c) RRZE 2015 Node-Level Performance Engineering

Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via

“placement new”

void* D::operator new[](size_t n) {

char *p = new char[n]; // allocate

size_t i,j;

#pragma omp parallel for private(j) schedule(...)

for(i=0; i<n; i += sizeof(D))

for(j=0; j<sizeof(D); ++j)

p[i+j] = 0;

return p;

}

void D::operator delete[](void* p) throw() {

delete [] static_cast<char*>p;

}

parallel first

touch

207(c) RRZE 2015 Node-Level Performance Engineering

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

T* allocate(size_type numObjects, const void

*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);

void *m = malloc(len);

char *p = static_cast<char*>(m);

int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) << PAGE_BITS;

p[ofs]=0;

}

return static_cast<pointer>(m);

}

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)

208(c) RRZE 2015 Node-Level Performance Engineering

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Running with numactl --interleave might give you a hint

 See later

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Westmere dual-socket system (Core i7, hex-core):

env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out

209(c) RRZE 2015 Node-Level Performance Engineering

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Westmere EP node (2x6 cores):

Only one memory BW

per socket (“Uncore”)

Half of BW comes from

other socket!

+-----------------------------+----------+----------+ +----------+----------+

| Metric | core 0 | core 1 | | core 6 | core 7 |

+-----------------------------+----------+----------+ +----------+----------+

| Runtime [s] | 0.730168 | 0.733754 | | 0.732808 | 0.732943 |

| CPI | 10.4164 | 10.2654 | | 10.5002 | 10.7641 |

| Memory bandwidth [MBytes/s] | 11880.9 | 0 | ... | 11732.4 | 0 | ...

| Remote Read BW [MBytes/s] | 4219 | 0 | | 4163.45 | 0 |

| Remote Write BW [MBytes/s] | 1706.19 | 0 | | 1705.09 | 0 |

| Remote BW [MBytes/s] | 5925.19 | 0 | | 5868.54 | 0 |

+-----------------------------+----------+----------+ +----------+----------+

210(c) RRZE 2015 Node-Level Performance Engineering

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

211(c) RRZE 2015 Node-Level Performance Engineering

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

 non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a

ta
(1

)

215

DLR1 matrix on 2x 8-core Sandy Bridge node

Back to the spMVM code: a little riddle

(c) RRZE 2015 Node-Level Performance Engineering

parallel first touch init. serial init.

c
c
N

U
M

A
d

o
m

a
in

 b
o
u
n
d

a
ry

c
c
N

U
M

A
d

o
m

a
in

 b
o
u
n
d

a
ry

?
?

Pattern!

Bad

ccNUMA

placement

216

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

(c) RRZE 2015 Node-Level Performance Engineering

217

The curse and blessing of interleaved placement:

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a

n
d

w
id

th
 [

M
b

y
te

/s
]

(c) RRZE 2015 Node-Level Performance Engineering

218

Summary on ccNUMA issues

 Identify the problem

 Is ccNUMA an issue in your code?

 Simple test: run with numactl --interleave

 Apply first-touch placement

 Look at initialization loops

 Consider loop lengths and static scheduling

 C++ and global/static objects may require special care

 If dynamic scheduling cannot be avoided

 Distribute the data anyway, just do not use sequential placement!

 Not shown here: OS file buffer cache may impact proper

placement

(c) RRZE 2015 Node-Level Performance Engineering

OpenMP performance issues on multicore

Barrier synchronization overhead

Topology dependence

220

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

(c) RRZE 2015 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier

221

OpenMP vector triad on Sandy Bridge sockets (3 GHz)

(c) RRZE 2015 Node-Level Performance Engineering

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

L1 core limit

Pattern!

OpenMP barrier

overhead

222(c) RRZE 2015 Node-Level Performance Engineering

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slides: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

223(c) RRZE 2015 Node-Level Performance Engineering

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

224(c) RRZE 2015 Node-Level Performance Engineering

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

Still the pain may be much larger, as more work can be done in one cycle

on Phi compared to a full Sandy Bridge node

3.75x cores (16 vs 60) on Phi

2x more operations per cycle on Phi

 2 ∙ 3.75 = 7.5x more work done on Xeon Phi per cycle

2.7x more barrier penalty (cycles) on Phi

 One barrier causes 2.7 ∙ 7.5 ≈ 20x more pain .

2 threads on

distinct cores:

1936

Pattern-driven

Performance Engineering

Basics of Benchmarking

Performance Patterns

Signatures

226

Basics of optimization

1. Define relevant test cases

2. Establish a sensible performance metric

3. Acquire a runtime profile (sequential)

4. Identify hot kernels (Hopefully there are any!)

5. Carry out optimization process for each kernel

Motivation:

• Understand observed performance

• Learn about code characteristics and machine capabilities

• Deliberately decide on optimizations

Iteratively

(c) RRZE 2015 Node-Level Performance Engineering

227

Best practices for benchmarking

 Preparation

 Reliable timing (minimum time which can be measured?)

 Document code generation (flags, compiler version)

 Get access to an exclusive system

 System state (clock speed, turbo mode, memory, caches)

 Consider to automate runs with a script (shell, python, perl)

 Doing

 Affinity control

 Check: Is the result reasonable?

 Is result deterministic and reproducible?

 Statistics: Mean, Best ?

 Basic variants: Thread count, affinity, working set size

Node-Level Performance Engineering(c) RRZE 2015

228

Thinking in bottlenecks

• A bottleneck is a performance limiting setting

• Microarchitectures expose numerous bottlenecks

Observation 1:

Most applications face a single bottleneck at a time!

Observation 2:

There is a limited number of relevant bottlenecks!

(c) RRZE 2015 Node-Level Performance Engineering

229

Performance Engineering Process: Analysis

Node-Level Performance Engineering

Pattern

Microbenchmarking
Hardware/Instruction

set architecture

Algorithm/Code

Analysis

Application

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance

patterns are

typical

performance

limiting motifs

The set of input data indicating

a pattern is its signature

(c) RRZE 2015

230

Performance Engineering Process: Modeling

Node-Level Performance Engineering

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn

(c) RRZE 2015

231

Performance Engineering Process: Optimization

Node-Level Performance Engineering

Optimize for better

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance

improves until next

bottleneck is hit

Improves

Performance

Step 3 Optimization: Improve utilization of available resources

(c) RRZE 2015

232

Performance pattern classification

1. Maximum resource utilization

(computing at a bottleneck)

2. Hazards

(something “goes wrong”)

3. Work related

(too much work or too inefficiently done)

(c) RRZE 2015 Node-Level Performance Engineering

233

Patterns (I): Bottlenecks & hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Bandwidth saturation
Saturating speedup across

cores sharing a data path

Bandwidth meets BW of suitable

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of

cycles to specific instruction

count(s) (FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume
Simple bandwidth performance

model much too optimistic

Low BW utilization / Low cache hit

ratio, frequent CL evicts or

replacements (CACHE, DATA,

MEM)
Latency-bound

access

Micro-architectural

anomalies

Large discrepancy from simple

performance model based on

LD/ST and arithmetic

throughput

Relevant events are very

hardware-specific, e.g., memory

aliasing stalls, conflict misses,

unaligned LD/ST, requeue events

Jacobi

In-L1 sum

optimal code

spMVM RHS

access

(c) RRZE 2015 Node-Level Performance Engineering

234

Patterns (II): Hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

False sharing of cache

lines

Large discrepancy from

performance model in parallel case,

bad scalability

Frequent (remote) CL evicts

(CACHE)

Bad ccNUMA page

placement

Bad or no scaling across NUMA

domains, performance improves

with interleaved page placement

Unbalanced bandwidth on

memory interfaces / High remote

traffic (MEM)

Pipelining issues
In-core throughput far from design

limit, performance insensitive to

data set size

(Large) integral ratio of cycles to

specific instruction count(s), bad

(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss

ratio (BRANCH)

No parallel

initialization

In-L1 sum w/o

unrolling

(c) RRZE 2015 Node-Level Performance Engineering

235

Patterns (III): Work-related

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Load imbalance / serial

fraction
Saturating/sub-linear speedup

Different amount of “work” on the

cores (FLOPS_*); note that

instruction count is not reliable!

Synchronization overhead

Speedup going down as more cores

are added / No speedup with small

problem sizes / Cores busy but low

FP performance

Large non-FP instruction count

(growing with number of cores

used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good

scaling across cores, performance

insensitive to problem size

Low CPI near theoretical limit /

Large non-FP instruction count

(constant vs. number of cores)

(FLOPS_*, DATA, CPI)

Code

composition

Expensive

instructions

Similar to instruction overhead

Many cycles per instruction (CPI)

if the problem is large-latency

arithmetic

Ineffective

instructions

Scalar instructions dominating in

data-parallel loops (FLOPS_*,

CPI)

L1 OpenMP

vector triad

C/C++ aliasing

problem

(c) RRZE 2015 Node-Level Performance Engineering

236

Patterns conclusion

 Pattern signature = performance behavior + hardware metrics

 Patterns are applies hotspot (loop) by hotspot

 Patterns map to typical execution bottlenecks

 Patterns are extremely helpful in classifying performance issues

 The first pattern is always a hypothesis

 Validation by tanking data (more performance behavior, HW metrics)

 Refinement or change of pattern

 Performance models are crucial for most patterns

 Model follows from pattern

(c) RRZE 2015 Node-Level Performance Engineering

237

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters pinning/binding is essential

 Bandwidth bottlenecks inefficiency is often made on the chip level

 Topology dependence of performance features know your hardware!

 Put cores to good use

 Bandwidth bottlenecks surplus cores functional parallelism!?

 Shared caches fast communication/synchronization better

implementations/algorithms?

 Simple modeling techniques and patterns help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Simple tools get you 95% of the way

 e.g., with the LIKWID tool suite

(c) RRZE 2015 Node-Level Performance Engineering

Most

powerful

tool?

238

THANK YOU.

(c) RRZE 2015 Node-Level Performance Engineering

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

Holger Stengel

Thomas Röhl

Faisal Shahzad

Salah Saleh

239(c) RRZE 2015 Node-Level Performance Engineering

Presenter Biographies

Georg Hager holds a PhD in computational physics from the University of Greifswald. He

is a senior research scientist in the HPC group at Erlangen Regional Computing Center

(RRZE). Recent research includes architecture-specific optimization for current

microprocessors, performance modeling on processor and system levels, and the efficient

use of hybrid parallel systems. His textbook “Introduction to High Performance Computing

for Scientists and Engineers” is required or recommended reading in many HPC-related

courses around the world. See his blog at http://blogs.fau.de/hager for current activities,

publications, and talks.

Jan Eitzinger (formerly Treibig) holds a PhD in Computer Science from the University of

Erlangen. He is now a postdoctoral researcher in the HPC Services group at Erlangen

Regional Computing Center (RRZE). His current research revolves around architecture-

specific and low-level optimization for current processor architectures, performance

modeling on processor and system levels, and programming tools. He is the developer of

LIKWID, a collection of lightweight performance tools. In his daily work he is involved in all

aspects of user support in High Performance Computing: training, code parallelization,

profiling and optimization, and the evaluation of novel computer architectures.

Gerhard Wellein holds a PhD in solid state physics from the University of Bayreuth and is

a professor at the Department for Computer Science at the University of Erlangen. He

leads the HPC group at Erlangen Regional Computing Center (RRZE) and has more than

ten years of experience in teaching HPC techniques to students and scientists from

computational science and engineering programs. His research interests include solving

large sparse eigenvalue problems, novel parallelization approaches, performance

modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

240(c) RRZE 2015 Node-Level Performance Engineering

Abstract

 SC14 tutorial: Node-Level Performance Engineering

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein

 ABSTRACT:

The advent of multi- and manycore chips has led to a further opening of the gap between

peak and application performance for many scientific codes. This trend is accelerating as

we move from petascale to exascale. Paradoxically, bad node-level performance helps to

“efficiently” scale to massive parallelism, but at the price of increased overall time to

solution. If the user cares about time to solution on any scale, optimal performance on the

node level is often the key factor. We convey the architectural features of current

processor chips, multiprocessor nodes, and accelerators, as far as they are relevant for

the practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches,

bandwidth bottlenecks, and ccNUMA characteristics are introduced, and the influence of

system topology and affinity on the performance of typical parallel programming

constructs is demonstrated. Performance engineering and performance patterns are

suggested as powerful tools that help the user understand the bottlenecks at hand and to

assess the impact of possible code optimizations. A cornerstone of these concepts is the

roofline model, which is described in detail, including useful case studies, limits of its

applicability, and possible refinements.

241

References

Books:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil

computations using the Execution-Cache-Memory model. Proc. ICS15,

DOI: 10.1145/2751205.2751240. Preprint: arXiv:1410.5010

 M. Kreutzer, G. Hager, G. Wellein, A. Pieper, A. Alvermann, and H. Fehske: Performance

Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems. Proc.

IPDPS15, DOI: 10.1109/IPDPS.2015.76. Preprint:arXiv:1410.5242

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data

format for efficient general sparse matrix-vector multiplication on modern processors with wide

SIMD units. SIAM Journal on Scientific Computing (SISC) 36(5), C401–C423 (2014). DOI:

10.1137/130930352 Preprint: arXiv:1307.6209

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties of

modern multicore chips via simple machine models. Concurrency and Computation: Practice

and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern

multicore processors: Best practices for performance engineering. Workshop on Productivity

and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island, Greece.

Preprint: arXiv:1206.3738

(c) RRZE 2015 Node-Level Performance Engineering

http://www.crcpress.com/product/isbn/9781439811924
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1109/IPDPS.2015.76
http://arxiv.org/abs/1410.5242
http://dx.doi.org/10.1137/130930352
http://arxiv.org/abs/1307.6209
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738

242

References

Papers continued:

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse Matrix-

vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable

Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for medical

image reconstruction on recent standard multicore processors. International Journal of High

Performance Computing Applications, (published online before print).

DOI: 10.1177/1094342012442424

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking for

stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC 2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel Processing

Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool suite for

x86 multicore environments. Proc. PSTI2010, the First International Workshop on Parallel

Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010. DOI:

10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

(c) RRZE 2015 Node-Level Performance Engineering

http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431

243

References

Papers continued:

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-based systems. Parallel
Processing Letters 21(3), 339-358 (2011).
DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.jocs.2011.01.010

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization
strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA. Advances in
Engineering Software and Computers & Structures 42 (5), 266–272 (2011). DOI:
10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance
prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.
DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In: Proceedings of
the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel
Programming Models on Hybrid Architectures. International Journal of High Performance
Computing Applications 17, 49-62, February 2003.
DOI:10.1177/1094342003017001005

(c) RRZE 2015 Node-Level Performance Engineering

http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

