
Metaprogramming for CSE
Applications meets performance
engineering

PD Dr. Harald Köstler

ISC, Frankfurt 2017

Contents

Motivation

ExaStencils Code Generation Framework
Applications

Performance Engineering

Next: Metaprogramming

2

Code generation and Metaprogramming

Definition: Code generation in a strict sense is used to describe the

process of producing code that can be executed on a certain platform

from an abstract representation

Why? Because programming is time-consuming.

Definition: Metaprogramming is a very general term and can be defined

as writing software that can itself produce new software.

The final goal is to develop software that can itself solve problems

without human interaction.

Approaches: Genetic Programming, Deep Learning

3

CSE optimization problem

Model

Data

Simulation

Real World

≈ produce Domain
knowledge

improve

Code generation Metaprogramming

Metaprogramming group @ LSS

● Code generation

● Parallel Data Structures

● Performance engineering

● GPU, accelerators

● Metaprogramming

● Lisp, AnyDSL

● Scala

● Python, llvm

● C++

● Genetic Programming, Deep Learning

● Applications

● Data analysis, medical image processing

● Solvers for PDEs, DG discretizations

● Tsunami simulation, material sciences, CFD

5

HPC2SE

METACCA

SKAMPY

The ExaStencils Framework

7

• Sebastian Kuckuk

• Georg Altmann

• Harald Köstler

• Ulrich Rüde

• Christian Schmitt

• Frank Hannig

• Jürgen Teich

• Hannah Rittich

• Lisa Claus

• Matthias Bolten

• Alexander Grebhahn

• Sven Apel

• Stefan Kronawitter

• Armin Größlinger

• Christian Lengauer

Project ExaStencils

What is ExaStencils?

● Scope:

● (Geometric) multigrid solvers for

● Finite difference and finite volume discretizations of elliptic PDEs

● On regular (staggered) quad and hex meshes

● Multi-layered, external DSL as input, whole program as output

● Transformation-based code generation framework written in Scala

● Support for OpenMP, MPI and/or CUDA

● Many optimizations can be applied automatically (loop

transformations, vectorization, sophisticated CSE, etc.)

● Applications from CFD, image processing and quantum chemistry

http://www.exastencils.org/#pubs 8

ExaSlang

● We propose a multilayered, external DSL

Schmitt, Kuckuk, Hannig, Köstler, Teich. ExaSlang: A Domain-Specific Language for Highly Scalable

Multigrid Solvers. 9

Workflow

10

Setup
• User writes DSL code and sets up configuration files

Gener.

• Code generator emits source code in target language
and, optionally, a Makefile, project file, job script, etc.

Comp.

• User moves generated code to target machine and uses
general purpose compilers

Run
• User executes the code and checks results

11

/** Layer 2 **/

// domain – information is carried over from L1
Domain global

// fields from L1
Field Solution@all with Real on Node of global = 0.0
Field RHS@all with Real on Node of global = 0.0

// boundary conditions from L1
Field Solution@finest on boundary = vf_boundaryCoord_x**2 - 0.5 * …
Field Solution@(all but finest) on boundary = 0.0

// (discretized) operators from L1
Operator Laplace from Stencil {

[0, 0] => 2.0 / (vf_gridWidth_x ** 2) + 2.0 / (vf_gridWidth_y ** 2)
[-1, 0] => -1.0 / (vf_gridWidth_x ** 2)
[1, 0] => -1.0 / (vf_gridWidth_x ** 2)
[0, -1] => -1.0 / (vf_gridWidth_y ** 2)
[0, 1] => -1.0 / (vf_gridWidth_y ** 2)

}

12

/** Layer 3 **/

/* fields and operators from L2 are progressed automatically */

// new fields
Field Residual from Solution

// override inherited boundary conditions where applicable
override bc for Residual@finest with 0.0

// generate default inter-grid operators for node-based discretizations
Operator RestrictionStencil from default restriction on Node with 'linear'
Operator CorrectionStencil from default prolongation on Node with 'linear'

// create smoother function
Function Smoother@all {

Val omega : Real = 0.8
repeat 3 times {

Solution =
Solution + omega * diag_inv (Laplace) * (RHS - Laplace * Solution)

}
}

13

/** Layer 3 **/

// create v-cycle function
Function VCycle@((coarsest + 1) to finest) {

Smoother ()

Residual = RHS - (Laplace * Solution)
RHS@coarser = RestrictionStencil * Residual

Solution@coarser = 0.0
VCycle@coarser ()

Solution += CorrectionStencil * Solution@coarser

Smoother ()
}

Function VCycle@coarsest {
/* CGS */

}

14

/** Layer 4 **/

// create main function
Function Application () : Unit {

/* init code */

Var resStart : Real = NormResidual@finest ()
Var curRes : Real = resStart

repeat until res_0 < 1.0E-5 * resStart_0 {
VCycle@finest ()
curRes = NormResidual@finest ()

}

/* de-init code */
}

Vanka-Type smoothers on L4

15

loop over p {
solve locally {

u@[0, 0, 0] => A_u@[0, 0, 0] * u@[0, 0, 0] == rhs_u@[0, 0, 0]
+ vf_cellWidth_y * vf_cellWidth_z * (p@[-1, 0, 0] - p@[0, 0, 0])

u@[1, 0, 0] => A_u@[1, 0, 0] * u@[1, 0, 0] == rhs_u@[1, 0, 0]
+ vf_cellWidth_y * vf_cellWidth_z * (p@[0, 0, 0] - p@[1, 0, 0])

v@[0, 0, 0] => A_v@[0, 0, 0] * v@[0, 0, 0] == rhs_v@[0, 0, 0]
+ vf_cellWidth_x * vf_cellWidth_z * (p@[0, -1, 0] - p@[0, 0, 0])

v@[0, 1, 0] => …

w@[0, 0, 0] => A_w@[0, 0, 0] * w@[0, 0, 0] == rhs_w@[0, 0, 0]
+ vf_cellWidth_x * vf_cellWidth_y * (p@[0, 0, -1] - p@[0, 0, 0])

w@[0, 0, 1] => …

p@[0, 0, 0] => rhs_p ==
integrateOverEastFace (u * rho) - integrateOverWestFace (u * rho)

+ integrateOverNorthFace (v * rho) - integrateOverSouthFace (v * rho)
+ integrateOverTopFace (w * rho) - integrateOverBottomFace (w * rho)

}
}

Applications: It is all about Grids

Showcase

● Work with Haase (U. Graz) and

Vasco (U. Santiago de Chile)

● Simulation of non-

Newtonian/non-isothermal

fluids

● 3D FV discretization of

staggered grids

● Recent extension towards

FAS-FMG

● (Automatic) parallelization

using OMP/MPI/CUDA

Vasco, Moraga, Haase. Parallel finite volume method simulation of three-dimensional fluid flow and convective

heat transfer for viscoplastic non-Newtonian fluids

Kuckuk, Haase, Vasco, Köstler. Towards Generating Efficient Flow Solvers with the ExaStencils Approach
17

values associated with the

x-staggered grid, e.g. U

values associated with the

y-staggered grid, e.g. V

values associated with the

cell centers, e.g. p and θ

control volumes associated

with cell-centered values

control volumes associated

with x-staggered values

control volumes associated

with y-staggered values

Scope: Towards Ocean Simulation

● Overall goal: simulation of

ocean behavior

● Discretization using

discontinuous Galerkin (DG)

methods

● Performance and scalability

Image credits: NASA Landsat 18

Hybrid Grids: Unstructured Grids are slow(er)!

Generation of Block-Structured Grids

1. Rough (unstructured) tessellation of the computational domain

For illustration purposes only! 20

Generation of Block-Structured Grids

1. Rough (unstructured) tessellation of the computational domain

2. Uniform subdivision

For illustration purposes only!
21

Generation of Block-Structured Grids

For illustration purposes only!
22

1. Rough (unstructured) tessellation of the computational domain

2. Uniform subdivision

3. Adaptation of vertex positions

Generation of Block-Structured Grids

For illustration purposes only!
23

1. Rough (unstructured) tessellation of the computational domain

2. Uniform subdivision

3. Adaptation of vertex positions

4. Triangulation

Current State

● What is already possible?

● Finite volume discretizations for simple

model problems on regular, non-uniform

patches (cell-centered, 2D)

● Using the complete ExaStencils pipeline

● What is missing?

● Suitable abstractions and language

extensions for DG

● Extension to prisms

● (Specialized) communication routines for

triangle and prism data

24

Towards Performance Engineering

26

Error Types

Real World

Model

Discrete
Model

Discrete
Solution

Model
Error

Discretization
Error

Algebraic
Error

Roundoff
Error

27

Algorithmic Performance Engineering

Real World

Model

Discrete
Model

Discrete
Solution

Model
Choice

Discretization
Choice

Solver Choice

Platform
Choice

Optimization Problem

● For each choice you require a valid performance model
that estimates the runtime for your settings!

● Therefore there is a need to automize the creation of
performance models

28

29

Performance Model: Runtime Prediction

Gmeiner, Köstler et al, Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance

computing clusters, Concurrency and Comp.: Practice and Experience, 2012.

Performance Modeling

● We aim for an automatic derivation of performance models

● Prototype implementation (optimistic):

● Ongoing work: extension to ECM

30

For each function

Estimate performance of each statement and sum up

Kernel: Roofline

Function call: recursive estimation

MPI/CUDA data transfer: open (e.g. latency + BW)

Count FLOPs &
assume vectorization

Div. by clock rate

Count memory accesses &
assume blocking

Div. by memory bandwidth
Max

31

Runtimes 3D Variable Coefficients

CPU dual socket Xeon E5620, 2.4 GHz clock, 4 cores / 8 hw-threads

Microarchitecture Westmere-EP/Gulftown (2010)

L3 Cache 12 MB smart cache

Main Memory 24 GB

Interconnect 2x QPI 5.86 GT/s

Towards Metaprogramming

What is the problem?

Goal: Solve partial differential equation

After discretization one requires an efficient iterative
solver for sparse systems

Multigrid solver has complexity O(N)

33

hh fAu 





onu

infu

0

Ω

∂Ω

34

Metaprogramming

∆𝑢 = 𝑓

Field u,f;

Laplace(u) = f;

=

∆

f

u

∗

Mathematical representation

Code representation

Tree representation

Transforms

Idea: Generate solver automatically

● Linear system of interest as Ax = b, where A is the system

matrix, x is the unknown vector and b is the right hand side

vector.

● Denote the iteration matrix with M and it is represented as

a tree

● The approximated solution in the n+1 iteration is obtained

using the old solution and the iteration matrix using the

relation xn+1 = Mxn.

● A tree in any stage of the framework is a valid expression
based on the defined matrix operations i.e. the nodes of the
tree are selected such that the generated tree is consistent
in terms of dimensions and the generated expressions are
secured to be computable.

35

Genetic Programming Setup

● Terminal Set: It is composed of arbitrary symbolic matrices.
● A, b, diagonal of A, inverse of the diagonal of A, A minus its
diagonal, lower triangular part of A, inverse of the lower triangular
part of A and upper triangular (1st diagonal) part of A.

● Operation Set:
●The operation set consists of addition, subtraction and
multiplication.

● Fitness Evaluation:
● The symbolic matrix corresponding to the genetic expression of an
individual is simplified using the symbolic Math Toolbox of MATLAB
and then evaluated to get the numerical version of the iteration
matrix.
● spectral radius r is used to rank individuals, fitness function f for r <
1 is defined f(r) = 1/(1- r2) and for r > 1 as f(r) = aO + a1 r

36

37

Examples of individuals of iteration matrix

M0 = inv(diag(A)) ∗ 𝑏
*

b𝑖𝑛𝑣(𝑑𝑖𝑎𝑔 𝐴)

Mathematical representation Tree representation

M1 = A ∗ 𝑏 − 𝑑𝑖𝑎𝑔(𝐴)

-

𝐴

diag(A)

b

∗

Apply mutation and cross over

38

1D Example

39

2D Poisson Example

Scalable iteration matrices?!

40

Comparsion of iteration matrices

Optimize pattern for parallelization!

41

Non-sparse and assymetric system

A simple preconditioner based on inv(A)!

Acknowledgements

● Funded by

● Bundesministerium für Bildung und Forschung

● KONWIHR. Bavarian project

● DFG SPP 1648/1 – Software for Exascale computing

● Industry

● Supercomputing centers

http://www.exastencils.org/

59

Thank you for your
Attention!

Questions?

