ERLANGEN REGIONAL COMPUTING CENTER

Components for practical performance engineering in a computing center environment: The ProPE project

Jan Eitzinger

Workshop on Performance Engineering for HPC: Implementation, Processes, and Case Studies at ISC 2017

RIEDRICH-ALEXANDER NIVERSITÄT RLANGEN-NÜRNBERG

DFG Deutsche Forschungsgemeinschaft

Call:

Performance Engineering für wissenschaftliche Software

Partners:

2

Duration: 03/2017 – 02/2020

Coordination: Prof. G. Wellein

Current state

- HPC competence in German HPC centers distributed across country
- Gauss-Allianz is an initiative to integrate and organize TIER 2/3 HPC landscape in Germany
- Multiple local efforts and island projects: bwHPC, KONWIHR, HKHLR, HLRN ...

Our contribution

 Similar targets as sketched in GA Strategiepapier, but focus on Performance-Engineering sub-topic

Integrate with and **built on** already existing efforts and further drive the final goal of an hierarchical and yet integrated German HPC infrastructure.

Major Building Blocks

Dissemination – Increase publicity of project and raise general awareness for performance issues

about your PE problem! High Perfo

We want to talk with you

- **Documentation** Build a central web offering, create content and provide resources to maintain it
- Structured PE-Process Systematic bottleneck centric performance analysis and optimization process

CH-ALEXANDER

Major Building Blocks cont.

 PE Support Infrastructure – Process blueprint for nation-wide aligned support effort

- Application Monitoring and Analysis Automatic profiling and bottleneck analysis for all applications running on a HPC-System
- HPC Curriculum Coordinated nation-wide Workshop and Tutorial program

PE Support Infrastructure

- Multi-Tier distributed support infrastructure which allows to hand-over requests and allocate specialists from other centers
- Create a process for *Performance Projects* allowing to
 - Keep track of and transfer projects between sites and find the right expert for a specific problem
 - Carry out and document efforts and results in a standardized coeherent way
 - Pack an already started project between sites so that experts can pick it up right away

Application Performance Monitoring

Global automatic **application performance monitoring** is essential to improve **efficient** usage of HPC systems

Targets:

- Give user immediate feedback on job runs
- Identify applications with high optimization potential or pathological performance behavior
- Create databases with *performance footprints* and *performance maps* to characterize applications and track HPC usage statistics

Performance Engineering Tasks: Software side

Optimizing software for a specific hardware requires to align several orthogonal targets.

Software side: Reduce algorithmic and processor **work**

Performance Engineering Tasks: Hardware

3

Parallelism: Horizontal dimension

EDRICH-ALEXANDER VERSITÄT ANGEN-NÜRNBERG Distribute work and data for optimal utilization of parallel resources

History of Intel hardware developments

The real picture

LL5

Technologies Driving Performance

Technology	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
ILP																									
SIMD									SSE		SSE2										AVX				
	33				200				1.1							3.8			3.2		2.9		2.7		2.5
Clock	MHz				MHz				GHz	2 GHz						GHz			GHz		GHz		GHz		GHz
Multicore																2C	4C			8C			12C		18C
Memory												3.2 GB/s				6.4 GB/s		12.8 GB/s	25.6 GB/s		42.7 GB/s			60 GB/s	

- ILP **Obstacle**: Not more parallelism available
- Clock Obstacle: Heat dissipation
- Multi- Manycore Obstacle: Getting data to/from cores

- **Flavors of improvements**
- Pure speed increase: Clock
- Transparent solutions
- Explicit solutions

Common strategies

- Parallelism
- Specialisation

What will the future bring?

 System configuration (frequency, placement strategies, COD, prefetching settings, cache coherence settings, memory configuration)

Specialization

- Special purpose instructions
- Special purpose memories
- Special purpose cores
- Configurable execution units

Main questions

- Will this work transparently?
- Who will be responsible?
 - Tool chain
 - Developer
 - User
 - System provider

ERLANGEN REGIONAL COMPUTING CENTER

Thank You.

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG