Performance Engineering in the ExaStencils project

Harald Köstler
FAU Erlangen-Nürnberg
23.06.2016, ISC Frankfurt
Introduction
Application-driven Projects

User from application field ➔ Description of application ➔ Solution method

Mathematician ➔

Software specialist ➔ Parallel implementation and framework

Hardware specialist ➔ Efficient implementation on specific hardware

\[
\phi_{\text{MGM}}(x_k, b_k) = (\phi_{\text{S}})^2((\phi_{\text{S}})^3(x_k, b_k) + P_k((\phi_{\text{MGM}})^7(0, R_k(b_k - A_kx_k)), b_k)
\]
Programming Approaches in CSE

- One problem – one code
 - Everything is implemented from scratch or one uses common libraries
 - Can be easily specialized and therefore optimized
 - Good to test new algorithms and implementations

- One library – several problems
 - Higher maintenance and user support effort
 - Hard to fit all users needs and achieve optimal performance
 - A whole community can benefit from it
 - Standard for production codes

- One language – (hopefully) most problems
 - Design requires very high effort
 - Problem-specific optimizations possible
 - Current research
The ExaStencils Project
Project ExaStencils is funded by the German Research Foundation (DFG) as part of the Priority Program 1648 (Software for Exascale Computing) -> http://www.exastencils.org

- Sebastian Kuckuk
- Harald Köstler
- Ulrich Rüde
- Christian Schmitt
- Frank Hannig
- Jürgen Teich
- Hannah Rittich
- Matthias Bolten
- Alexander Grebhahn
- Sven Apel
- Stefan Kronawitter
- Armin Größlinger
- Christian Lengauer
Domain-specific Languages

- It’s all about simplicity!
Two Approaches to Create DSLs

Internal / embedded domain-specific languages (DSLs)

- Utilize a general-purpose programming language (host language)
- Extension or restriction of the host language (or both at the same time)
- Extensions possible in form of libraries (e.g., data types, objects, methods), annotations, macros, etc.
- Same syntax as host language and usually the same compiler or interpreter

External DSLs

- Completely newly defined programming language
- More flexible and expressive than an internal DSLs
- Syntax and semantics defined freely, but often related to existing languages
- Higher design effort, but supporting tools exist
- Potential to create a powerful semantic model as intermediate representation (IR)
• **ExaStencils language**
 - Abstract description for generation of massively parallel geometric multigrid solvers
 - Multi-layered structure + hierarchy of DSLs
 - Top-down approach: from abstract to concrete
 - Very few mandatory specifications at one layer + room for decisions at lower layers based on domain knowledge
• External domain-specific language
 - better reflection of extensive ExaStencils approach
 - enables greater flexibility of different layers
 - eases tailoring of DSL layers to users
 - enables code generation for large variety of target platforms
• Parsing and code transformation framework implemented in Scala\(^1\)

\(^1\) SKKHT14iccsa
Our Layered DSL ExaSlang

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

abstract problem formulation

target platform description

concrete solver implementation
ExaStencils Workflow

End-user

Domain expert

Mathematician

Software specialist

Hardware expert

ExaStencils Compiler

DSL program

Discretization and algorithm selection

Selection of algorithmic components & parameter settings

Polyhedral optimization

Code generation

Tuning towards target hardware

Exascale C++
Example Transformations

```javascript
var s = DefaultStrategy ("example strategy")

s += Transformation ("rename stencil", {
    case x : Stencil if (x.identifier == "foo") =>
        if (x.entries.length != 7) error("invalid stencil size")
        x.identifier = "bar"; x
})

s += Transformation ("eval adds", {
    case AdditionExpression (l : IntConstant, r : IntConstant)
        => IntConstant (l.value + r.value)
})

s. apply // execute transformations sequentially
```
Goal: solve $A^h u^h = f^h$ using a hierarchy of grids

Relax on

$A^h u^h = f^h$ \hspace{1cm} Correct $u^h \leftarrow u^h + e^h$

Residual

$r^h = f^h - A^h u^h$

Restrict

$r^H = I^H_h r^h$

Interpolate

$e^h = I^h_H e^H$

Multigrid uses coarse grids to accomplish the inevitable global data exchange in the most efficient way possible.
Low-level Optimization
Low-Level Optimizations in the IR

- Address pre-calculation
- Arithmetic simplifications
- Vectorization (SSE3, AVX, AVX2, QPX, NEON)
- Loop unrolling
 - Also enables further optimizations, e.g. eliminating modulo accesses
- Polyhedron model extraction and optimization
 - Sophisticated dependency analysis
 - Advanced dead code elimination
 - Increased memory coalescence and/or parallelism
 - Automatic tiling
 - Code optimization by elimination of conditionals (→ RBGS)
Polyhedron Model Example

for (int i = 1; i <= n; ++i)
 for (int j = 1; j <= n-i+1; ++j)
 a[i][j] = a[i-1][j] + a[i][j-1];

for (int t = 1; t <= n; ++t)
 #pragma omp parallel for
 for (int p = 1; p <= t; ++p)
 a[t-p+1][p] = ...;

Iteration domain

1 \leq i \leq n
1 \leq j \leq n - i + 1

Dependences

(i,j) \rightarrow (i+1,j)
(i,j) \rightarrow (i,j+1)

Transformation

\begin{align*}
t &= i + j - 1 \\
p &= j
\end{align*}

1 \leq t \leq n
1 \leq p \leq t

Dependences

(t,p) \rightarrow (t+1,p)
(t,p) \rightarrow (t+1,p+1)
ExaSlang 4 Example

Function JacSmother@((coarsest + 1) to finest) () : Unit {
 communicate ghost of Solution[active]@current
 loop over Solution@current {
 Solution[nextSlot]@current = Solution[active]@current +
 (((1.0 / diag (Laplace@current)) * OMEGA) *
 (RHS@current
 - Laplace@current * Solution[active]@current))
 }
 advance Solution@current
}

● Concepts:
 ● Leveled functions, fields and stencils
 ● Intuitive stencils-field operations
 ● Slotting mechanism
 ● Communication management
Resulting Code (w/o basic Opt)

```c
#include "MultiGrid/MultiGrid.h"

void Smoother_4() {
    exchsolutionData_4(0);

    #pragma omp parallel for schedule(static) num_threads(8)
    for (int fragmentIdx = 0; fragmentIdx < 8; ++fragmentIdx) {
        if (isValidForSubdomain[fragmentIdx][0]) {
            for (int y = iterationOffsetBegin[fragmentIdx][0][1]; y < (iterationOffsetEnd[fragmentIdx][0][1]+17); y +=1) {
                for (int x = iterationOffsetBegin[fragmentIdx][0][0]; x < (iterationOffsetEnd[fragmentIdx][0][0]+17); x +=1) {
                    slottedFieldData_Solution[1][fragmentIdx][4][(((y*19)+19)+(x+1))] =
                        (slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+19)+(x+1))]
                        +(((1.0e+00/fieldData_LaplCoeff[fragmentIdx][4][((y*17)+x)])*8.0e-01)
                        *(fieldData_RHS[fragmentIdx][4][((y*17)+x)]
                        -(((fieldData_LaplCoeff[fragmentIdx][4][[(y*17)+x]])
                        *slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+19)+(x+1))])
                        +((fieldData_LaplCoeff[fragmentIdx][4][(((y*17)+289)+x)]
                        *slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+19)+(x+2))])
                        +((fieldData_LaplCoeff[fragmentIdx][4][(((y*17)+578)+x)]
                        *slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+19)+x)])
                        +((fieldData_LaplCoeff[fragmentIdx][4][(((y*17)+867)+x)]
                        *slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+38)+(x+1))])
                        +((fieldData_LaplCoeff[fragmentIdx][4][(((y*17)+1156)+x)]
                        *slottedFieldData_Solution[0][fragmentIdx][4][(((y*19)+(x+1)))])));
            }
        }
    }
    ...
```
Resulting Code (w/ basic Opt)

```c
#include "MultiGrid/MultiGrid.h"

void Smoother_4() {
    exchsolutionData_4(0);
    #pragma omp parallel for schedule(static) num_threads(8)
    for (int fragmentIdx = 0; fragmentIdx < 8; ++fragmentIdx) {
        if (isValidForSubdomain[fragmentIdx][0]) {
            for (int c0 = iterationOffsetBegin[fragmentIdx][0][1];
                (c0<=(iterationOffsetEnd[fragmentIdx][0][1]+16)); c0 = (c0+1))
                double* slottedFieldData_Solution_1_fragmentIdx_4_p1 =
                    &(slottedFieldData_Solution[1][fragmentIdx][4][(19*c0)]);
            double* fieldData_RHS_fragmentIdx_4_p1 = &(fieldData_RHS[fragmentIdx][4][(17*c0)]);
            double* slottedFieldData_Solution_0_fragmentIdx_4_p1 = ...
            double* fieldData_LaplCoeff_fragmentIdx_4_p1 = ...
            for (int c1 = iterationOffsetBegin[fragmentIdx][0][0];
                (c1<=(iterationOffsetEnd[fragmentIdx][0][0]+16)); c1 = (c1+1)) {
                slottedFieldData_Solution_1_fragmentIdx_4_p1[(c1+20)] =
                    (slottedFieldData_Solution_0_fragmentIdx_4_p1[(c1+20)]) +((1.0e+00/fieldData_LaplCoeff_fragmentIdx_4_p1[c1])*8.0e01)*(fieldData_RHS_fragmentIdx_4_p1[c1] - (((fieldData_LaplCoeff_fragmentIdx_4_p1[c1]*slottedFieldData_Solution_0_fragmentIdx_4_p1[(c1 +20)])+(fieldData_LaplCoeff_fragmentIdx_4_p1[(c1+289)])*slottedFieldData_Solution_0_fragmentIdx_4_p1[(c1+21)])+(fieldData_LaplCoeff_fragmentIdx_4_p1[(c1+578)])*slottedFieldData_Solution_0_fragmentIdx_4_p1[(c1+19)])+(fieldData_LaplCoeff_fragmentIdx_4_p1[(c1+39)])+(fieldData_LaplCoeff_fragmentIdx_4_p1[(c1+1156)]*slottedFieldData_Solution_0_fragmentIdx_4_p1[(c1+1)]));
            }
        }
    }
```
Node-Level Performance

3D 7-point Jacobi smoother Intel IvyBridge EP

[Graph showing performance metrics over different cores]
Distributed-memory Parallelization
Domain Partitioning

- Easy for regular domains

Each domain consists of one or more blocks

Each block consists of one or more fragments

Each fragment consists of several data points / cells
Domain Partitioning

- Domain partition maps directly to different parallelization interfaces, e.g. MPI and OMP:
 - Each **block** corresponds to one *MPI* rank
 - Each **fragment** corresponds to one *OMP* rank
 - Hybrid *MPI/OMP* corresponds to multiple **blocks** and multiple **fragments** per **block**
 - Alternatively: only one **fragment** per **block** and direct parallelization of kernels with *OMP*

- Easy to map to different interfaces, e.g.
 - PGAS
 - MPI and PGAS
 - MPI and CUDA
Parallelization

- Communication statements are added automatically when transforming Layer 3 to Layer 4 where they may be reviewed or adapted

```c
/* communicates all applicable layers */
communicate Solution@current
/* communicates only ghost layers */
communicate ghost of Solution[active]@current
/* communicates duplicate and first two ghost layers */
communicate dup, ghost[0, 1] of Solution[active]@current
/* asynchronous communicate */
begin communicate Residual@current
//...
finish communicating Residual@current
```
Benchmark Problem and System

• Target system
 • JUQUEEN supercomputer located in Jülich, Germany
 • 458,752 cores / 28,672 nodes (1.6 GHz, 16 cores each, four-way multithreading)

• Regarded problem
 • 3D finite differences discretization of Poisson’s equation ($\Delta \varphi = f$) with Dirichlet boundary conditions
 • V(3,3) cycle, parallel CG as coarse grid solver
 • Jacobi, Gauss-Seidel or red-black Gauss-Seidel smoother
 • pure MPI or hybrid MPI/OMP parallelization
 • 64 threads per node, roughly 10^6 unknowns per core
 • code optimized through polyhedral loop transformations, 2-way unrolling and address precalculation on finer levels as well as custom MPI data types
 • vectorization and blocking are not yet taken into account
Comparison of Lines of Code

<table>
<thead>
<tr>
<th></th>
<th>ExaSlang 4</th>
<th>C++ Pure MPI</th>
<th>C++ Hybrid MPI/OMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Comm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>7,368</td>
<td>7,586</td>
<td></td>
</tr>
<tr>
<td>Extended Comm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>12,264</td>
<td>12,422</td>
<td></td>
</tr>
</tbody>
</table>
Program Sizes during Transformation
Weak Scalability

- Mean time per V-cycle
- V(3,3) with Jacobi and CG

![Graph showing weak scalability](image-url)
Applications
Stochastic variable heat conduction

\n\begin{align*}
(0, 1) & \quad U_N = 1 \\
(1, 1) & \quad \nabla \cdot (e^{a(x)} \nabla U(x)) = 0 \\
(0, 0) & \quad U_W = 3 \\
(1, 0) & \quad U_S = 10 \\
(1, 1) & \quad U_E = 5
\end{align*}

\[x \in \Omega = [0, 1] \times [0, 1], \]
\[U(0, x_2) = 3, \]
\[U(1, x_2) = 5, \]
\[U(x_1, 0) = 10, \]
\[U(x_1, 1) = 1, \]
\[x_2 \in \partial \Omega_W = [0, 1], \]
\[x_2 \in \partial \Omega_E = [0, 1], \]
\[x_1 \in \partial \Omega_S = [0, 1], \]
\[x_1 \in \partial \Omega_N = [0, 1]. \]

GRMF

solution

Expectation of solution field (100 samples, Monte Carlo simulation)

Loh, Solving Stochastic PDEs with Approximate Gaussian Markov Random Fields using Different Programming Environments, 2014.
Non-Newtonian Fluid Flows

- Simulation of non-isothermal/non-Newtonian fluid flows
 - Suspensions of particles or macromolecules
 - E.g. pastes, gels, foams, drilling fluids, food products, blood, etc.
 - Importance in mining, chemical and food industry as well as medical applications

https://www.youtube.com/watch?v=G1Op_1yG6I0
Differences to Poisson

- From model problem to application

<table>
<thead>
<tr>
<th>Poisson</th>
<th>NNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta u = f$</td>
<td>$-\nabla^T (H \nabla \vec{v}) + D (\vec{v}^T \cdot \nabla) \vec{v} + \nabla p + D \begin{bmatrix} 0 \ \theta \end{bmatrix} = 0$</td>
</tr>
<tr>
<td></td>
<td>$\nabla^T \vec{v} = 0$</td>
</tr>
<tr>
<td></td>
<td>$-\nabla^T (\nabla \theta) + G \cdot (\vec{v}^T \cdot \nabla) \theta = 0$</td>
</tr>
<tr>
<td>Linear</td>
<td>Non-linear</td>
</tr>
<tr>
<td>Scalar PDE (one unknown)</td>
<td>3 velocity components, pressure and temperature with varying localizations</td>
</tr>
<tr>
<td>Simple boundary conditions</td>
<td>Mixed boundary conditions</td>
</tr>
<tr>
<td>Finite differences</td>
<td>Finite volumes</td>
</tr>
<tr>
<td>One grid</td>
<td>Staggered grids</td>
</tr>
<tr>
<td>Uniform spacing</td>
<td>Local refinement</td>
</tr>
</tbody>
</table>
Staggered grid

- Finite volume discretization on a staggered grid

- values associated with the cell centers, e.g. p and θ

- values associated with the x-staggered grid, e.g. U

- values associated with the y-staggered grid, e.g. V

- control volumes associated with cell-centered values

- control volumes associated with x-staggered values

- control volumes associated with y-staggered values
The SIMPLE Algorithm

- Semi-Implicit Method for Pressure Linked Equations
- Concept:

1. Update properties
2. Solve for velocity components
3. Solve for pressure correction
4. Apply pressure correction
The SIMPLE Algorithm

- Temperature can be added as a separate step
Porting code

- Straight-forward for simple kernels

```fortran
subroutine advance_fields ()
!$omp parallel do &
!$omp private(i,j,k) &
!$omp firstprivate(l1,m1,n1) &
!$omp shared(rho,rho0) &
!$omp schedule(static) default(none)
do k=1,n1
    do j=1,m1
        do i=1,l1
            rho0(i,j,k)=rho(i,j,k)
        end do
    end do
end do
!$omp end parallel do
```

```fortran
Function AdvanceFields@finest ()
: Unit {
    loop over rho@current {
        rho[next}@current = rho[active]@current
    }
    advance rho@current
}
```
Porting code

- But what about more complicated code? Here we get from this …

! if not at the boundary
fl = xcvi(i) * v(i,jp,k) * (fy(jp)*rho(i,jp,k) + fym(jp)*rho(i,j,k))
flm = xcvip(im) * v(im,jp,k) * (fy(jp)*rho(im,jp,k) + fym(jp)*rho(im,j,k))
flownu = zcv(k) * (fl+flm)
gm = xcvi(i) * vis(i,j,k) * vis(i,jp,k) / (ycv(j)*vis(i,jp,k) + ycv(jp)*vis(i,j,k) + 1.e-30)
gmm = xcvip(im) * vis(im,j,k) * vis(im,jp,k) / (ycv(j)*vis(im,jp,k) + ycv(jp)*vis(im,j,k) + 1.e-30)
diff = 2. * zcv(k) * (gm+gmm)
call difflow(flownu,diff,acof)
adc = acof + max(0.,flownu)
anu(i,j,k) = adc - flownu
Porting code

... to this!

flownu@current = integrateOverXStaggeredNorthFace (v[active]@current * rho[active]@current)

Val diffnu : Real = integrateOverXStaggeredNorthFace (evalAtXStaggeredNorthFace (vis@current, "harmonicMean")) / vf_stagCVWidth_y@current@[0, 1, 0]

AuStencil@current:[0, 1, 0] = -1.0 * (calc_diflow (flownu@current, diffnu) + max (0.0, flownu@current) - flownu@current)
Results

- Natural convection problem
- With and without non-Newtonian model
- Convergence criteria for
 - solving the single components: At least one v-cycle and
 \[\|r\| \leq \alpha (1 + \beta \|b\|) \]
 \[\|r_{i+1}\| - \|r_i\| < \tilde{\alpha} \]
 - SIMPLE: Convergence for all components is achieved \emph{after} updating the LSE but \emph{before} starting the solve routine
- 10,000 timesteps
- One Socket on Emmy (Intel Xeon E5-2660v2) with 20 OpenMP threads
Results

Temperature distribution along slice (z at 50% of the box depth) for the Newtonian and non-Newtonian case
Results

Average execution time per timestep [ms]

- Newtonian
- Non-Newtonian

Problem size:
- 16
- 32
- 64
- 128

Update quantities
Compile LSEs
Solve
Total
Towards Performance Engineering
Assess Quality of Generated Code

- Typically one cannot check manually how efficient generated code is
- Our solution to this problem is to generate also code for performance measurement
- And to create a performance model within the Scala compiler
- Relative performance would be ok since we want to know which configuration is best
- First results are now available
For each kernel in AST
- Evaluate kernel costs and save as annotation
- Do an optimistic2 estimation of required memory accesses (read/write)
- Do an optimistic3 estimation of required FLOPs
- Apply roofline model using hardware characteristics

Collect all relevant1 functions in AST and mark them as unfinished

While unfinished functions
- For each unfinished function
 - Does function body contain function calls to unprocessed functions?
 - Defer function evaluation
 - Else
 - Evaluate body, save function cost and set function to finished

Static loops: multiply \# iterations with sum of costs of body
Kernels: recall costs from annotation
Communication: not modelled at the moment
Function calls: recall costs of executing function

1omit, e.g., timer functions and error checks
2assume perfect spatial blocking / neglect temporal blocking;
3assume perfect vectorization
Runtimes 2D Constant Coefficients

CPU: single socket Xeon E3-1275 v5, 3.60 GHz clock, 4 cores / 8 hw-threads
Microarchitecture: Skylake (2015)
L3 Cache: 8 MB
Main Memory: 64 GB
Runtimes 3D Constant Coefficients

CPU single socket Xeon E3-1275 v5, 3.60 GHz clock, 4 cores / 8 hw-threads
Microarchitecture Skylake (2015)
L3 Cache 8 MB
Main Memory 64 GB
Runtimes 2D Variable Coefficients

CPU single socket Xeon E3-1275 v5, 3.60 GHz clock, 4 cores / 8 hw-threads

Microarchitecture Skylake (2015)

L3 Cache 8 MB

Main Memory 64 GB
Runtimes 3D Variable Coefficients

CPU single socket Xeon E3-1275 v5, 3.60 GHz clock, 4 cores / 8 hw-threads
Microarchitecture Skylake (2015)
L3 Cache 8 MB
Main Memory 64 GB
Runtimes 2D Constant Coefficients

CPU dual socket Xeon E5620, 2.4 GHz clock, 4 cores / 8 hw-threads
L3 Cache 12 MB smart cache
Main Memory 24 GB
Interconnect 2x QPI 5.86 GT/s
Runtimes 3D Constant Coefficients

CPU dual socket Xeon E5620, 2.4 GHz clock, 4 cores / 8 hw-threads
L3 Cache 12 MB smart cache
Main Memory 24 GB
Interconnect 2x QPI 5.86 GT/s
Runtimes 2D Variable Coefficients

CPU dual socket Xeon E5620, 2.4 GHz clock, 4 cores / 8 hw-threads
L3 Cache 12 MB smart cache
Main Memory 24 GB
Interconnect 2x QPI 5.86 GT/s
Runtimes 3D Variable Coefficients

CPU dual socket Xeon E5620, 2.4 GHz clock, 4 cores / 8 hw-threads
L3 Cache 12 MB smart cache
Main Memory 24 GB
Interconnect 2x QPI 5.86 GT/s
Summary and Outlook

- Roughly a factor 2 off for a whole V-cycle is a good starting point
- For small sizes model is not accurate
- Include more advanced performance models
- Connect to performance measurement tools
- Include Autotuning
Acknowledgements

- Funded by
 - Bundesministerium für Bildung und Forschung
 - KONWIHR. Bavarian project
 - DFG SPP 1648/1 – Software for Exascale computing
 - Industry
 - Supercomputing centers

http://www.exastencils.org/
Thank you for your Attention!

Questions?