Danilo Guerrera, Helmar Burkhart, Antonio Maffia

University of Basel
danilo.guerrera@unibas.ch

PMMA 16

Thu, Jun 23, 2016

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Overview

Problem, System, Method
Reproducibility Levels

Current Version
Environment Management

Wave
Molecular Dynamics

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Reproducibility - A Science Principle

“Non-reproducible single occurrences are of no significance to
science.” (Karl Popper The Logic of Scientific Discovery
1934/1959)

Reproducibility in Science PROVA! Use Cases
000 00000 0000000

Goals of the PROVA! Project

try, prove, convince

@ Taxonomy for Reproducibility Levels

Conclusions

Reproducibility in Science PROVA! Use Cases
000 00000 0000000

Goals of the PROVA! Project

try, prove, convince

@ Taxonomy for Reproducibility Levels

@ Performance Engineering Support

Conclusions

Reproducibility in Science PROVA! Use Cases
000 00000 0000000

Goals of the PROVA! Project

try, prove, convince

@ Taxonomy for Reproducibility Levels
@ Performance Engineering Support

@ Best Practice Demonstrator

Conclusions

Reproducibility in Science PROVA! Use Cases
000 00000 0000000

Goals of the PROVA! Project

try, prove, convince

@ Taxonomy for Reproducibility Levels
@ Performance Engineering Support

@ Best Practice Demonstrator

@ Modern HPC Education

Conclusions

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Goals of the PROVA! Project

try, prove, convince

STENCIL PROBLEM @ (REPRODUCIBILITY
REPOSITORY e S
@ [RE-ExpeRIMENT | | PORTESLIN
! REPLICATE | . =
{ REPEAT | o
EXPERIMENT ﬁ
PPN WORKSPACE
LAWS) & TOOLS
C ereDICTON)
N SCALABILITY
) PARALLEL |,
) i SYSTEM 1
[Anvawvze |
f\ INTERPRETE

PERFORMANCE <:| PERFORMANCE <,‘:J
MODEL REPOSITORY @

Reproducibility in Science PROVA! Use Cases Conclusions
®00 00000 0000000

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Reproducibility in Science PROVA! Use Cases Conclusions
®00 00000 0000000

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

@ Problem: specification of the problem including characteristic
parameters.

Reproducibility in Science PROVA! Use Cases Conclusions
®00 00000 0000000

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

@ Problem: specification of the problem including characteristic
parameters.

@ Method: description of the algorithmic approach used to
tackle the problem.

Reproducibility in Science PROVA! Use Cases Conclusions
®00 00000 0000000

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

@ Problem: specification of the problem including characteristic
parameters.

@ Method: description of the algorithmic approach used to
tackle the problem.

e System: representation of the compute environment (both
hardware and software), on which an experiment is run.

Reproducibility in Science PROVA!

Use Cases
oeo

00000 0000000

Micro- and Macro-Experiments

Conclusions

System
>

O'
N2

micro-experiment 1

@

|

Syslee ———————— < — — — — 1/ }
> |

e | J

7777777777777777777 [
[
~

f

Prol Problem

Conclusions

Reproducibility in Science PROVA! Use Cases
oeo 00000 0000000
Micro- and Macro-Experiments

Y

NS~
micro-experiment 3

System

micro-experiment macro-experiment

>
NG
777777 J

micro-experiment 1

Problem

Reproducibility in Science PROVA! Use Cases Conclusions
ocoe 00000 0000000

Reproducibility Levels

@ Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

Reproducibility in Science PROVA! Use Cases Conclusions
ocoe 00000 0000000

Reproducibility Levels

@ Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

@ Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

Reproducibility in Science PROVA! Use Cases Conclusions
ocoe 00000 0000000

Reproducibility Levels

@ Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

@ Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

@ Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Functionalities Needed - Support Given

Collaboration Support: git

Software Management: EasyBuild, LMod
Experiment Reproduction

Experiment Portability

Performance Modeling Support

Visualization

Reproducibility in Science PROVA! Use Cases Conclusions
000 @0000 0000000

PROVA! - Current Version of the Architecture

Remote Environment 1

‘;‘) Front-end machine

8 , Parallel
Experiment - " Schedulor | 2T Parallel
;i rameworl —#| Scheduler 4
and Analysis ool > FUEE

Server
- Parallel i
ymachine |

¥ Cluster

workspaces

Workspace
(=Scientistl Workspace
[=Scientist2

@ -

Scientist _—
File Storage

NFS |

Reproducibility in Science PROVA! Use Cases Conclusions
000 0®000 0000000

Lmod mudules

e developed at TACC!

@ user's environment can be changed dynamically through
modulefiles

@ manages the PATH

@ a modulefile contains information on how to run a particular
application or provide access to a particular library

https://www.tacc.utexas.edu/research-development /tacc-projects/Imod

Reproducibility in Science PROVA! Use Cases Conclusions
000 00®00 0000000

Scientific Software Management and Build Via EasyBuild?

a flexible framework for building/installing (scientific) software

fully automates software builds

°
°

@ keeps track of the versions

@ consistent software stack

@ allows for easily reproducing previous builds
°

keep the software build recipes/specifications simple and
human-readable

@ supports co-existence of versions/builds via dedicated
installation prefix and module files

@ enables sharing with the HPC community

2http://hpcugent.github.io/easybuild/

Reproducibility in Science PROVA! Use Cases Conclusions
000 [SleTe] Yo} 0000000

Lmod + EasyBuild

Easily install new software as module
Clean environment for all of the users

Keep track of the software installed

Possibility to attach to an experiment a subset of modules
e Export source code + environment

PROVA!

Reproducibility in Science
ooooe

000

Web Application

ned

Experiment
and Analysis
Server

Scientist

Use Cases
0000000

Conclusions

Remote Environment 1

Parallel

- Parallel |
"ymachine |1

Cluster

workspaces

cientist2

File Storage

Reproducibility in Science PROVA! Use Cases Conclusions

000 00000 @®000000

Simple 3D Wave

University of Basel 2016

Problem | Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1node

System » CPU: 2x AMD Opteron 6274 "Bulldozer" 16-Core, 2.2 GHz, 12
MiB L3 cache, 4 NUMA domains

+ RAM: 256 GiB

» OS: Ubuntu 14.04.4, Kernel 3.8.0-38

1. Naive OpenMP implementation with NUMA aware initialization
Method (16 FLOPS)

2. DSL + auto-tuning with PATUS (20 FLOPS)

3. Polyhedral model with PLUTO (16 FLOPS)

Reproducibility in Science PROVA!
000

Simple 3D Wave

Use Cases Conclusions
Q0000 0®00000

University of Erlangen 2016

Problem | Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1node

System » CPU: 2x Xeon 5650 "Westmere" 6 cores + SMT, 2.66 GHz, 12
MiB Shared Cache per chip, 2 NUMA domains

+ RAM: 24 GB (DDR3-1333)

» OS: CentOS 6.7, Kernel 2.6.32-573.7.1.¢el6

1. Naive OpenMP implementation with NUMA aware initialization
Method (16 FLOPS)

2. DSL + auto-tuning with PATUS (20 FLOPS)

3. Polyhedral model with PLUTO (16 FLOPS)

Reproducibility in Science PROVA!

000

00000

Simple 3D Wave (2)

GFlop/s

40

35 [~

30

25

20

Performance Comparison of Project: Wave3D
Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

T T T T T T T T T
Implemented Method
openMP I : —
patus [
— pluto i . -

1 2 4 6 8 12 16 24 32

Number of Threads

GFlop/s

40

35

30

25

20

Use Cases Conclusions
00®@0000

Performance Comparison of Project: Wave3D
Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

T T T T T T T T
Implemented Method
= openVP I -
patus N
[pluto -

1 2 4 6 8 12 16 24

Number of Threads

PROVA!

Reproducibility in Science
00000

000

Simple 3D Wave (3)

Performance Comparison of Project: ikwid_comparison
Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

Implemented Method
omp
omp_node HE

GFlopls.

12 4 s 8 12 16 24 3@

Number of Threads.

GFlopls.

Use Cases
000e000

Performance Comparison of Project: likwid_comparison
Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

25 T T T T T T T

Number of Threads

Conclusions

Implemented Method
omp
omp_node

Demo

https://repro-hpc.dmi.unibas.ch

https://repro-hpc.dmi.unibas.ch

Reproducibility in Science PROVA! Use Cases
000 00000 00000Oe0

PROVA!: Adaptation Effort

@ How to create a methodType?
@ What is the effort?

e What knowledge is needed?
e How much time to invest in it?

Conclusions

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 000000

PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor

Reproducibility in Science

000

PROVA! Use Cases Conclusions
00000 [elelelelele] }

PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor

© O~ A WN =

-
o

{

L

:"GROMACS—5.0.5" ,

"eb_modules” :

IE

"GROMACS/5.0.5 — foss —2016a—hybrid —noGPU"

"version”:"5.0.5",
"comment” :"GROMACS, a molecular dynamics package primarily

designed for biomolecular systems such as proteins
and lipids , based on the foss —2016a toolchain, compiled

with hybrid OpenMP and Open MPI, without CUDA support”

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 000000

PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor

@ Create (if not existing) the easyconfigs for the needed modules

Reproducibility in Science PROVA! Use Cases Conclusions

000

00000 [e]e]ele]elo] }

PROVA!: Adaptation Effort - Molecular Dynamics

DU E W

Create a method descriptor

Create (if not existing) the easyconfigs for the needed
modules

name = 'GROMACS'

version = '5.0.5"

versionsuffix = '—hybrid—noGPU’

homepage = 'http://www.gromacs.org’

description = """GROMACS is a versatile package to perform molecular
dynamics, i.e. simulate the Newtonian equations of motion for systems
with hundreds to millions of particles.”"”

toolchain = {'name’: ’'foss', 'version ': '2016a’'}

toolchainopts = {'openmp’': True, 'usempi’: True}

source_urls = ['ftp://ftp.gromacs.org/pub/gromacs/’]
sources = [SOURCELOWER-TAR.GZ]

builddependencies = [

('CMake’, '3.4.3"),
("libxml2 ", '2.9.2")
]
dependencies = [('Boost’', '1.59.0', '—Python —2.7.11")]
explicitely disable CUDA support
configopts = ' —DGMX_GPU=OFF’

moduleclass = 'bio’

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 ©00000e

PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor
@ Create (if not existing) the easyconfigs for the needed modules

e Create compile (Makefile) and run scripts

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 ©00000e

PROVA!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 ©00000e

PROVA!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed modules
Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it! 3

3Thanks to Florent Hedin http://www.chemie.unibas.ch/~hedin/

http://www.chemie.unibas.ch/~hedin/

Reproducibility in Science
000

PROVA!
00000

Use Cases
000000

PROVA!: Adaptation Effort - Molecular Dynamics

1 REAL CYCLE AND TIME ACCOUNTING

2

3 On 2 MPI ranks, each using 8 OpenMP threads

4

5 Computing: Num Num Call Wall time Giga—Cycles
6 Ranks Threads Count (s) total sum %
7

8 Domain decomp. 2 8 960 7.755 272.988 2.2
9 DD comm. load 2 8 39 0.001 0.019 0.0
10 Neighbor search 2 8 961 10.492 369.350 2.9
11 Comm. coord. 2 8 18240 2.674 94.139 0.7
12 Force 2 8 19201 229.409 8075.973 64.3
13 Wait + Comm. 2 8 19201 3.283 115.568 0.9
14 PME mesh 2 8 19201 67.117 2362.756 18.8
15 NB X/F buffer ops. 2 8 55681 8.287 291.731 2.3
16 Write traj. 2 8 1 0.029 1.035 0.0
17 Update 2 8 19201 4.215 148.368 1.2
18 Constraints 2 8 19201 18.922 666.110 5.3
19 Comm. energies 2 8 961 0.039 1.372 0.0
20 Rest 4.639 163.315 1.3
21

22 Total 356.862 12562.724 100.0
23

Conclusions

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 000000

PROVA!: Adaptation Effort - Molecular Dynamics

1

2 Breakdown of PME mesh computation

3

4 PME redist. X/F 2 8 38402 13.482 474.601 3.8
5 PME spread/gather 2 8 38402 32.375 1139.695 9.1
6 PME 3D-FFT 2 8 38402 12.703 447.171 3.6
7 PME 3D—FFT Comm. 2 8 38402 7.780 273.874 2.2
8 PME solve Elec 2 8 19201 0.623 21.918 0.2
9

10

11 Core t (s) Wall t (s) (%)

12 Time: 5701.124 356.862 1597.6

13 (ns/day) (hour/ns)

14 Performance: 9.298 2.581

=
o

Finished mdrun on rank 0 Sat Jun 18 11:53:30 2016

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Conclusions

@ Reproducibility needs to be emphasized in the performance
modeling.

@ Repeatability of an experiment only possible if precise
description of experiment is given: Problem, System, and
Method.

@ Repeatability: World-wide access to experiments through
Internet feasible (security and authentication mechanisms
essential).

@ Replication and re-experimentation: harder to achieve but not
impossible.

Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Future Work

Short term:
@ Jobs: no clue about when the job finishes its execution

@ Homogeneity of nodes: libraries and sw are installed on a
shared NFS so all the nodes must be homogeneous to run
such sw

@ Experiment is run as a block: bad resource usage
@ Installation of the modules is simply delegated to EasyBuild

@ Visualization is not so powerful

Mid term:
@ Provenance of the experiments
@ Collaborative Performance Engineering

@ Integrate Performance Models to Evaluate Performance
Outputs

@ Towards a Science Gateway

Interested?
https://prova.io

https://prova.io

	Reproducibility in Science
	Problem, System, Method
	Reproducibility Levels

	prova!
	Current Version
	Environment Management

	Use Cases
	Wave
	Molecular Dynamics

	Conclusions

