
Reproducibility in Science prova! Use Cases Conclusions

Reproducible Stencil Compiler Benchmarks Using
prova!

Danilo Guerrera, Helmar Burkhart, Antonio Maffia

University of Basel

danilo.guerrera@unibas.ch

PMMA 16

Thu, Jun 23, 2016

Reproducibility in Science prova! Use Cases Conclusions

Overview

1 Reproducibility in Science
Problem, System, Method
Reproducibility Levels

2 prova!
Current Version
Environment Management

3 Use Cases
Wave
Molecular Dynamics

4 Conclusions

Reproducibility in Science prova! Use Cases Conclusions

Reproducibility - A Science Principle

“Non-reproducible single occurrences are of no significance to
science.” (Karl Popper The Logic of Scientific Discovery
1934/1959)

Reproducibility in Science prova! Use Cases Conclusions

Goals of the prova! Project
try, prove, convince

Taxonomy for Reproducibility Levels

Performance Engineering Support

Best Practice Demonstrator

Modern HPC Education

Reproducibility in Science prova! Use Cases Conclusions

Goals of the prova! Project
try, prove, convince

Taxonomy for Reproducibility Levels

Performance Engineering Support

Best Practice Demonstrator

Modern HPC Education

Reproducibility in Science prova! Use Cases Conclusions

Goals of the prova! Project
try, prove, convince

Taxonomy for Reproducibility Levels

Performance Engineering Support

Best Practice Demonstrator

Modern HPC Education

Reproducibility in Science prova! Use Cases Conclusions

Goals of the prova! Project
try, prove, convince

Taxonomy for Reproducibility Levels

Performance Engineering Support

Best Practice Demonstrator

Modern HPC Education

Reproducibility in Science prova! Use Cases Conclusions

Goals of the prova! Project
try, prove, convince

PERFORMANCE	
REPOSITORY	

STENCIL	PROBLEM	
REPOSITORY	

RE-EXPERIMENT	
REPLICATE	
REPEAT	

EXPERIMENT	
WORKSPACE		
&	TOOLS	LAWS	

PREDICTION	
SCALABILITY		

REPRODUCIBILITY	
PORTABILITY	

COMPLETENESS	

PERFORMANCE	
MODEL	

ANALYZE	
INTERPRETE	

①

	

②

	

③

	

④

	

	 		 	 			
	 	 	 	3		 		 						

	 	 	2	PARALLEL		
SYSTEM	1	

⑤ 		
⑥ 		

Taxonomy for Reproducibility Levels
Performance Engineering Support
Best Practice Demonstrator
Modern HPC Education

Reproducibility in Science prova! Use Cases Conclusions

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Problem: specification of the problem including characteristic
parameters.

Method: description of the algorithmic approach used to
tackle the problem.

System: representation of the compute environment (both
hardware and software), on which an experiment is run.

Reproducibility in Science prova! Use Cases Conclusions

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Problem: specification of the problem including characteristic
parameters.

Method: description of the algorithmic approach used to
tackle the problem.

System: representation of the compute environment (both
hardware and software), on which an experiment is run.

Reproducibility in Science prova! Use Cases Conclusions

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Problem: specification of the problem including characteristic
parameters.

Method: description of the algorithmic approach used to
tackle the problem.

System: representation of the compute environment (both
hardware and software), on which an experiment is run.

Reproducibility in Science prova! Use Cases Conclusions

Problem / Method / System

A computational problem is solved by an algorithmic method on a
compute system.

Problem: specification of the problem including characteristic
parameters.

Method: description of the algorithmic approach used to
tackle the problem.

System: representation of the compute environment (both
hardware and software), on which an experiment is run.

Reproducibility in Science prova! Use Cases Conclusions

Micro- and Macro-Experiments

micro-experiment 1

S
y
st

em

Meth
od

ProblemPro1

Met1

Sys1

Reproducibility in Science prova! Use Cases Conclusions

Micro- and Macro-Experiments
S
y
st

em

Meth
od

ProblemPro1

Met1

Met2

Met3
macro-experiment

Sys1

micro-experiment 1

micro-experiment 2

micro-experiment 3

Reproducibility in Science prova! Use Cases Conclusions

Reproducibility Levels

Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)

Reproducibility in Science prova! Use Cases Conclusions

Reproducibility Levels

Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)

Reproducibility in Science prova! Use Cases Conclusions

Reproducibility Levels

Repetition: re-running the original micro- or
macro-experiment without any variation of the parameters,
should drive to the same results and a certain level of
credibility is guaranteed (completeness of documentation)

Replication: is related to the system hosting an experiment.
An experiment should not be bound to a specific compute
environment (portability)

Re-experimentation: if changing the methods drives to the
same outputs, the scientific approach is proven (correctness
of the approach)

Reproducibility in Science prova! Use Cases Conclusions

Functionalities Needed - Support Given

Collaboration Support: git

Software Management: EasyBuild, LMod

Experiment Reproduction

Experiment Portability

Performance Modeling Support

Visualization

Reproducibility in Science prova! Use Cases Conclusions

prova! - Current Version of the Architecture

Remote Environment 1

Cluster

File Storage

Front-end machine

workspaces

...

Parallel
machineParallel

machine...
Parallel
machine

Workspace
Scientist2

Workspace
Scientist1

Scheduler

NFS

https

Scientist

Web
Browser

ssh Experiment
and Analysis

Server

Framework

Reproducibility in Science prova! Use Cases Conclusions

Lmod mudules

developed at TACC1

user’s environment can be changed dynamically through
modulefiles

manages the PATH

a modulefile contains information on how to run a particular
application or provide access to a particular library

1https://www.tacc.utexas.edu/research-development/tacc-projects/lmod

Reproducibility in Science prova! Use Cases Conclusions

Scientific Software Management and Build Via EasyBuild2

a flexible framework for building/installing (scientific) software

fully automates software builds

keeps track of the versions

consistent software stack

allows for easily reproducing previous builds

keep the software build recipes/specifications simple and
human-readable

supports co-existence of versions/builds via dedicated
installation prefix and module files

enables sharing with the HPC community

2http://hpcugent.github.io/easybuild/

Reproducibility in Science prova! Use Cases Conclusions

Lmod + EasyBuild

Easily install new software as module

Clean environment for all of the users

Keep track of the software installed

Possibility to attach to an experiment a subset of modules

Export source code + environment

Reproducibility in Science prova! Use Cases Conclusions

Web Application

Remote Environment 1

Cluster

File Storage

Front-end machine

workspaces

...

Parallel
machineParallel

machine...
Parallel
machine

Workspace
Scientist2

Workspace
Scientist1

Scheduler

NFS

https

Scientist

Web
Browser

ssh Experiment
and Analysis

Server

Framework

Reproducibility in Science prova! Use Cases Conclusions

Simple 3D Wave

University of Basel 2016

Problem Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

System

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1 node

· CPU: 2x AMD Opteron 6274 "Bulldozer" 16-Core, 2.2 GHz, 12
MiB L3 cache, 4 NUMA domains

· RAM: 256 GiB
· OS: Ubuntu 14.04.4, Kernel 3.8.0-38

Method
1. Naive OpenMP implementation with NUMA aware initialization

(16 FLOPS)
2. DSL + auto-tuning with PATUS (20 FLOPS)
3. Polyhedral model with PLUTO (16 FLOPS)

Reproducibility in Science prova! Use Cases Conclusions

Simple 3D Wave

University of Erlangen 2016

Problem Calculate a 3-D wave equation of 2003 elements (IEEE single precision
arithmetic) in 100 timesteps

System

SW: OpenMP 4.0, GCC 4.9.2, PATUS 0.1.4, PLUTO 0.10
HW: 1 node

· CPU: 2x Xeon 5650 "Westmere" 6 cores + SMT, 2.66 GHz, 12
MiB Shared Cache per chip, 2 NUMA domains

· RAM: 24 GB (DDR3-1333)
· OS: CentOS 6.7, Kernel 2.6.32-573.7.1.el6

Method
1. Naive OpenMP implementation with NUMA aware initialization

(16 FLOPS)
2. DSL + auto-tuning with PATUS (20 FLOPS)
3. Polyhedral model with PLUTO (16 FLOPS)

Reproducibility in Science prova! Use Cases Conclusions

Simple 3D Wave (2)

0

5

10

15

20

25

30

35

40

1 2 4 6 8 12 16 24 32

G
F

lo
p

/s

Number of Threads

Performance Comparison of Project: Wave3D

Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

Implemented Method
openMP

patus

pluto

0

5

10

15

20

25

30

35

40

1 2 4 6 8 12 16 24

G
F

lo
p

/s

Number of Threads

Performance Comparison of Project: Wave3D

Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

Implemented Method
openMP

patus

pluto

Reproducibility in Science prova! Use Cases Conclusions

Simple 3D Wave (3)

0

5

10

15

20

25

30

35

1 2 4 6 8 12 16 24 32

G
F

lo
p

/s

Number of Threads

Performance Comparison of Project: likwid_comparison

Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

Implemented Method

omp

omp_node

0

5

10

15

20

25

1 2 4 6 8 12 16 24

G
F

lo
p

/s

Number of Threads

Performance Comparison of Project: likwid_comparison

Parameters (X_MAX Y_MAX Z_MAX): 200 200 200

Implemented Method

omp

omp_node

Reproducibility in Science prova! Use Cases Conclusions

Demo

https://repro-hpc.dmi.unibas.ch

https://repro-hpc.dmi.unibas.ch

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort

How to create a methodType?

What is the effort?

What knowledge is needed?
How much time to invest in it?

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

1 {
2 ”name” : ”GROMACS−5.0.5 ” ,
3 ” eb modu les ” : [
4 ”GROMACS/5.0.5− f o s s −2016a−h y b r i d−noGPU”
5] ,
6 ” v e r s i o n ” : ” 5 . 0 . 5 ” ,
7 ”comment” : ”GROMACS, a m o l e c u l a r dynamics package p r i m a r i l y
8 d e s i g n e d f o r b i o m o l e c u l a r s y s t e m s such as p r o t e i n s
9 and l i p i d s , based on t h e f o s s −2016a t o o l c h a i n , c o m p i l e d

w i t h h y b r i d OpenMP and Open MPI , w i t h o u t CUDA s u p p o r t ”
10 }

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor
Create (if not existing) the easyconfigs for the needed
modules

1 name = ’GROMACS’
2 v e r s i o n = ’ 5 . 0 . 5 ’
3 v e r s i o n s u f f i x = ’−h y b r i d−noGPU ’
4
5 homepage = ’ h t t p : / /www. gromacs . org ’
6 d e s c r i p t i o n = ”””GROMACS i s a v e r s a t i l e package to p e r f o r m m o l e c u l a r

dynamics , i . e . s i m u l a t e t h e Newtonian e q u a t i o n s o f motion f o r s y s t e m s
w i t h hundreds to m i l l i o n s o f p a r t i c l e s . ”””

7
8 t o o l c h a i n = { ’name ’ : ’ f o s s ’ , ’ v e r s i o n ’ : ’2016 a ’}
9 t o o l c h a i n o p t s = { ’ openmp ’ : True , ’ usempi ’ : True}

10
11 s o u r c e u r l s = [’ f t p : / / f t p . gromacs . org /pub/ gromacs / ’]
12 s o u r c e s = [SOURCELOWER TAR GZ]
13
14 b u i l d d e p e n d e n c i e s = [
15 (’ CMake ’ , ’ 3 . 4 . 3 ’) ,
16 (’ l i b x m l 2 ’ , ’ 2 . 9 . 2 ’)
17]
18
19 d e p e n d e n c i e s = [(’ Boost ’ , ’ 1 . 5 9 . 0 ’ , ’−Python−2.7 .11 ’)]
20 # e x p l i c i t e l y d i s a b l e CUDA s u p p o r t
21 c o n f i g o p t s = ’ −DGMX GPU=OFF ’
22 m o d u l e c l a s s = ’ b io ’

Create compile (Makefile) and run scripts
Install it in the tool
Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it! 3

3Thanks to Florent Hedin http://www.chemie.unibas.ch/~hedin/

http://www.chemie.unibas.ch/~hedin/

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

1 R E A L C Y C L E A N D T I M E A C C O U N T I N G
2
3 On 2 MPI ranks , each u s i n g 8 OpenMP t h r e a d s
4
5 Computing : Num Num C a l l Wal l t ime Giga−C y c l e s
6 Ranks Threads Count (s) t o t a l sum %
7 −−−
8 Domain decomp . 2 8 960 7 . 7 5 5 272.988 2 . 2
9 DD comm . l o a d 2 8 39 0 . 0 0 1 0 . 0 1 9 0 . 0

10 Ne ighbor s e a r c h 2 8 961 10 .492 369.350 2 . 9
11 Comm. coord . 2 8 18240 2 . 6 7 4 94 .139 0 . 7
12 Force 2 8 19201 229.409 8075.973 6 4 . 3
13 Wait + Comm. F 2 8 19201 3 . 2 8 3 115.568 0 . 9
14 PME mesh 2 8 19201 67 .117 2362.756 1 8 . 8
15 NB X/F b u f f e r ops . 2 8 55681 8 . 2 8 7 291.731 2 . 3
16 Write t r a j . 2 8 1 0 . 0 2 9 1 . 0 3 5 0 . 0
17 Update 2 8 19201 4 . 2 1 5 148.368 1 . 2
18 C o n s t r a i n t s 2 8 19201 18 .922 666.110 5 . 3
19 Comm. e n e r g i e s 2 8 961 0 . 0 3 9 1 . 3 7 2 0 . 0
20 Rest 4 . 6 3 9 163.315 1 . 3
21 −−−
22 T o t a l 356 .862 12562.724 1 0 0 . 0
23 −−−

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

prova!: Adaptation Effort - Molecular Dynamics

1 −−−
2 Breakdown o f PME mesh computat ion
3 −−−
4 PME r e d i s t . X/F 2 8 38402 13 .482 474.601 3 . 8
5 PME s p r e a d / g a t h e r 2 8 38402 32 .375 1139.695 9 . 1
6 PME 3D−FFT 2 8 38402 12 .703 447.171 3 . 6
7 PME 3D−FFT Comm. 2 8 38402 7 . 7 8 0 273.874 2 . 2
8 PME s o l v e E l e c 2 8 19201 0 . 6 2 3 21 .918 0 . 2
9 −−−

10
11 Core t (s) Wal l t (s) (%)
12 Time : 5701.124 356.862 1597 .6
13 (ns / day) (hour / ns)
14 Per formance : 9 . 2 9 8 2 . 5 8 1
15 F i n i s h e d mdrun on rank 0 Sat Jun 18 1 1 : 5 3 : 3 0 2016

Create a method descriptor

Create (if not existing) the easyconfigs for the needed modules

Create compile (Makefile) and run scripts

Install it in the tool

Create a project and use it!

Reproducibility in Science prova! Use Cases Conclusions

Conclusions

Reproducibility needs to be emphasized in the performance
modeling.

Repeatability of an experiment only possible if precise
description of experiment is given: Problem, System, and
Method.

Repeatability: World-wide access to experiments through
Internet feasible (security and authentication mechanisms
essential).

Replication and re-experimentation: harder to achieve but not
impossible.

Reproducibility in Science prova! Use Cases Conclusions

Future Work

Short term:

Jobs: no clue about when the job finishes its execution

Homogeneity of nodes: libraries and sw are installed on a
shared NFS so all the nodes must be homogeneous to run
such sw

Experiment is run as a block: bad resource usage

Installation of the modules is simply delegated to EasyBuild

Visualization is not so powerful

Mid term:

Provenance of the experiments

Collaborative Performance Engineering

Integrate Performance Models to Evaluate Performance
Outputs

Towards a Science Gateway

Reproducibility in Science prova! Use Cases Conclusions

Interested?
https://prova.io

https://prova.io

	Reproducibility in Science
	Problem, System, Method
	Reproducibility Levels

	prova!
	Current Version
	Environment Management

	Use Cases
	Wave
	Molecular Dynamics

	Conclusions

