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High-Precision Arithmetic in High Demand

Numerical reproducibility
I Dynamic work distribution across threads
I Variations in SIMD- and instruction-level parallelism

Mathematical functions
I IEEE754-2008 recommends correct rounding for LibM functions

Growing number of scientific applications
I David Bailey’s presetations: 8 areas in (2005): 8 areas of science
I His recent presentation on SC BoF (2014): 12 areas of science
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High-Precision Arithmetic Algorithms

Quadruple precision
I Software implementation using integer arithmetic

Double-double arithmetic
I Represent a number as an unevaluated sum of two doubles:

x = xhi + xlo
Compensated algorithms

I High-precision summation, dot product, polynomial evaluation
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Error-Free Multiplication

p+ e = a ·b

where
p = double(a ·b)

Error-Free Multiplication with FMA
p := FPMUL a * b
e := FMA a * b - p
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Error-Free Addition

s+ t = a+b

where
s = double(a+b)

Error-Free Addition (Knuth, 1997)
s := FPADD a + b
bvirtual := FPADD s - b
avirtual := FPADD s - bvirtual
broundoff := FPADD b - bvirtual
aroundoff := FPADD a - avirtual
e := FPADD aroundoff + broundoff
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FPADD3 Instruction

Ogita et al (2005) suggested FPADD3 instruction to accelerate Error-Free
Addition.

FPADD3 adds 3 floating-point numbers without intermediate rounding
No general-purpose CPU or GPU ever implemented this instruction

Error-Free Addition with FPADD3 (Ogita et al, 2005)
s := FPADD a + b
e := FPADD3 a + b - s
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FPADDRE Instruction

We suggest an instruction, Floating-Point Add Round-off Error
(FPADDRE) to compute the roundoff error of floating-point addition. The
instruction offers two benefits for error-free addition:

Replace 5 FPADD instructions with 1 FPADDRE
Break dependency chain between the sum and the roundoff error

Error-Free Addition with FPADDRE
s := FPADD a + b
e := FPADDRE a + b
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Reusing FPADD logic in FPADDRE

+ 12 0b1101011011 + 7 0b1111111101

11101011011_____ 
_____11111101101

1111011101011101

+

___________1____

11110111011_____
___________01101

Schema of FPADD and FPADDRE operations (the case of operands with
the same sign and overlapping mantissas). The operations differ only in
two aspects: addition or subtraction of a sticky bit and the bits copied to
the resulting mantissa.
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Simulation

To estimate performance effect of the FPADDRE instruction, we
implemented a several of high-precision algorithms:

Double-double scalar addition and multiplication
Double-double matrix multiplication
Compensated dot product
Polynomial evaluation via compensated Horner scheme

Then we replaced FPADDRE with an instruction with performance
characteristics of addition and benchmarked the algorithms on four
microarchitectures:

Intel Haswell
Intel Skylake
AMD Steamroller
Intel Knights Corner co-processor

M. Dukhan et al (Georgia Tech) Wanted: FPADDRE Instruction PMMA’16 12 / 20



Double-double Latency
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Double-double Throughput
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Double-double Matrix Multiplication
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Compensated Dot Product
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Compensated Polynomial Evaluation
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Public release

We open-sourced the software which was deloped as a part of this research
The implementation, unit tests, and benchmarks, are available at
github.com/Maratyszcza/FPplus
The paper preprint is on arxiv.org/abs/1603.00491
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Summary

We suggest a new instruction, Floating-Point Add Round-off Error, to
compute the roundoff error of floating-point addition
Performance simulations suggest that the proposed instruction could
accelerate high-precision computations by up to 2x
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