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North-German Supercomputing Alliance (HLRN)

’ Applications on the HLRN-III
TDS (Berlin, ZIB) - many pure MPI codes

- 16 KNC nodes (until July 2016) =5
- 80 KNLnodes (since July 2016) - Some MPl+OpenMP R 34 @
S () ¥ )

- data warp nodes - some vectorized

“Konrad” (Berlin, ZIB)
- 1872 Xeon nodes
- 44928 cores

Bremerhaven

10 Gbps (243 km linear distance) Brakars

“Gottfried” (Hanover, LUIS)
- 1680 Xeon nodes

-40320 64 SMP , 256/512 GB
Der HLRN-Verbund
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44.928

Intel lvy Bridge, Haswell

Supercomputer at ZIB 10.240

Intel Harpertown,
Nehalem

384

1BM Power4

256
192

DEC Alpha

‘ 3 2013 (HLRN-1II)
rma e i Cray XC30/XC40
?ﬁp‘ 2008 (HLRN-1I) 1,3 PFlops
2002 (HLRN-) -~ f
1997 IBM p690 150 TFlops [peak performance]
Cray T3E 2,5 TF|0pS
\ 1087 1994 486 GFlops 200 kWatt
1984 Crayx-mp  CrayTsD 10 M€
CraylM 471 MFlops >0 GFlops Xeon Phi KNL, 2016

160 MFlops

| Intel Xeon Phi 7290
72 cores (288 threads)
3 TFLOPS

245 Watt

6662 € (6/2017)




Research Center for Many-Core HPC at ZIB

Intel Parallel Compute Center (IPCC)

Applications

*  GLAT (atomistic thermodynamics) Challenges

*  VASP (electronic structure) *  Adapting data structures for enabling SIMD
* BQCD (high-energy physics) *  Vectorising complex code structures

*  HEOM (photo-active processes) *  Transition to hybrid MPI + OpenMP

*  BOsS (time series analysis, phase 2) *  (Offload with Intel LEO vs. OpenMP 4.x)

*  PALM (fluid dynamics, phase 2)

e PHOENIX3D (astrophysics, phase‘

CRANY

THE SUPERCOMPUTER COMPANY
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Intel Xeon Phi (Knights Landing) — Architecture

Knights Landing (KNL): Intel’s 2. Many Integrated Core (MIC) Architecture?)

a
a

self-booting CPU, optionall with integrated OmniPath fabric
64+ core (based on Intel Atom Silvermont architecture, x86-64)
Q 4-way hardware-threading

O 512-bit SIMD vector processing (AVX-512)
On-Chip Multi-Channel (MC) DRAM: 16 GiB
DDR4 main memory: up to 384 GiB




Intel Xeon Phi (Knights Landing) — Architecture

KNL CPU

MCDRAM MCDRAM

] I

up to 36 active tiles
connected via 2D-Mesh-
Interconnect

I 11
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Intel Xeon Phi (Knights Landing) — Architecture

Tile
ljl ljl l!l m 1 MiB L2
PCle 3 DMI

O 2 out-of-order cores

O 2 VPUs per core (AVX-512)
a

a

up to 36 active tiles
connected via 2D-Mesh-
Interconnect

DDRMC S

1 MiB shared L2-Cache
Caching/Home-Agent (CHA)
Q interface to 2D-Mesh-Interconnect
Q distributed tag directory

(MESIF cache coherency protocol)

I 11

MCDRAM MCDRAM

0T 00

MCDRAM MCDRAM
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Intel Xeon Phi (Knights Landing) — Architecture

MCDRAM MCDRAM MCDRAM MCDRAM

IT_11 [T I
PCle3 | DMI

up to 36 active tiles
connected via 2D-Mesh-
Interconnect

DDR MC

I 11

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4 Memory (up to 384 GiB)

Q 2 memory controller

QO 6 DDR4 Channels
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Intel Xeon Phi (Knights Landing) — Architecture

DDR4 Memory (up to 384 GiB)

Q 2 memory controller
MCDRAM MCDRAM MCDRAM MCDRAM D 6 DDR 4 Channels

oM MCDRAM (16 GiB)

O 8 on-chip units, each 2 GiB

up to 36 active tiles
connected via 2D-Mesh-
Interconnect
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Intel Xeon Phi (Knights Landing) — Architecture

Memory Modes:

QO Flat-Mode ¢
MCDRAM MCDRAM MCDRAM MCDRAM D D R 4 an d M CD R A M ;
in same address space %
O Cache-Mode
MCDRAM = direct-
E mapped Cache
s up to 36 active tiles
: connected via 2D-Mesh- fOr DDR4
é Interconnect
Q Hybrid-Mode
8 | 4 GiB MCDRAM
in Cache-Mode, g
Misc remainder in ;
| | Flat-Mode 3
MCDRAM MCDRAM MCDRAM MCDRAM é
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KNL in the Roofline Model (Samuel Williams, 2008)
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KNL in the Roofline Model - adding peak FLOPS
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KNL in the Roofline Model - adding peak DRAM bandwidth
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KNL in the Roofline Model Peak
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KNL in the Roofline Model Peak
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KNL in the Roofline Model Peak
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KNL in the Roofline Model Peak

FLOPS
Memor
[GFLOPS] Bandwid};h
A
4096 peak FLOPS
C/O?\P\ | 1
£ 1024 { YW !
S R :
T 256 © ! !
i) 1 1
S 64 : :
£ : |
£ 161 : :
< ! !
] i |
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(Minimal

Arithmetic Intensity
necessary for

peak FLOPS
(HLRN nodes):

KNL DRAM: 22.7
KNL MCDRAM: 5.3

1 2 4 8 16 32 64 128 256
Arithmetic Intensity

Numbers for Intel Xeon Phi 7250: 2611.2 GFLOPS, 115.2 GiB/s DDR, 490 GB/s MCDRAM; Xeon E5-2680v3: 480 GFLOPS, 68 GiB/s

| Haswell: 7.1

J
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Refining the Ceilings - FLOPS

Realistic peak FLOPS
= Xeon Phi 7250 (HLRN Cray TDS), advertised with 3.05 TFLOPS peak DP
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= Xeon Phi 7250 (HLRN Cray TDS), advertised with 3.05 TFLOPS peak DP
*= 1.4 GHz x 68 core x 8 SIMD x 2 VPUs x 2 FMA = 3046.4 GFLOPS
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Realistic peak FLOPS

= Xeon Phi 7250 (HLRN Cray TDS), advertised with 3.05 TFLOPS peak DP

= 1.4 GHz x 68 core x 8 SIMD x 2 VPUs x 2 FMA = 3046.4 GFLOPS
= AVX frequency is only 1.2 GHz and might throttle down under heavy load
= actual peak: 2611.2 GFLOPS

Add more FLOPS ceilings

= without instruction level parallelism (ILP), i.e. dual VPUs and FMA
= 1.2 GHz x 68 core x 8 SIMD = 652.8 GFLOPS (25 %)

= without ILP, and without SIMD
= 1.2 GHz x 68 core = 84.6 GFLOPS (3.2%)

13 /44



KNL in the Roofline Model
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Case study I: Atmospheric Research with PALM

https://palm.muk.uni-hannover.de


https://palm.muk.uni-hannover.de

The PALM Code

= continuously developed since 1997 by the PALM group (Siegfried Raasch et al.)

Leibniz

Universitat
Hannover
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The PALM Code

= continuously developed since 1997 by the PALM group (Siegfried Raasch et al.)

: b & = o ]n‘ y _ Y
Le|bn|z
Fortran 95/2003. i 0; Z Universitat
tog: 4 | Hannover

hybrid MPI + OpenMP code

= 140 kLOC, 79 modules and 171 source files é" ’.:"
= highly scalable, tested for up to 43,200 cores . (!/
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The PALM Code

= continuously developed since 1997 by the PALM group (Siegfried Raasch et al.)

= Fortran 95/2003. Universitat
Hannover

= hybrid MPI 4+ OpenMP code oy

= 140 kLOC, 79 modules and 171 source files é" ’::’.

= highly scalable, tested for up to 43,200 cores . (!/

= runs on the HLRN supercomputing facilities at Berlin (ZIB) and Hannover (LUIS)
= modernisation target within the Intel Parallel Computing Center at ZIB

https://palm.muk.uni-hannover.de 16 /44


https://palm.muk.uni-hannover.de

PALM Hackathon at ZIB

left to right: Matthias Noack, Florian Wende, Helge Knoop, Matthias Siihring, Tobias Gronemeier; behind the camera: Thomas Steinke



Parallelization Strategy

Awprl OpenMP
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Parallelization Strategy

A7TMPI OpenMP

2D domain decomposition

P
<

X
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Parallelization Strategy

A GpenliP

2D domain decomposition outer of 3 nested loops threaded

2 5 8 ) ) )
= different variants for different

n targets

= e.g. cache optimised with
decomposed inner loop

= no vectorisation

= use of floating point
exceptions prevents
automatic vectorisation
y .
= no explicit SIMD constructs

P
<4

X

https://palm.muk.uni-hannover.de 18 /44
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KNL Optimisation Strategy

get

[ operational
on KNL
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KNL Optimisation Strategy

get define measure
o operational some baseline
on KNL benchmarks on Xeon
- build scripts - small
- job scripts - medium
- bug fixing - large
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Benchmark Systems and Haswell Baseline

HLRN-I1I prod. system, 1872 nodes (Konrad)

= 2 X Intel Xeon E5-2680v3 (Haswell)

= 2 x 12 cores at 2.5 GHz
= 960 GFLOPS per node
= 64 GiB DDR3, 136 GiB/s
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HLRN-III prod. system, 1872 nodes (Konrad) Haswell Results
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Benchmark Systems and Haswell Baseline

HLRN-III prod. system, 1872 nodes (Konrad) Haswell Results
= 2 X Intel Xeon E5-2680v3 (Haswell) nodes | runtime
= 2 x 12 cores at 2.5 GHz small 4] 1313 s
= 960 GFLOPS per node medium 8| 147.6s

HLRN KNL TDS node, 80 nodes
= 1 x Intel Xeon Phi 7250 (KNL)

= 68 cores at 1.4 GHz
= 2611.2 GFLOPS with AVX clock
"3.05 TFLOPS"
= 06 GiB DDR4, 115.2 GiB/s
= 16 GiB MCDRAM, 490 GiB/s

inside’

(inteD i
XEON PHI [
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Benchmark Systems and Haswell Baseline

HLRN-III prod. system, 1872 nodes (Konrad) Haswell Results
= 2 X Intel Xeon E5-2680v3 (Haswell) nodes | runtime
= 2 x 12 cores at 2.5 GHz small 41 1313 s
= 960 GFLOPS per node medium 8| 147.6s

HLRN KNL TDS node, 80 nodes
= 1 x Intel Xeon Phi 7250 (KNL)
= 68 cores at 1.4 GHz
= 2611.2 GFLOPS with AVX clock
"3.05 TFLOPS"
= 06 GiB DDR4, 115.2 GiB/s
= 16 GiB MCDRAM, 490 GiB/s

= Upper bounds for speed-up:

= compute bound: 2.7x
= memory bound: 3.6x (MCDRAM)
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KNL Optimisation Strategy

get define measure
o operational some baseline
on KNL benchmarks on Xeon
- build scripts - small v
- job scripts - medium

- bug fixing - large
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KNL Optimisation Strategy

get define measure
o operational some baseline
on KNL benchmarks on Xeon
- build scripts - small
- job scripts - medium

- bug fixing - large

MCDRAM
and

boot mode
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MCDRAM Usage and Boot Mode

boot flat mode

\
run in

A

y

y

DDR

- problem < 16 GiB

[run in MCDRAI\/I] - upper bound for

A

y

gain from MCDRAM

Ed

[boot cache mode] ,/

A

y

7
¥

- good enough?

run again| = decide about

explicit placement
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MCDRAM Usage and Boot Mode

MCDRAM Usage Comparison

m quad_flat, DDR4
. 140 m quad_flat, MCDRAM

= quad_cache, both
l 120
100

(boot flat mode] é % 141 1.30 125
= 1.41 1.38
4 5 60
run in DDR 40
20
Y - problem < 16 GiB 0 :
[run in MCDRAI\/I] - upper bound for small medium large
gain from MCDRAM
Y A = 25 - 41% gain from MCDRAM
[bOOt cache mode] // = < 3% loss from Cache-Mode
Y - good enough? = no need for explicit placement
run again | = decide about = 2 MiB pages worked best

explicit placement
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KNL Optimisation Strategy

get define measure
[ operational some baseline
on KNL benchmarks on Xeon

- build scripts - small v
- job scripts - medium
- bug fixing - large

MCDRAM

and
boot mode

= quad_cache
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KNL Optimisation Strategy

get define measure
[ operational some baseline
on KNL benchmarks on Xeon

- build scripts - small v
- job scripts - medium
- bug fixing - large

MPI processes
VS.
OpenMP threads

MCDRAM

and
boot mode

= quad_cache
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MPI processes vs. OpenMP threads

Tuning run for optimal per-node config

ranks | 64 | 32 |16 | 8 4 2 1
threads | 1 2 4 8 |16 | 32| 64

small

medium
large

. < 2% off from best . worse

. < 15 % off from best fastest

quad_cache mode 24 /44



MPI processes vs. OpenMP threads

Tuning run for optimal per-node config Conclusion

ks |6a]32[16] 8221 " fastest
ranks = small: 16 ranks x 4 thread

threads | 1 2 | 4|8 16|32 64 = medium: 8 ranks x 8 threads
‘ = large: 32 x 2 threads

small
. = 16 x 4 performs for all setups
medium
| = fastest vs. slowest config: 2.3 x
arge

. < 2% off from best . worse
. < 15% off from best fastest

quad_cache mode 24 /44



MPI processes vs. OpenMP threads

Tuning run for optimal per-node config

ranks | 64 | 32 |16 | 8 4 2

threads | 1 2 4 8 |16 | 32
small
medium

large

. < 2% off from best

quad_cache mode

. < 15% off from best fastest

Conclusion

= fastest
= small: 16 ranks x 4 thread
= medium: 8 ranks x 8 threads
= large: 32 x 2 threads

= 16 x 4 performs for all setups

= fastest vs. slowest config: 2.3 x

= very low impact on speedups
between MCDRAM usage models

= absolute numbers vary largely
= do memory first
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MPI processes vs. OpenMP threads

Tuning run for optimal per-node config

quad_cache mode

ranks | 64 | 32 | 16 4 211
threads | 1 | 2 | 4 16 | 32 | 64
| small

medium

large

. < 2% off from best
. < 15% off from best fastest

Conclusion

= fastest

= small: 16 ranks x 4 thread
= medium: 8 ranks x 8 threads
= large: 32 x 2 threads

= 16 x 4 performs for all setups

= fastest vs. slowest config: 2.3 x

= very low impact on speedups
between MCDRAM usage models

= absolute numbers vary largely
= do memory first

= always check pinning/affinity

24 /44



KNL Optimisation Strategy

get define measure
[ operational some baseline
on KNL benchmarks on Xeon

- build scripts - small v
- job scripts - medium
- bug fixing - large

MPI processes
VS.
OpenMP threads

=16 x 4

MCDRAM

and
boot mode

= quad_cache
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on KNL benchmarks on Xeon

MCDRAM

and
boot mode

= quad_cache

- build scripts - small v
- job scripts - medium
- bug fixing - large (
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VS. optimisation

OpenMP threads workflow

=16 x 4

unoptimised
kernel
identify
hotspots
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kernel
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KNL Optimisation Strategy

operatlonal
on KNL

- build scripts
- job scripts
- bug fixing

MPI processes
VS.
OpenMP threads

=16 x 4

- small
- medium
- large

start

optimisation

workflow

define
some

benchmarks

measure MCDRAM
baseline and

on Xeon boot mode

= quad_cache

unoptimised
kernel
identify
hotspots

optimised
kernel

|\ J

- compiler optimisation reports
- Intel VTune Amplifier XE, Advisor XE
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First Code Changes

Floating point exception-handling

= prevents vectorisation
= fp-model-strict — fp-model-source

= remove exception handling
= add NaN/Inf-tests

= when writing checkpoints

4

no significant auto vectorisation

Y

suboptimal memory layout
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= add NaN/Inf-tests

= when writing checkpoints
=- no significant auto vectorisation

= suboptimal memory layout

Using MKL FFT

= small gain for benchmarks

=- might be significant for larger setups
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First Code Changes

Floating point exception-handling CONTIGUOUS keyword
= prevents vectorisation = from Fortran 2008
= fp-model-strict — fp-model-source = tell the compiler about contiguously
= remove exception handling allocated arrays

= add NaN/Inf-tests

. . Current Results, Intel Compiler 17.0.0
= when writing checkpoints

m HSW, Baseline

T . . 200 m HSW, Current
=- no significant auto vectorisation = KNL, Current

_ 1.001.01,%:96
= suboptimal memory layout

1.1341

runtime [s]

Using MKL FFT

= small gain for benchmarks

= might be significant for larger setups  ©

small medium large
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Cray Specialities

Hardware /Software

= Cray Aries network
= Cray MPI
= Cray Performance Tools

= Cray Compiler
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Cray Specialities

Hardware /Software Cray Compiler
= Cray Aries network = initial KNL support
= Cray MPI = crash with OpenMP
= Cray Performance Tools = 64 MPI ranks per KNL

" Cray Compller Current Results, Intel 17.0.0 vs. Cray Compiler 8.5.3
m HSW, Baseline, Intel '

m HSW, Current, Intel
m KNL, Current, Intel
= KNL, Current, Cray

Rank Reordering

1.001.01.2:90

. L - 150
= instrumented application run -
£

= optimised mapping of MPI £ 100

ranks to cores and nodes 5

= no improvement on KNL

small medium large
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Projected Production Run Performance
= benchmark runs: = 5 min, productions runs: =~ 12 hours

= serial initialisation becomes negligible
= plot speedup based on tiora) — tinit
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Projected Production Run Performance

= benchmark runs: = 5 min, productions runs: =~ 12 hours

= serial initialisation becomes negligible
= plot speedup based on tiora) — tinit
Projected Speedups (without init)

2 m HSW, Baseline
m HSW, Current, Intel
= KNL, Current, Intel
15 145 | = KNL, Current, Cray
£
S 1.001.001-00
8
(%]
0.5
0

small medium large
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PALM - Final Remarks

Bottom Line

= getting started on KNL was easy

= way easier than KNC and offloading
= good initial performance (cache-mode)
= scalar parts hurt

= initialisation

= ...
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PALM - Final Remarks

Bottom Line

getting started on KNL was easy

= way easier than KNC and offloading
good initial performance (cache-mode)
scalar parts hurt

= initialisation

= ...
Cray Fortran compiler up to 16.5 %
faster than Intel on KNL

speedup over dual HSW HLRN node:
= benchmark: up to 1.29x
= production (projected): up to 1.45x%
= even without vectorisation

https://palm.muk.uni-hannover.de
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PALM - Final Remarks

Bottom Line What's next
= getting started on KNL was easy
= way easier than KNC and offloading

= VTune Results:
= increase concurrency

= good initial performance (cache-mode) = reduce L2 misses on KNL

= scalar parts hurt = adapt data layout for SIMD
= initialisation = twice the potential on KNL
= ...

= Cray Fortran compiler up to 16.5 %
faster than Intel on KNL

= speedup over dual HSW HLRN node:
= benchmark: up to 1.29x
= production (projected): up to 1.45x% a I I I
= even without vectorisation e

https://palm.muk.uni-hannover.de 20 /44
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Case study Il: Material Science with VASP
VASP — Vienna Ab-Initio Simulation Package

Plan wave electronic structure code to model atomic scale materials from first
principals: Hp = E¢
widely used in material sciences

historically grown, large MPl-only Fortran code base

different approximations (DFT, hybrid functionals, ...) to tackle the physics
library dependencies: FFTW, BLAS, scaLAPACK, ELPA

Collaboration of:

ZIB contact: Florian Wende (wende@zib.de)
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SIMD Introduction

SIMD - Single Instruction Multiple Data

O Multiple words are processed at once sharing 1 program counter

O SIMD registers become increasingly larger: currently 512 bit with AVX-512
Q Slightly increased logic on the chip, but heavily increased arithmetic throughput
Q Xeon Phi KNL w/ and w/o SIMD: 3 TFLOPS vs. 0.37 TFLOPS
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SIMD Introduction

SIMD - Single Instruction Multiple Data

O Multiple words are processed at once sharing 1 program counter

for (1 = 0; i < N; ++i)
y[i] = log(x[1i]);

time
-«
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SIMD Introduction

SIMD - Single Instruction Multiple Data

O Multiple words are processed at once sharing 1 program counter

for (i =0; 1 < N; ++i) for (1 =0; 1 < N; i += 8)

y[i] = log(x[i]); y[i + @] = log(x[i + @]);
y[i] = vlog(x[i])
y[i + 7] = log(x[i + 7]);
++* R R T
\ 8 times faster o
+++ execution with SIMD

@ ¥
£ Y
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SIMD Introduction

SIMD - Single Instruction Multiple Data
O Multiple words are processed at once sharing 1 program counter
Q Control flow divergences can hurt SIMD performance significantly

for (i = @; 1 < N; ++1) for (i =0; i < N; i += 8)
if (p[i]) y[i] = log(x[i]); if (m—p[i]) y[i] = vlog_mask(y[i], m, x[i]);
else y[i] = exp(x[i]); else y[i] = vexp_mask(y[i], ~m, x[i]);

¢ VR
" e TT T
i

v 4 times faster
‘v execution with SIMD

time
-«
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SIMD Vectorisation in VASP

OpenMP 4.x compiler directives
= portability across compilers
= |ow code invasiveness
= no SIMD intrinsics for Fortran

= combine OpenMP 4.x SIMD with “high-level vectors” (loop chunking)
to increase flexibility and expressiveness
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SIMD Vectorisation in VASP - Example

Non-vectorizable loop split into parts to enable SIMD vectorization

idx = 0;
for (i =0; i < ni; ++i) {
while (“some condition”)
++idx;
d = data[idx];
for (j = @5 J < nj; ++3)
res[j] +=d * (...);

C-version of the Codes
(not optimized)
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SIMD Vectorisation in VASP - Example
Non-vectorizable loop split into parts to enable SIMD vectorization

idx = 0;
for (i =0; i < ni; ++i) {
while (“some condition”)
++idx;
d = data[idx];
foiei%ji 3; 3 : ?J’;TJ) } nj rather small: not a candidate for SIMD vectorization
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SIMD Vectorisation in VASP - Example

Non-vectorizable loop split into parts to enable SIMD vectorization

idx = 0;
for (i =0; i < ni; ++i) {
while (“some condition”)
++idx;
d = data[idx];
for (j = @; j < nj; ++J)
res[j] +=d * (...);

- loop iterations are not independent: idx

38/ 44



SIMD Vectorisation in VASP - Example

Non-vectorizable loop split into parts to enable SIMD vectorization

idx = o: Loop-Chunking, e.g. idx = @:
= 5 _ - )
= CHUNKSTZE=32 for (1 = @; 1 < ni; i += CHUNKSIZE) {

for (i =0; i < ni; ++i) {
while (“some condition’) ii_max = min(CHUNKSIZE, ni - i);

++idx; for (ii = @; ii < ii_max; ++ii) {
d = data[idx]; while (“some condition™)
++idx;

for (j = 0; j < nj; ++3)
res[j] +=d * (...); vidx[ii] = idx;

} }
}...

Compute idx-values in advance to enable SIMD
vectorization afterwards!
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SIMD Vectorisation in VASP - Example

Non-vectorizable loop split into parts to enable SIMD vectorization

idx = 9; idx = 0;
for (i = 0; i < ni; ++i) { for (i = 0; i < ni; i += CHUNKSIZE) {
ii_max = min(CHUNKSIZE, ni - i);

while (“some condition”)
++idx; for (ii = 0; ii < ii_max; ++ii) {
while (“some condition”)

d = data[idx];
for (] =0; j < nj; ++j) ++idx;
res[j] +=d * (...); vidx[ii] = idx;
} }

for (ii = @; ii < ii_max; ++ii)
vd[ii] = data[vidx[ii]];

}
Load data in a separate loop: leave it to the compiler

to vectorize or not

40/ 44



SIMD Vectorisation in VASP - Example

Non-vectorizable loop split into parts to enable SIMD vectorization

idx = 9; idx = 0;
for (i = 0; i < ni; ++i) { for (i = 0; i < ni; i += CHUNKSIZE) {
while (“some condition”) ii_max = min(CHUNKSIZE, ni - i);
++idx; for (ii = 0; ii < ii_max; ++ii) {
d = data[idx]; while (“some condition™)
for (j = 0; j < nj; ++3) ++idx;
res[j] +=d * (...); vidx[ii] = idx;

#pragma omp simd
for (ii = @; ii < ii_max; ++ii)
res[j] += vd[ii] * (...);

} }
for (ii = @; ii < ii_max; ++ii)
vd[ii] = data[vidx[ii]];
for (3 = @; j < nj; ++3j)
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SIMD Vectorisation in VASP - Results

Non-vectorizable loop split into parts to enable SIMD vectorization

Time [s]

GWO subroutine only
35

30
25
20
15

O mh

[S)

M no-SIMD (KNL) W SIMD (KNL)
W no-SIMD (2x Haswell CPU) m SIMD (2x Haswell CPU)

Whole program

further optimization
needed!
Xeon Phi nodes: quadrant mode, all data in MCDRAM
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KNL Summary
Xeon Phi (KNL) has a low entry barrier. ..

= no offloading

= well-known CPU toolchains and workflows
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KNL Summary
Xeon Phi (KNL) has a low entry barrier. ..

no offloading

well-known CPU toolchains and workflows

... but getting performance is challenging

ease of use can be misleading towards quick fixes

code needs to be re-thought and re-written for SIMD

effort pays off with significant speed-up for hot-spots
= Xeon benefits from Xeon Phi optimisations as well

overall application performance suffers from low single-thread performance
=- working on a few hotspots is not sufficient
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KNL Summary
Xeon Phi (KNL) has a low entry barrier. ..

no offloading

well-known CPU toolchains and workflows

... but getting performance is challenging

ease of use can be misleading towards quick fixes

code needs to be re-thought and re-written for SIMD

effort pays off with significant speed-up for hot-spots
= Xeon benefits from Xeon Phi optimisations as well

overall application performance suffers from low single-thread performance
=- working on a few hotspots is not sufficient

With AVX-512 in Xeon and Xeon Phi, SIMD can no longer be neglected.
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Overall Conclusions

A deep knowledge of each hardware platform is necessary to fully exploit its
computing power.
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Overall Conclusions

A deep knowledge of each hardware platform is necessary to fully exploit its
computing power.

Code modernisation for KNL within IPCCs world-wide is just one example of the
effort it takes to keep the huge amount of legacy code in HPC usable.

Within the more and more diverse HPC hardware landscape, larger shares of
HPC centre's budgets will have to be allocated for code modernisation work in
order to utilise future machines efficiently.

- EoP
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