
Reproducibility in Science prova! Use Cases Conclusions

Reproducible Stencil Compiler Benchmarks Using
prova!

Danilo Guerrera, Helmar Burkhart, Antonio Maffia

University of Basel

danilo.guerrera@unibas.ch

PMMA 16

Thu, Jun 23, 2016



Reproducibility in Science prova! Use Cases Conclusions

Overview

1 Reproducibility in Science
Problem, System, Method
Reproducibility Levels

2 prova!
Current Version
Environment Management

3 Use Cases
Wave
Molecular Dynamics

4 Conclusions



Reproducibility in Science prova! Use Cases Conclusions

Reproducibility - A Science Principle

“Non-reproducible single occurrences are of no significance to
science.” (Karl Popper The Logic of Scientific Discovery
1934/1959)
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Goals of the prova! Project
try, prove, convince

Taxonomy for Reproducibility Levels

Performance Engineering Support

Best Practice Demonstrator

Modern HPC Education
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Goals of the prova! Project
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Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Problem: specification of the problem including characteristic
parameters.

Method: description of the algorithmic approach used to
tackle the problem.

System: representation of the compute environment (both
hardware and software), on which an experiment is run.
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Micro- and Macro-Experiments
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Reproducibility Levels

Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)
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Functionalities Needed - Support Given

Collaboration Support: git

Software Management: EasyBuild, LMod

Experiment Reproduction

Experiment Portability

Performance Modeling Support

Visualization
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prova! - Current Version of the Architecture
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Lmod mudules

developed at TACC1

user’s environment can be changed dynamically through
modulefiles

manages the PATH

a modulefile contains information on how to run a particular
application or provide access to a particular library

1https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
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Scientific Software Management and Build Via EasyBuild2

a flexible framework for building/installing (scientific) software

fully automates software builds

keeps track of the versions

consistent software stack

allows for easily reproducing previous builds

keep the software build recipes/specifications simple and
human-readable

supports co-existence of versions/builds via dedicated
installation prefix and module files

enables sharing with the HPC community

2http://hpcugent.github.io/easybuild/
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Lmod + EasyBuild

Easily install new software as module

Clean environment for all of the users

Keep track of the software installed

Possibility to attach to an experiment a subset of modules

Export source code + environment
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Simple 3D Wave

University of Basel 2016

Problem Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

System

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1 node

· CPU: 2x AMD Opteron 6274 "Bulldozer" 16-Core, 2.2 GHz, 12
MiB L3 cache, 4 NUMA domains

· RAM: 256 GiB
· OS: Ubuntu 14.04.4, Kernel 3.8.0-38

Method
1. Naive OpenMP implementation with NUMA aware initialization

(16 FLOPS)
2. DSL + auto-tuning with PATUS (20 FLOPS)
3. Polyhedral model with PLUTO (16 FLOPS)
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Simple 3D Wave

University of Erlangen 2016

Problem Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

System

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1 node

· CPU: 2x Xeon 5650 "Westmere" 6 cores + SMT, 2.66 GHz, 12
MiB Shared Cache per chip, 2 NUMA domains

· RAM: 24 GB (DDR3-1333)
· OS: CentOS 6.7, Kernel 2.6.32-573.7.1.el6

Method
1. Naive OpenMP implementation with NUMA aware initialization

(16 FLOPS)
2. DSL + auto-tuning with PATUS (20 FLOPS)
3. Polyhedral model with PLUTO (16 FLOPS)
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Simple 3D Wave (2)
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Simple 3D Wave (3)
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Demo

https://repro-hpc.dmi.unibas.ch

https://repro-hpc.dmi.unibas.ch
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prova!: Adaptation Effort

How to create a methodType?

What is the effort?

What knowledge is needed?
How much time to invest in it?
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prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!
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prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

1 {
2 ”name” : ”GROMACS−5.0.5 ” ,
3 ” eb modu les ” : [
4 ”GROMACS/5.0.5− f o s s −2016a−h y b r i d−noGPU”
5 ] ,
6 ” v e r s i o n ” : ” 5 . 0 . 5 ” ,
7 ”comment” : ”GROMACS, a m o l e c u l a r dynamics package p r i m a r i l y
8 d e s i g n e d f o r b i o m o l e c u l a r s y s t e m s such as p r o t e i n s
9 and l i p i d s , based on t h e f o s s −2016a t o o l c h a i n , c o m p i l e d

w i t h h y b r i d OpenMP and Open MPI , w i t h o u t CUDA s u p p o r t ”
10 }

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!
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prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed
modules

1 name = ’GROMACS’
2 v e r s i o n = ’ 5 . 0 . 5 ’
3 v e r s i o n s u f f i x = ’−h y b r i d−noGPU ’
4
5 homepage = ’ h t t p : / /www. gromacs . org ’
6 d e s c r i p t i o n = ”””GROMACS i s a v e r s a t i l e package to p e r f o r m m o l e c u l a r

dynamics , i . e . s i m u l a t e t h e Newtonian e q u a t i o n s o f motion f o r s y s t e m s
w i t h hundreds to m i l l i o n s o f p a r t i c l e s . ”””

7
8 t o o l c h a i n = { ’name ’ : ’ f o s s ’ , ’ v e r s i o n ’ : ’2016 a ’}
9 t o o l c h a i n o p t s = { ’ openmp ’ : True , ’ usempi ’ : True}

10
11 s o u r c e u r l s = [ ’ f t p : / / f t p . gromacs . org /pub/ gromacs / ’ ]
12 s o u r c e s = [ SOURCELOWER TAR GZ ]
13
14 b u i l d d e p e n d e n c i e s = [
15 ( ’ CMake ’ , ’ 3 . 4 . 3 ’ ) ,
16 ( ’ l i b x m l 2 ’ , ’ 2 . 9 . 2 ’ )
17 ]
18
19 d e p e n d e n c i e s = [ ( ’ Boost ’ , ’ 1 . 5 9 . 0 ’ , ’−Python−2.7 .11 ’ ) ]
20 # e x p l i c i t e l y d i s a b l e CUDA s u p p o r t
21 c o n f i g o p t s = ’ −DGMX GPU=OFF ’
22 m o d u l e c l a s s = ’ b io ’

Create compile (Makefile) and run scripts
Install it in the tool
Create a project and use it!
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prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it! 3

3Thanks to Florent Hedin http://www.chemie.unibas.ch/~hedin/

http://www.chemie.unibas.ch/~hedin/
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prova!: Adaptation Effort - Molecular Dynamics

1 R E A L C Y C L E A N D T I M E A C C O U N T I N G
2
3 On 2 MPI ranks , each u s i n g 8 OpenMP t h r e a d s
4
5 Computing : Num Num C a l l Wal l t ime Giga−C y c l e s
6 Ranks Threads Count ( s ) t o t a l sum %
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 Domain decomp . 2 8 960 7 . 7 5 5 272.988 2 . 2
9 DD comm . l o a d 2 8 39 0 . 0 0 1 0 . 0 1 9 0 . 0

10 Ne ighbor s e a r c h 2 8 961 10 .492 369.350 2 . 9
11 Comm. coord . 2 8 18240 2 . 6 7 4 94 .139 0 . 7
12 Force 2 8 19201 229.409 8075.973 6 4 . 3
13 Wait + Comm. F 2 8 19201 3 . 2 8 3 115.568 0 . 9
14 PME mesh 2 8 19201 67 .117 2362.756 1 8 . 8
15 NB X/F b u f f e r ops . 2 8 55681 8 . 2 8 7 291.731 2 . 3
16 Write t r a j . 2 8 1 0 . 0 2 9 1 . 0 3 5 0 . 0
17 Update 2 8 19201 4 . 2 1 5 148.368 1 . 2
18 C o n s t r a i n t s 2 8 19201 18 .922 666.110 5 . 3
19 Comm. e n e r g i e s 2 8 961 0 . 0 3 9 1 . 3 7 2 0 . 0
20 Rest 4 . 6 3 9 163.315 1 . 3
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 T o t a l 356 .862 12562.724 1 0 0 . 0
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!
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prova!: Adaptation Effort - Molecular Dynamics

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Breakdown o f PME mesh computat ion
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 PME r e d i s t . X/F 2 8 38402 13 .482 474.601 3 . 8
5 PME s p r e a d / g a t h e r 2 8 38402 32 .375 1139.695 9 . 1
6 PME 3D−FFT 2 8 38402 12 .703 447.171 3 . 6
7 PME 3D−FFT Comm. 2 8 38402 7 . 7 8 0 273.874 2 . 2
8 PME s o l v e E l e c 2 8 19201 0 . 6 2 3 21 .918 0 . 2
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 Core t ( s ) Wal l t ( s ) (%)
12 Time : 5701.124 356.862 1597 .6
13 ( ns / day ) ( hour / ns )
14 Per formance : 9 . 2 9 8 2 . 5 8 1
15 F i n i s h e d mdrun on rank 0 Sat Jun 18 1 1 : 5 3 : 3 0 2016

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!
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Conclusions

Reproducibility needs to be emphasized in the performance
modeling.

Repeatability of an experiment only possible if precise
description of experiment is given: Problem, System, and
Method.

Repeatability: World-wide access to experiments through
Internet feasible (security and authentication mechanisms
essential).

Replication and re-experimentation: harder to achieve but not
impossible.
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Future Work

Short term:

Jobs: no clue about when the job finishes its execution

Homogeneity of nodes: libraries and sw are installed on a
shared NFS so all the nodes must be homogeneous to run
such sw

Experiment is run as a block: bad resource usage

Installation of the modules is simply delegated to EasyBuild

Visualization is not so powerful

Mid term:

Provenance of the experiments

Collaborative Performance Engineering

Integrate Performance Models to Evaluate Performance
Outputs

Towards a Science Gateway
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Interested?
https://prova.io

https://prova.io
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