

Performance engineering for Lattice QCD applications

D. Pleiter | Performance Engineering for HPC | 22 June 2017

Outline

- Application area description
- Application performance signatures
- Selected performance results
- Summary and conclusions

Application Area Description

Quantum Chromodynamics

Theory of strong interactions: Quantum Chromodynamics

- Quarks are the constituents of matter which strongly interact exchanging gluons
- Particular phenomena:
 - Confinement
 - Asymptotic freedom (Nobel Prize 2004)

Formulation of QCD on the lattice \rightarrow Lattice QCD

- Discretization of theory enables numerical, ab-initio simulations
- State-of-the-art projects need O(100) TFlop*year

Computational problem

Computation of physical observables (continuum):

$$\langle O \rangle = \int \mathcal{D}\phi \, \mathcal{D}\phi^* \, \mathcal{D}U \, \exp\left[-\phi^* \mathsf{M}[\mathsf{U}]^{-1}\phi - S_G[U]\right]$$

After discretization: Finite, but high-dimensional integral

Problem can be formulated as statistical problem with following work-flow:

 Generate chain of gauge field configurations using Monte-Carlo methods:

$$U_0 \rightarrow U_1 \rightarrow \ldots \rightarrow U_N$$

need for scalable compute resources

- Compute physical observables on the configurations U_i
 - Can be parallelized trivially

Computational kernel

Computational challenge: Solve linear equation

$$M\chi = s$$

- Matrix M huge, but sparse
- Typical size for size for state-of-the-art projects: O(10⁸)

Standard approach: Iterative, Krylov-space based methods

Application Performance Signatures

Application optimised architectures

Goal

 Enable costs efficient solutions enable significant increase of the computational resources available for LQCD research

Example: QPACE

- Based on compute devices with exceptional performance
- Optimised network architectures
- Custom, costs-optimised integration

Application performance signature

Sparse matrix-vector multiplication dominates, e.g. Wilson-Dirac operator:

$$\psi_{x} = \sum_{\mu=0}^{3} \left\{ (1 + \gamma_{\mu}) \boldsymbol{U}_{x,\mu} \boldsymbol{\varphi}_{x+\hat{\mu}} + (1 - \gamma_{\mu}) \boldsymbol{U}_{x-\hat{\mu},\mu}^{+} \boldsymbol{\varphi}_{x-\hat{\mu}} \right\}$$
$$= D[\boldsymbol{U}]_{xy} \boldsymbol{\varphi}_{y}$$

- *U* ... 3 x 3 complex matrix
- Ψ , ϕ ... 3 x 4 complex matrix

Application performance signature (cont.)

Complex arithmetics dominate

Regular control flow

Predictable behaviour

Parallelization based on 1-4d domain decomposition

- Exploitation of different levels of parallelism feasible
- Halo exchange
 - Communication requirements reduce when local lattice volume increases
- Nearest-neighbour communication patterns

Information flow analysis

Any computation requires flow of information between storage devices

E.g., external and on-chip memory

Architectural parameters

- Storage capacity C_x
- Bandwidth or throughput $B_{x \rightarrow y}$

Wilson-Dirac operator

- *I*_{fp} = 1320 Flop / site
- I_{mem} = 1.4 kiByte (SP) / site

Simple modelling ansatz

• $\Delta t_x(I_x) = \lambda + I_x / \beta$

Balanced architecture: *B*_{fp} vs. *B*_{mem}

Naive balance condition $I_{fp} / I_{mem} = B_{fp} / B_{mem}$

• Main kernel: $B_{fp} / B_{mem} = 0.9$ (SP)

Balance condition cannot be fulfilled (anymore) using discrete compute and memory devices

Near-memory computing could change this

Different strategies to improve data locality

- Optimized implementations
 - E.g., optimize for re-use of stencil points
- Algorithms optimized for data locality
 - E.g., SAP-based approaches where sub-blocks
 are processed without communication
 - Minimizes data transport + increases latency toutiance

Digression: device level strong scaling limits

End of Dennard scaling \rightarrow Increase performance = increase of parallelism

- More Flop/cycle
- Need larger problems to feed all pipelines

Example:

- Single-precision Dslash on NVIDIA K40m
- V_{min} = 16⁴ → need at least ~32 sites per FMA pipeline

[G. Koutsou, 2014]

Balanced architecture: C_{mem}

Strong scaling limit defines minimal memory footprint for kernel

- Kernel requires <5 kiByte/site
- $C_{\text{mem}} > V_{\text{min}} * 5 \text{ kByte}$
 - NVIDIA P100: $C_{mem} > 32 N_{FMA} * 5 kiByte = 450 MiByte$

Caveat: Dependence of minimal footprint on algorithm

- Communication avoiding algorithms become inefficient for too small block sizes
- O(10) MiByte per block sufficient

Overall application memory footprint 10-100x larger

- Strongly depends on details of application and the used algorithms
- Application typically not memory capacity limited
- O(100) TiByte for largest lattices

Memory capacity can matter

Case of the FGMRES-DR algorithm

- Need for re-orthogonalisation of vectors
- Need to restart if vectors of previous iteration cannot be stored

nschaft

Network performance

Communication pattern

- Regular nearest neighbour communication
 → favour torus network topology
- Global reduction operations

Information flow analysis d-dimensional torus network

- Assume d-dimensional torus network ($d \le 4$) such that local volume $v = L^{4-d} \left(\frac{L}{N^{1/d}}\right)^d = L^{4-d} I^d$
- Surface to (local) volume ratio r:

$$r = \frac{2d \, L^{4-d} \, I^{d-1}}{v} = 2d \, I^{-1} = 2d \, \frac{N^{1/d}}{L}$$

• For large *N* large *d* slightly more favourable

Machine vs. algorithmic performance

Machine performance

Set of relevant performance numbers which can be measured during execution of a computational task in terms of a hardware related metric

Examples: flops per time unit, port occupation rate

Algorithmic performance

Number of atomic sub-tasks, e.g., matrix-vector multiplications, to solve a particular problem

Example: number of solver iterations

Past LQCD performance improvements both due to improved machine <u>and</u> algorithmic performance

Selected results on state-of-the-art architectures

Intel Knights Landing: Properties

B _{fp} (DP/SP) [Flop/cycle]	~2048 / ~4096
f[GHz]	1.3-1.5
B _{mem} [GByte/s] DDR MCDRAM	~110 >400
C _{mem} [GByte] DDR MCDRAM	96 (typical) 16

Intel Knights Landing: Selected optimisations

Data layout / SIMDsation

- Domain decomposition for parallelisation
- Typical layout: float spinor[nvec][3][4][2][SOA]
 - SOA < 16 requires gather/scatter (for SP)

Maximize data re-use

Cache-blocking and kernel fusion

Memory pre-fetching

 hardware only vs. software assisted hardware vs. software only

KNL: Performance results based on QPhiX

https://github.com/JeffersonLab/qphix

21/26

NVIDIA K80 / P100: Properties

	K80	P100
B _{fp} (DP/SP) [Flop/cycle]	3328 / 9984	3584 / 7168
f [GHz]	0.56	1.3
B _{mem} [GByte/s]	2*240	720
C _{mem} [GByte]	2*12	16

NVIDIA K80 / P100: Optimisation

Reduce data to be loaded

- Exploiting mathematical properties allows to store only truncated data objects
- Reconstruction of objects after load into GPU
 - reconstruct#: Use # floats to store 3x3 complex matrix

Exploit mixed precision

- Modern solvers allow bulk computations to be performed in lower precision without compromising on final precision
- Lower precision may have negative effect on algorithmic performance

K80 / P100: Performance results based on QUDA

[M. Wagner, 2016]

http://lattice.github.com/quda

Summary and Conclusions

25/26

Summary and conclusions

Analysis of application performance signatures established in Lattice QCD community

 Key for application optimisation and design of application optimised HPC infrastructure

Efficient exploitation of current architectures

- Strong-scaling limits per device are becoming an issue
- High-bandwidth memory is critical to balance performance
- Capacity of high-bandwidth memory sufficient

Performance comparison on state-of-the-art extremely parallel compute devices

- About 500 GFlop/s for main kernel on Intel KNL and 1000 GFlop/s on NVIDIA P100
- Performance exceeds naïve estimate due to data reuse/data reduction