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Reproducibility - A Science Principle

“Non-reproducible single occurrences are of no significance to
science.” (Karl Popper The Logic of Scientific Discovery
1934/1959)
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Goals of the PROVA! Project

try, prove, convince

@ Taxonomy for Reproducibility Levels
@ Performance Engineering Support

@ Best Practice Demonstrator

@ Modern HPC Education

Conclusions
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Goals of the PROVA! Project

try, prove, convince
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Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.
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Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

@ Problem: specification of the problem including characteristic
parameters.

@ Method: description of the algorithmic approach used to
tackle the problem.

e System: representation of the compute environment (both
hardware and software), on which an experiment is run.
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Micro- and Macro-Experiments
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Reproducibility Levels

@ Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)
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Reproducibility Levels

@ Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

@ Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

@ Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)



Reproducibility in Science PROVA! Use Cases Conclusions
000 00000 0000000

Functionalities Needed - Support Given

Collaboration Support: git

Software Management: EasyBuild, LMod
Experiment Reproduction

Experiment Portability

Performance Modeling Support

Visualization
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PROVA! - Current Version of the Architecture
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Lmod mudules

e developed at TACC!

@ user's environment can be changed dynamically through
modulefiles

@ manages the PATH

@ a modulefile contains information on how to run a particular
application or provide access to a particular library

https://www.tacc.utexas.edu/research-development /tacc-projects/Imod
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Scientific Software Management and Build Via EasyBuild?

a flexible framework for building/installing (scientific) software

fully automates software builds

°
°

@ keeps track of the versions

@ consistent software stack

@ allows for easily reproducing previous builds
°

keep the software build recipes/specifications simple and
human-readable

@ supports co-existence of versions/builds via dedicated
installation prefix and module files

@ enables sharing with the HPC community

2http://hpcugent.github.io/easybuild/
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Lmod + EasyBuild

Easily install new software as module
Clean environment for all of the users

Keep track of the software installed

Possibility to attach to an experiment a subset of modules
e Export source code + environment
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Simple 3D Wave

University of Basel 2016

Problem | Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1node

System » CPU: 2x AMD Opteron 6274 "Bulldozer" 16-Core, 2.2 GHz, 12
MiB L3 cache, 4 NUMA domains

+ RAM: 256 GiB

» OS: Ubuntu 14.04.4, Kernel 3.8.0-38

1. Naive OpenMP implementation with NUMA aware initialization
Method (16 FLOPS)

2. DSL + auto-tuning with PATUS (20 FLOPS)

3. Polyhedral model with PLUTO (16 FLOPS)
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University of Erlangen 2016

Problem | Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1node

System » CPU: 2x Xeon 5650 "Westmere" 6 cores + SMT, 2.66 GHz, 12
MiB Shared Cache per chip, 2 NUMA domains

+ RAM: 24 GB (DDR3-1333)

» OS: CentOS 6.7, Kernel 2.6.32-573.7.1.¢el6

1. Naive OpenMP implementation with NUMA aware initialization
Method (16 FLOPS)

2. DSL + auto-tuning with PATUS (20 FLOPS)

3. Polyhedral model with PLUTO (16 FLOPS)
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Simple 3D Wave (3)
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Demo

https://repro-hpc.dmi.unibas.ch
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PROVA!: Adaptation Effort

@ How to create a methodType?
@ What is the effort?

e What knowledge is needed?
e How much time to invest in it?

Conclusions
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PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor
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PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor

© O~ A WN =

-
o

{

L

:"GROMACS—5.0.5" ,

"eb_modules” :

IE

"GROMACS/5.0.5 — foss —2016a—hybrid —noGPU"

"version”:"5.0.5",
"comment” :"GROMACS, a molecular dynamics package primarily

designed for biomolecular systems such as proteins
and lipids , based on the foss —2016a toolchain, compiled

with hybrid OpenMP and Open MPI, without CUDA support”
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PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor

@ Create (if not existing) the easyconfigs for the needed modules
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PROVA!: Adaptation Effort - Molecular Dynamics

DU E W

Create a method descriptor

Create (if not existing) the easyconfigs for the needed
modules

name = 'GROMACS'

version = '5.0.5"

versionsuffix = '—hybrid—noGPU’

homepage = 'http://www.gromacs.org’

description = """GROMACS is a versatile package to perform molecular
dynamics, i.e. simulate the Newtonian equations of motion for systems
with hundreds to millions of particles.”"”

toolchain = {'name’: ’'foss', 'version ': '2016a’'}

toolchainopts = {'openmp’': True, 'usempi’: True}

source_urls = ['ftp://ftp.gromacs.org/pub/gromacs/’]
sources = [SOURCELOWER-TAR.GZ]

builddependencies = [

('CMake’, '3.4.3"),
("libxml2 ", '2.9.2")
]
dependencies = [('Boost’', '1.59.0', '—Python —2.7.11")]
# explicitely disable CUDA support
configopts = ' —DGMX_GPU=OFF’

moduleclass = 'bio’
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PROVA!: Adaptation Effort - Molecular Dynamics

@ Create a method descriptor
@ Create (if not existing) the easyconfigs for the needed modules

e Create compile (Makefile) and run scripts
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PROVA!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool
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PROVA!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed modules
Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it! 3

3Thanks to Florent Hedin http://www.chemie.unibas.ch/~hedin/


http://www.chemie.unibas.ch/~hedin/
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PROVA!: Adaptation Effort - Molecular Dynamics

1 REAL CYCLE AND TIME ACCOUNTING

2

3 On 2 MPI ranks, each using 8 OpenMP threads

4

5 Computing: Num Num Call Wall time Giga—Cycles
6 Ranks Threads Count (s) total sum %
7

8 Domain decomp. 2 8 960 7.755 272.988 2.2
9 DD comm. load 2 8 39 0.001 0.019 0.0
10 Neighbor search 2 8 961 10.492 369.350 2.9
11 Comm. coord. 2 8 18240 2.674 94.139 0.7
12 Force 2 8 19201 229.409 8075.973 64.3
13 Wait + Comm. 2 8 19201 3.283 115.568 0.9
14 PME mesh 2 8 19201 67.117 2362.756 18.8
15 NB X/F buffer ops. 2 8 55681 8.287 291.731 2.3
16 Write traj. 2 8 1 0.029 1.035 0.0
17 Update 2 8 19201 4.215 148.368 1.2
18  Constraints 2 8 19201 18.922 666.110 5.3
19 Comm. energies 2 8 961 0.039 1.372 0.0
20  Rest 4.639 163.315 1.3
21

22 Total 356.862 12562.724 100.0
23

Conclusions
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PROVA!: Adaptation Effort - Molecular Dynamics

1

2  Breakdown of PME mesh computation

3

4  PME redist. X/F 2 8 38402 13.482 474.601 3.8
5 PME spread/gather 2 8 38402 32.375 1139.695 9.1
6 PME 3D-FFT 2 8 38402 12.703 447.171 3.6
7  PME 3D—FFT Comm. 2 8 38402 7.780 273.874 2.2
8 PME solve Elec 2 8 19201 0.623 21.918 0.2
9

10

11 Core t (s) Wall t (s) (%)

12 Time: 5701.124 356.862 1597.6

13 (ns/day) (hour/ns)

14 Performance: 9.298 2.581

=
o

Finished mdrun on rank 0 Sat Jun 18 11:53:30 2016
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Conclusions

@ Reproducibility needs to be emphasized in the performance
modeling.

@ Repeatability of an experiment only possible if precise
description of experiment is given: Problem, System, and
Method.

@ Repeatability: World-wide access to experiments through
Internet feasible (security and authentication mechanisms
essential).

@ Replication and re-experimentation: harder to achieve but not
impossible.
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Future Work

Short term:
@ Jobs: no clue about when the job finishes its execution

@ Homogeneity of nodes: libraries and sw are installed on a
shared NFS so all the nodes must be homogeneous to run
such sw

@ Experiment is run as a block: bad resource usage
@ Installation of the modules is simply delegated to EasyBuild

@ Visualization is not so powerful

Mid term:
@ Provenance of the experiments
@ Collaborative Performance Engineering

@ Integrate Performance Models to Evaluate Performance
Outputs

@ Towards a Science Gateway



Interested?
https://prova.io
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