Performance engineering for Lattice QCD applications
Outline

- Application area description
- Application performance signatures
- Selected performance results
- Summary and conclusions
Application Area Description
Quantum Chromodynamics

Theory of strong interactions: Quantum Chromodynamics

- Quarks are the constituents of matter which strongly interact exchanging gluons
- Particular phenomena:
 - Confinement
 - Asymptotic freedom (Nobel Prize 2004)

Formulation of QCD on the lattice → Lattice QCD

- Discretization of theory enables numerical, ab-initio simulations
- State-of-the-art projects need O(100) TFlop*year
Computational problem

Computation of physical observables (continuum):

\[\langle O \rangle = \int D\phi D\phi^* DU \exp \left[-\phi^* M[U]^{-1} \phi - S_G[U] \right] \]

- After discretization: Finite, but high-dimensional integral

Problem can be formulated as statistical problem with following work-flow:

- Generate chain of gauge field configurations using Monte-Carlo methods:
 \[U_0 \rightarrow U_1 \rightarrow \ldots \rightarrow U_N \]
 - need for scalable compute resources

- Compute physical observables on the configurations \(U_i \)
 - Can be parallelized trivially

Gauge field generation

Computation observables
Computational kernel

Computational challenge: Solve linear equation

\[M \chi = s \]

- Matrix M huge, but sparse
- Typical size for state-of-the-art projects: \(O(10^8) \)

Standard approach: Iterative, Krylov-space based methods
Application Performance Signatures
Application optimised architectures

Goal

- Enable costs efficient solutions
- Enable significant increase of the computational resources available for LQCD research

Example: QPACE

- Based on compute devices with exceptional performance
- Optimised network architectures
- Custom, costs-optimised integration
Application performance signature

Sparse matrix-vector multiplication dominates, e.g. Wilson-Dirac operator:

\[
\psi_x = \sum_{\mu=0}^{3} \left\{ (1 + \gamma_\mu) U_{x,\mu} \phi_{x+\mu} + (1 - \gamma_\mu) U_{x-\mu,\mu} \phi_{x-\mu} \right\} \\
= D[U]_{xy} \phi_y
\]

- \(U \) ... 3 x 3 complex matrix
- \(\psi, \phi \) ... 3 x 4 complex matrix
Application performance signature (cont.)

Complex arithmetics dominate

Regular control flow

- Predictable behaviour

Parallelization based on 1-4d domain decomposition

- Exploitation of different levels of parallelism feasible
- Halo exchange
 - Communication requirements reduce when local lattice volume increases
- Nearest-neighbour communication patterns
Information flow analysis

Any computation requires flow of information between storage devices

- E.g., external and on-chip memory

Architectural parameters

- Storage capacity C_x
- Bandwidth or throughput $B_{x \rightarrow y}$

Wilson-Dirac operator

- $I_{fp} = 1320$ Flop / site
- $I_{mem} = 1.4$ kiByte (SP) / site

Simple modelling ansatz

- $\Delta t_x(I_x) = \lambda + I_x / \beta$
Balanced architecture: B_{fp} vs. B_{mem}

Naive balance condition $I_{fp} / I_{mem} = B_{fp} / B_{mem}$

- Main kernel: $B_{fp} / B_{mem} = 0.9$ (SP)

Balance condition cannot be fulfilled (anymore) using discrete compute and memory devices

- Near-memory computing could change this

Different strategies to improve data locality

- Optimized implementations
 - E.g., optimize for re-use of stencil points

- Algorithms optimized for data locality
 - E.g., SAP-based approaches where sub-blocks are processed without communication
 - Minimizes data transport + increases latency tolerance
Digression: device level strong scaling limits

End of Dennard scaling →
Increase performance = increase of parallelism

- More Flop/cycle
- Need larger problems to feed all pipelines

Example:
- Single-precision Dslash on NVIDIA K40m
- $V_{\text{min}} = 16^4 \rightarrow$ need at least ~ 32 sites per FMA pipeline

[G. Koutsou, 2014]
Balanced architecture: C_{mem}

Strong scaling limit defines minimal memory footprint for kernel
- Kernel requires <5 kiByte/site
- $C_{\text{mem}} > V_{\text{min}} \times 5 \text{ kByte}$
 - NVIDIA P100: $C_{\text{mem}} > 32 N_{\text{FMA}} \times 5 \text{ kiByte} = 450 \text{ MiByte}$

Caveat: Dependence of minimal footprint on algorithm
- Communication avoiding algorithms become inefficient for too small block sizes
- $O(10)$ MiByte per block sufficient

Overall application memory footprint 10-100x larger
- Strongly depends on details of application and the used algorithms
- Application typically not memory capacity limited
- $O(100)$ TiByte for largest lattices
Memory capacity can matter

Case of the FGMRES-DR algorithm

- Need for re-orthogonalisation of vectors
- Need to restart if vectors of previous iteration cannot be stored

[A. Nobile et al., 2012]
Network performance

Communication pattern
- Regular nearest neighbour communication → favour torus network topology
- Global reduction operations

Information flow analysis d-dimensional torus network
- Assume d-dimensional torus network \((d \leq 4)\) such that local volume
 \[v = L^{4-d} \left(\frac{L}{N^{1/d}} \right)^d = L^{4-d} l^d \]
- Surface to (local) volume ratio \(r\):
 \[r = \frac{2d L^{4-d} l^{d-1}}{v} = 2d l^{-1} = 2d \frac{N^{1/d}}{L} \]
- For large \(N\) large \(d\) slightly more favourable
Machine vs. algorithmic performance

Machine performance
Set of relevant performance numbers which can be measured during execution of a computational task in terms of a hardware related metric
- Examples: flops per time unit, port occupation rate

Algorithmic performance
Number of atomic sub-tasks, e.g., matrix-vector multiplications, to solve a particular problem
- Example: number of solver iterations

Past LQCD performance improvements both due to improved machine and algorithmic performance
Selected results on state-of-the-art architectures
Intel Knights Landing: Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{fp} (DP/SP) [Flop/cycle]</td>
<td>~2048 / ~4096</td>
</tr>
<tr>
<td>f [GHz]</td>
<td>1.3-1.5</td>
</tr>
<tr>
<td>B_{mem} [GByte/s]</td>
<td>~110 / >400</td>
</tr>
<tr>
<td>C_{mem} [GByte]</td>
<td>96 (typical) / 16</td>
</tr>
</tbody>
</table>

Diagram:
- 36 Tiles
- Tiles connected with Mesh
- DDR
- MCDRAM
- Bandwidth [GiB/s]
- Array Size $\log_2 B$
Intel Knights Landing: Selected optimisations

Data layout / SIMDisation
- Domain decomposition for parallelisation
- Typical layout: float spinor[nvec][3][4][2][SOA]
 - SOA < 16 requires gather/scatter (for SP)

Maximize data re-use
- Cache-blocking and kernel fusion

Memory pre-fetching
- hardware only vs. software assisted hardware vs. software only
KNL: Performance results based on QPhiX

[B. Joó et al., 2016]

https://github.com/JeffersonLab/qphix
NVIDIA K80 / P100: Properties

<table>
<thead>
<tr>
<th></th>
<th>K80</th>
<th>P100</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{fp} (DP/SP) [Flop/cycle]</td>
<td>3328 / 9984</td>
<td>3584 / 7168</td>
</tr>
<tr>
<td>f [GHz]</td>
<td>0.56</td>
<td>1.3</td>
</tr>
<tr>
<td>B_{mem} [GByte/s]</td>
<td>2*240</td>
<td>720</td>
</tr>
<tr>
<td>C_{mem} [GByte]</td>
<td>2*12</td>
<td>16</td>
</tr>
</tbody>
</table>
NVIDIA K80 / P100: Optimisation

Reduce data to be loaded

- Exploiting mathematical properties allows to store only truncated data objects
- Reconstruction of objects after load into GPU
 - reconstruct#: Use # floats to store 3x3 complex matrix

Exploit mixed precision

- Modern solvers allow bulk computations to be performed in lower precision without compromising on final precision
- Lower precision may have negative effect on algorithmic performance
K80 / P100: Performance results based on QUDA

http://lattice.github.com/quda
Summary and Conclusions
Summary and conclusions

Analysis of application performance signatures established in Lattice QCD community
- Key for application optimisation and design of application optimised HPC infrastructure

Efficient exploitation of current architectures
- Strong-scaling limits per device are becoming an issue
- High-bandwidth memory is critical to balance performance
- Capacity of high-bandwidth memory sufficient

Performance comparison on state-of-the-art extremely parallel compute devices
- About 500 GFlop/s for main kernel on Intel KNL and 1000 GFlop/s on NVIDIA P100
- Performance exceeds naïve estimate due to data reuse/data reduction