The Surprising Effectiveness of Non-Overlapping, Sensitivity-Based Performance Models

John D. McCalpin, PhD

mccalpin@tacc.utexas.edu

Outline

- Motivation
- History of Sensitivity-Based Modeling
- Model Review
- New Results
- Analysis

Motivation

- Understanding the performance of full-scale applications on modern HPC clusters is challenging
- Detailed analysis by experts is not scalable to the broad set of important application workloads at shared supercomputing centers
- Hardware performance counters are poorly documented and unreliable
 - Tools built on top of counters cannot fix this!

History of this Modeling Effort

 Approach was developed using proprietary system settings & information while the author was working in HW development at SGI, IBM, and AMD

Philosophy:

- Start simple and add complexity only as needed
- Stay connected with the "physics"
- Model must have correct asymptotic properties

1st try: Peak CPU throughput

2nd Try: Sustained Memory Bandwidth

THE UNIVERSITY OF TEXAS AT AUSTIN

Optimal No-Overlap CPU Time + BW Time

THE UNIVERSITY OF TEXAS AT AUSTIN

Part 1

REVIEW OF MODEL ASSUMPTIONS

Overview (1)

- Model is based on additive (non-overlapping) performance components
 - Time = Work / Rate

$$-T_{total} = \sum T_i = \sum \frac{W_i}{R_i}$$

- The "Rate" components are known (or measured) constants for each hardware configuration
- The total time is measured for each configuration
- The "Work" components are the unknowns

Overview (2)

- Work coefficients determined by least-squares fit to the data
 - Overdetermined systems are less sensitive to noise
 - Deviations from linearity point to limitations of model
- Performance components are based on whatever can be varied by machine reconfiguration
 - CPU frequency, number of cores used, memory frequency, number of DRAM channels populated, etc.

Overview (3)

Specific Models

- $-T_{total} = T_{cpu} + T_{memory\,bandwidth}$
- $T_{total} = T_{cpu} + T_{memory\ bandwidth} + T_{memory\ latency}$

Interpretation:

- Compute does not overlap with memory access
- Contiguous Memory Accesses overlap with other Contiguous Memory Accesses about as well as they do in the STREAM benchmark
- Exposed memory latencies do not overlap with either Contiguous Memory Accesses or Compute

Application to SPECfp_rate

- In 2007, I mined the SPEC results database for all Opteron system results on Linux using the PathScale compiler for all SPECfp benchmarks (CPU2000 & CPU2006)
- E.g., for SPECfp2006 this included
 - 29 published result sets
 - 13 different Hardware + Benchmark configurations
 - Varying number of copies of the benchmark run concurrently
 - Varying CPU frequency
 - Varying number of sockets (changes idle memory latency)
 - Execution time varied by 1.5x to 1.9x across results

SPECfp2006 (cont'd)

- Separate models were built for each of the 17 benchmarks
- Two-term models could not achieve <10% errors on most of the benchmarks
- Three-term model results vs input data:
 - 2 of 17 benchmarks showed ~4% RMS error
 - 7 of 17 benchmarks showed 2%-3% RMS error
 - 3 of 17 benchmarks showed 1%-2% RMS error
 - 5 of 17 benchmarks showed <1% RMS error

SPECfp2006 (cont'd)

- For any hardware configuration the model allows computing the times associated with each component and therefore the time breakdown
- Reference System
 - 2-Socket AMD Opteron (Revision F)
 - 2.8 GHz dual-core
 - DDR2/667 (2 DIMMs per channel)

SPECfp_rate2006 run-time contributions on late 2006-era reference system

New Results

- SPEC benchmarks are no longer useful for these experiments (for many reasons)
- New benchmarks chosen from TACC's workload
- Single-node runs on Xeon E5-2660 v3 (Haswell EP)
 - WRF (mesoscale weather) today's main topic
 - FLASH4 (forced 3D turbulence) similar to WRF
 - NAMD (molecular dynamics) very different

WRF (conus 12km)

- Tests run on a Xeon E5-2660 v3 (Haswell EP) with HyperThreading disabled
- CPU Frequency varied from 1.2 to 2.9 GHz
- DRAM rate varied from 1.333 to 2.133 GT/s
- 1 core, 10 core (1 socket), 20 core
- These cases were MPI-only, no OpenMP and no more than 1 MPI task per physical core
- 32 20-core configurations tested data used is median timing from a set of 3 consecutive runs

WRF (conus 12km) Model

- Model 1: $T_{obs} = T_{cpu} + T_{bw} = \frac{W_{cpu}}{R_{cpu}} + \frac{W_{bw}}{R_{bw}}$
 - $-R_{cpu}$ = CPU GHz
 - $-R_{bw}$ = STREAM Triad Bandwidth per core in GB/s
- Model 2: add a constant time to account for IO
 - IO time is expected to be approximately independent of both CPU Frequency and Memory Bandwidth
- Work values derived by "best fit" to total time

Models 1 & 2: Projected vs Observed Time for WRF on Haswell EP

WRF 1-node, 20 task: 3-term model vs observed run-time

Experimental Configuration: CPU frequency (GHz), DRAM data rate (GTs)

What about "reality"

- Ever since my 2007 presentation I have been curious about whether the W_{BW} and (optional) T_{const} terms bear any relation to reality
- Last week I added memory controller performance counters to these runs to see...

What about "reality"

- Model 2 fit says $W_{bw} = 7075 \text{ GB}$
- DRAM Counters report 7027 GB
 - Less than 0.7% difference
- Model 2 fit says T_{const} = 13.6 seconds
- WRF reports IO time of 12.2 seconds
 - Difference is about 1% of total execution time
- Not all results are this good, but this is OK

FLASH4

- Similar to WRF, but mostly compute-bound rather than bandwidth-bound
- Slightly larger range of timings
 - CPU frequencies can be varied over a larger range than DRAM frequencies

Modeled Execution Time Breakdown for FLASH4

NAMD

- Performance is almost perfectly linear in CPU frequency
 - CPU only: model error ~1.5%
 - CPU + bandwidth: model error ~0.7%
 - CPU + constant: model error ~0.2%
- NAMD has interesting dependencies on the instruction set, but that is a topic for another day...

Analysis

- Results across a variety of hardware configurations can be used to derive robust bounds on the coefficients of the models if the assumption of non-overlapping execution time components is relaxed.
- These bounds are typically rather weak, but the technique still provides excellent fits to the data.

Analysis (continued)

 A more general statement of bounds in total execution time for a component based model is:

$$\max_{i} T_{i} \leq T_{total} \leq \sum_{i} T_{i}$$

- The lower bound is full overlap
- The upper bound is no overlap
- I usually see answers near the upper bound

Analysis (continued)

- What can we say about bounds on the work components?
- Assume (temporarily) that the R_i values are valid
- For a single experiment we have the trivial bound:

$$T_i \leq T_{obs}$$
 or $W_i \leq T_{obs} \times R_i$ for all i

This is a very weak bound, so it is not particularly useful

Analysis (continued)

- For multiple tests we can get tighter upper bounds
- For example, if one Rate component is changed and the execution time changes, then this can be used to derive a lower bound on the corresponding Work component
- The algebra is not particularly enlightening, but an example is illustrative...

Analysis – Summary

- The formal analysis shows very weak bounds on the ability to estimate work components from modest variations in hardware rates
 - For multicore processors using most or all cores, the models are extremely effective
 - (Not shown today) When running on a single core, the models usually derive a W_{bw} term that is much too small
 - These cases are probably seeing overlap of T_{cpu} and T_{bw}
 - Similar anomalies have shown up (rarely) in SMP scaling studies

Summary Message

- For a fixed architecture, this simple additive execution time modeling methodology can be extremely accurate
 - Both in prediction of total execution time and in deriving
 IO time and memory traffic
- Data collection and model building can be largely automated – suitable for modest workload surveys

Ongoing & Future Work

- Easy/Low Risk projects
 - multi-node runs with varying InfiniBand network rates
 - instruction issue throttling
- Potential implementation difficulty
 - Varying MPI short-message latency and/or overhead
- High Risk (but necessary)
 - Continuing to perform and evaluate cross-platform projections, e.g., Haswell to Knights Landing

John D. McCalpin, PhD mccalpin@tacc.utexas.edu 512-232-3754

For more information: www.tacc.utexas.edu

BACKUP SLIDES

What about machine changes?

- Can I bridge from 10-core Xeon E5 v3 to 12-core Xeon E5 v3 with a different DRAM configuration?
 - The larger cache on the 12-core resulted in reduced W_bw when using 10 cores – outside direct scope of model
 - The reduced memory bandwidth of the single-rank DIMM configuration was reflected in a ~10% reduction in STREAM bandwidth (and hence, R_bw)
 - Detailed analysis shows that the effective bandwidth penalty in this WRF test case is ~14%-15%
 - Currently attempting to model this using measured DRAM page conflict rates, but the errors are only 3%-4%, so....

