000		00000	0000000	
	Wniversity of Basel Reproducible	e Stencil Compi PROVA	ler Benchmarks !	Using

Use Cases

Conclusions

Reproducibility in Science

Danilo Guerrera, Helmar Burkhart, Antonio Maffia

University of Basel

danilo.guerrera@unibas.ch

PMMA 16

Thu, Jun 23, 2016

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	

Overview

1 Reproducibility in Science

- Problem, System, Method
- Reproducibility Levels

2 PROVA!

- Current Version
- Environment Management
- 3 Use Cases
 - Wave
 - Molecular Dynamics

Reproducibili	ty in S	cience		prova! 00000			Use Cases 0000000	Conclusions
D			~		.			

Reproducibility - A Science Principle

"Non-reproducible single occurrences are of no significance to science." (Karl Popper The Logic of Scientific Discovery 1934/1959)

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Goals of the $\ensuremath{PROVA}!$	Project		

try, prove, convince

• Taxonomy for Reproducibility Levels

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Goals of the PROV	/A! Project		
try, prove, convince			

- Taxonomy for Reproducibility Levels
- Performance Engineering Support

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	
Goals of the PROV	A! Project		
try, prove, convince			

- Taxonomy for Reproducibility Levels
- Performance Engineering Support
- Best Practice Demonstrator

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	
Goals of the PROV	A! Project		
try, prove, convince			

- Taxonomy for Reproducibility Levels
- Performance Engineering Support
- Best Practice Demonstrator
- Modern HPC Education

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	
	artil D ' i		

Goals of the PROVA! Project

try, prove, convince

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Problem / Method	/ System		

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Problem / Method	/ System		

• **Problem**: specification of the problem including characteristic parameters.

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Problem / Method	/ System		

- **Problem**: specification of the problem including characteristic parameters.
- **Method**: description of the algorithmic approach used to tackle the problem.

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Problem / Method	/ System		

- **Problem**: specification of the problem including characteristic parameters.
- **Method**: description of the algorithmic approach used to tackle the problem.
- **System**: representation of the compute environment (both hardware and software), on which an experiment is run.

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

Micro- and Macro-Experiments

Reproducibility in Sci	ence	PROVA! 00000	Use Cases 0000000	Conclusions

Micro- and Macro-Experiments

Reproducibility in Science	PROVA!	Use Cases	Conclusions
○○●	00000	0000000	
Roproducibility Loval	c		

Reproducibility Levels

• **Repetition**: re-running the original *micro*- or *macro-experiment* without any variation of the parameters, should drive to the same results and a certain level of credibility is guaranteed (**completeness** of documentation)

Reproducibility in Science	PROVA!	Use Cases	Conclusions
○○●	00000	0000000	
Donroducibility L	wala		

Reproducibility Levels

- **Repetition**: re-running the original *micro* or *macro-experiment* without any variation of the parameters, should drive to the same results and a certain level of credibility is guaranteed (**completeness** of documentation)
- **Replication**: is related to the system hosting an experiment. An experiment should not be bound to a specific compute environment (**portability**)

Reproducibility in Science	PROVA!	Use Cases	Conclusions
○○●	00000	0000000	
Downodu oibility La	wala		

Reproducibility Levels

- **Repetition**: re-running the original *micro* or *macro-experiment* without any variation of the parameters, should drive to the same results and a certain level of credibility is guaranteed (**completeness** of documentation)
- **Replication**: is related to the system hosting an experiment. An experiment should not be bound to a specific compute environment (**portability**)
- **Re-experimentation**: if changing the methods drives to the same outputs, the scientific approach is proven (correctness of the approach)

Reproducibility in	Science	P	ROVA!	Use Cases 0000000	Conclusions
_		 	-		

Functionalities Needed - Support Given

- Collaboration Support: git
- Software Management: EasyBuild, LMod
- Experiment Reproduction
- Experiment Portability
- Performance Modeling Support
- Visualization

Reproducibility in Science	PROVA! ●○○○○	Use Cases 0000000	Conclusions

PROVA! - Current Version of the Architecture

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	○●000	000000	

Lmod mudules

- developed at TACC¹
- user's environment can be changed dynamically through modulefiles
- manages the PATH
- a modulefile contains information on how to run a particular application or provide access to a particular library

 $^{{}^{1}} https://www.tacc.utexas.edu/research-development/tacc-projects/Imod \ \equiv \ {}^{2}$

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	0000	000000	

Scientific Software Management and Build Via EasyBuild²

- a flexible framework for building/installing (scientific) software
- fully automates software builds
- keeps track of the versions
- consistent software stack
- allows for easily reproducing previous builds
- keep the software build recipes/specifications simple and human-readable
- supports co-existence of versions/builds via dedicated installation prefix and module files
- enables sharing with the HPC community

²http://hpcugent.github.io/easybuild/

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

$\mathsf{Lmod} + \mathsf{EasyBuild}$

- Easily install new software as module
- Clean environment for all of the users
- Keep track of the software installed
- Possibility to attach to an experiment a subset of modules
 - $\bullet \ \ \mathsf{Export \ source \ code} + environment$

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	0000	0000000	

Web Application

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

Simple 3D Wave

University of Basel 2016

Problem	Calculate a 3-D wave equation of 200^3 elements (IEEE single precision arithmetic) in 100 timesteps
System	SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10 HW: 1 node • CPU: 2x AMD Opteron 6274 "Bulldozer" 16-Core, 2.2 GHz, 12 MiB L3 cache, 4 NUMA domains • RAM: 256 GiB • OS: Ubuntu 14.04.4, Kernel 3.8.0-38
Method	 Naive OpenMP implementation with NUMA aware initialization (16 FLOPS) DSL + auto-tuning with PATUS (20 FLOPS) Polyhedral model with PLUTO (16 FLOPS)

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

Simple 3D Wave

University of Erlangen 2016

Problem	Calculate a 3-D wave equation of 200^3 elements (IEEE single precision arithmetic) in 100 timesteps
System	SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10 HW: 1 node • CPU: 2x Xeon 5650 "Westmere" 6 cores + SMT, 2.66 GHz, 12 MiB Shared Cache per chip, 2 NUMA domains • RAM: 24 GB (DDR3-1333) • OS: CentOS 6.7, Kernel 2.6.32-573.7.1.el6
Method	 Naive OpenMP implementation with NUMA aware initialization (16 FLOPS) DSL + auto-tuning with PATUS (20 FLOPS) Polyhedral model with PLUTO (16 FLOPS)

	(D)		
000	00000	000000	
Reproducibility in Science	PROVA!	Use Cases	Conclusions

Reproducibility in Science	prova! 00000	Use Cases	Conclusions
Simple 3D Wave (3)			

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	

Demo

https://repro-hpc.dmi.unibas.ch

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	0000000	

PROVA!: Adaptation Effort

- How to create a methodType?
- What is the effort?
 - What knowledge is needed?
 - How much time to invest in it?

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

• Create a method descriptor

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

Create a method descriptor

00000 000000	
	Conclusions

- Create a method descriptor
- Create (if not existing) the easyconfigs for the needed modules

Reproducibility in Se	cience	prova! 00000	Use Cases	Conclusions
PROVA!:	Adaptation	Effort -	Molecular Dynamics	

- Create a method descriptor
- Create (if not existing) the easyconfigs for the needed modules

```
1 name = 'GROMACS'
2 \text{ version} = '5.0.5'
3 versionsuffix = '-hybrid-noGPU'
Δ
5 homepage = 'http://www.gromacs.org'
6 description = """GROMACS is a versatile package to perform molecular
        dynamics, i.e. simulate the Newtonian equations of motion for systems
         with hundreds to millions of particles."""
8 toolchain = { 'name': 'foss', 'version ': '2016a' }
9 toolchainopts = { 'openmp ': True, 'usempi ': True }
11 source_urls = ['ftp://ftp.gromacs.org/pub/gromacs/']
  sources = [SOURCELOWER_TAR_GZ]
13
14 builddependencies = [
15
       ('CMake', '3.4.3'),
('lib×ml2', '2.9.2')
16
17 1
18
19 dependencies = [('Boost', '1.59.0', '-Python - 2.7.11')]
20 # explicitely disable CUDA support
21 configopts = ' -DGMX_GPU=OFF'
22 moduleclass = 'bio'
```

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	
	. =		

- Create a method descriptor
- Create (if not existing) the easyconfigs for the needed modules
- Create compile (Makefile) and run scripts

Reproducibility in Science			PROVA!			Use Cases		Conclusions	
000			00000			000	50000		
1	A 1	•			N 4 1				

- Create a method descriptor
- Create (if not existing) the easyconfigs for the needed modules
- Create compile (Makefile) and run scripts
- Install it in the tool

DDOWN !. Adaptation	Effort	Malacular Dynamics	
000	00000	000000	
Reproducibility in Science	PROVA!	Use Cases	Conclusions

- Create a method descriptor
- Create (if not existing) the easyconfigs for the needed modules
- Create compile (Makefile) and run scripts
- Install it in the tool
- \bullet Create a project and use it! 3

³Thanks to Florent Hedin http://www.chemie.unibas.ch/~hedin/

Reproducibility in Science	PROVA! 00000	Use Cases ○○○○○○●	Conclusions

REAL CYC	LE	AND	ТІМЕ	ACCOUNT	ING	
On 2 MPI ranks, each	using	8 OpenMF	^o threads			
Computing:	Num Ranks	Num Threads	Call Count	Wall time (s)	Giga—C total sum	ycles %
Domain decomp.	2	8	960	7.755	272.988	2.2
DD comm. load	2	8	39	0.001	0.019	0.0
Neighbor search	2	8	961	10.492	369.350	2.9
Comm. coord.	2	8	18240	2.674	94.139	0.7
Force	2	8	19201	229.409	8075.973	64.3
Wait + Comm. F	2	8	19201	3.283	115.568	0.9
PME mesh	2	8	19201	67.117	2362.756	18.8
NB X/F buffer ops.	2	8	55681	8.287	291.731	2.3
Write traj.	2	8	1	0.029	1.035	0.0
Update	2	8	19201	4.215	148.368	1.2
Constraints	2	8	19201	18.922	666.110	5.3
Comm. energies	2	8	961	0.039	1.372	0.0
Rest				4.639	163.315	1.3
Total				356.862	12562.724	100.0

(ロ・・酒・・酒・・酒・・酒・ のへの

Reproducibility in Science	PROVA! 00000	Use Cases ○○○○○○●	Conclusions

Breakdown of PME	mesh com	putatio	n			
PME redist. X/F	2	8	38402	13.482	474.601	3.8
PME spread/gather	2	8	38402	32.375	1139.695	9.1
PME 3D-FFT	2	8	38402	12.703	447.171	3.6
PME 3D-FFT Comm.	2	8	38402	7.780	273.874	2.2
PME solve Elec	2	8	19201	0.623	21.918	0.2
Core Time: 5	e t (s) 701.124	Wall 35	t (s) 56.862	(%) 1597.6		
(1	ıs/day)	(hoi	ır/ns)			
Performance :	9.298		2.581			
Finished mdrun on	rank 0 Sa	t Jun	18 11:53:30) 2016		

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Conclusions			

- Reproducibility needs to be emphasized in the performance modeling.
- Repeatability of an experiment only possible if precise description of experiment is given: Problem, System, and Method.
- Repeatability: World-wide access to experiments through Internet feasible (security and authentication mechanisms essential).
- Replication and re-experimentation: harder to achieve but not impossible.

Reproducibility in Science	PROVA! 00000	Use Cases 0000000	Conclusions
Future Work			

Short term:

- Jobs: no clue about when the job finishes its execution
- Homogeneity of nodes: libraries and sw are installed on a shared NFS so all the nodes must be homogeneous to run such sw
- Experiment is run as a block: bad resource usage
- Installation of the modules is simply delegated to EasyBuild
- Visualization is not so powerful

Mid term:

- Provenance of the experiments
- Collaborative Performance Engineering
- Integrate Performance Models to Evaluate Performance Outputs
- Towards a Science Gateway

Reproducibility in Science	PROVA!	Use Cases	Conclusions
000	00000	000000	

Interested? https://prova.io