
Efficient and Robust Parallel ILU
Preconditioners for Quantum

Eigenvalue Problems
in ppOpen-HPC/ESSEX-II

Masatoshi Kawai, Akihiro Ida and Kengo Nakajima

Supercomputing Research Division, ITC

SIAM PP 2018, Tokyo, Japan

Mar/8/2018
1

ESSEX-II

Index

2

Introduction

Massively parallelized ILU preconditioner with robustness

Parameter research of the ILU

Conclusion

Motivation

3

Unraveling electrical properties of special materials
by solving generalized eigenvalue problems

Graphene Topological insulator

Source:Nature

Sample of the topological insulator (SmB6)

Several kinds of allotropes

Conductor
Topological

insulator
Source:Telescope magazine

A new material which has special properties
Inside : insulation Outside : conduction

Source : The electronic properties of graphene

electron

electron

Solvers for generalized eigenvalue problems

4

 SLEs are derived from each integral point in the SS or FEAST method.
→ Needed a solver for the SLEs (𝐴𝑧𝑥 = 𝑏)

 Properties of the matrix
𝐴𝑧 ≔ 𝑧𝑖𝐵 − 𝐴 ∶ 𝐵 = 𝐼
 ill conditioned
 Large scale

 Requires of the solver
 Robustness

→Regularized ILU preconditioner
 Massively parallelism

→Hierarchical multi-coloring

Focusing on Sakurai-Sugiura(SS) or FEAST method
→The SS and FEAST methods are obtaining eigenvalues in arbitrary area.

Image of SS or FEAST method

Index

5

Introduction

Massively parallelized ILU preconditioner with robustness

Parameter research of the ILU

Conclusion

For robustness

6

Applying 2 regularization methods for ILU preconditioner
→For robustness and improving convergence

 Blocking technique(Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

 Diagonal transformation(Regularization②)
• Adding constant value 𝛼 to the diagonal elements
• Directly method to make the diagonally dominant matrix

Conditions and target problems for numerical analysis

7

 Krylov subspace method: COCG
𝑏 = 𝐴𝑍𝑥 𝑥𝑇 = 𝑟𝑎𝑛𝑑𝑎𝑚 𝑚𝑖𝑛 = 1, 𝑚𝑎𝑥 = 10
Iteration is stop if the number of iteration reach to DoF

or relative residual fills the requirement
𝑟𝑘

𝑟0
2

≤ 10−7

 Target problems
 128 data sets

 Graphene model
DoF = 1K, 130K, 1.3M, 13M
16 shift values

4 × 16 = 64 data sets
 Topological insulator model

DoF = 1K, 30K, 102K, 1M
16 shift values

4 × 16 = 64 data sets

Shift : Denotes shift values 𝑧 of 𝑧𝐵 − 𝐴 = 𝐴𝑧

Diagonal shifting : Denotes the regularization of preconditioning (proposed method)

Numerical evaluation

8

We solved all target problems by applying two regularization methods

 Diagonal shifting
= (0.0, 1.0)

 The size of block
is 64

For massively parallelization

9

Proposing parallelization method for multi-coloring algorithms

→Needed for solving the large scale SLEs
on massively parallel systems

 Multi-color ordering is used for parallelize ILU preconditioner.
 The effect of ILU preconditioner depend on a result of the

multi-coloring
 Multi-coloring algorithms are not parallelized.

Multi-coloring

Block IC decomposition

do itr = 1, DoF

dot_product

𝑞 = 𝐴−1𝑟(preconditioning)

Matrix Vector Multiplication

enddo

Parallelizing with multi-coloring

Parallelizing easily

Still sequentially

Parallelization of multi-coloring algorithms

10

Proposing hierarchical parallelization for the multi-coloring
algorithms
→For supporting any algorithms.

Existing reordering algorithms
Level-set ordering

• Lexicographic
• Breadth First Search
• Cuthill-Mckee (CM)
• Reverse CM

Independent set
(Multi-color) ordering
• Greedy
• Algebraic Multi-coloring(AMC)
• Block AMC

1. The best algorithm
depends on applications.

2. We need the robustness
for the target problems.

Need a versatile
parallelization method
which is not changing
properties

Parallelization for multi-coloring algorithms
Proposing hierarchical parallelization for multi-coloring
algorithms
→Versatile method
Step1 Step2

Step3 Step4

1, Each process
separates elements
to some parts.

2, The master
process gathers the
separates parts.

3, The master process
creates a new graph.

4, Master process colors
the graph with any
algorithms

5, The master
process scattering
the coloring results.
→ All process gets
colored areas.

6, All process colors
elements parallely
based on the colored
area.

12

Evaluations of the numerical analysis 2/2

Oakleaf-FX 128～4800 nodes
Node specifications

SPARC64TM IXfx 16cores
32GiB

Network specifications
Tofu

The parameter of IC preconditioner
 Block size = 4
 Diagonal shifting = 100.0d0

Coloring algorithm for test
Hierarchical parallelized AMC(10)

Target problem
Graphen32,768x16,384 ≒ 500M DoF

≒ 7G Non-zero elements (Real values)
Needed more than 4.7 GiB memory for coloring!

Source : The electronic properties of graphene

Performance on graphene problem

13

Numbers of iterations is almost same.

0

5000

10000

15000

20000

25000

30000

35000

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

N
u

m
b

er
 o

f
it

er
at

io
n

s

Pe
rf

o
rm

an
ce

 im
p

ro
ve

m
e

n
t

(b
as

ed
 o

n
 1

2
8

 n
o

d
es

)

Number of nodes

Performance

Number of iterations

Performance of the IC preconditioned CG is good.

Index

14

Introduction

Massively parallelized ILU preconditioner with robustness

Parameter research for the ILU

Conclusion

Best parameter of the Block ILU preconditioner

15

The size of block has the biggest impact in the performance of the ILU.

 Value of diagonal shifting
 Size of block
 Number of parallelism

Parameter

 Convergence
 Computational time

per one iteration

Best parameter of the Block ILU preconditioner

16

The size of block has the biggest impact in the performance of the ILU.

 Value of diagonal shifting
 Size of block
 Number of parallelism

Parameter

 Convergence
 Computational time

per one iteration

Convergence
Computational
time per one itr

Diagonal shifting ✔

Size of block ✔ ✔
Number of
parallelism ✔

We have to find the best size of block for each problems.

Strategy to find the best size

17

Image of SS or FEAST method

Do 1, till converge eigenvalues….
Do i = 1, number of shifts

Solve 𝑧𝑖𝐼 − 𝐴 𝑥 = 𝑟
Enddo

Enddo

Brief implementation of the FEAST

We try to find the best size of block in the few iterations.
← It is difficult to find it without any trials.

Number of solving equations
= “Number of shifts” * “Number iterations of outside”

 Measuring the computational time per iteration is easy
There are no differences of non-zero patterns of the 𝑧𝑖𝐼 − 𝐴 among each shift.

 The convergence depends mainly on the zi.
1. Looking for the best size of block with each zi is the easiest.

→ We need many iterations of outside loop.
2. We try to find it with fewer iterations.

Relationships among convergence, block size and shift

18

Relationship between the block size and the convergence is similar
for any 𝑧𝑖 → Shifts values are close on imaginary plane.

On each line, the shift value is different.

Relationships among convergence, block size and shift

19

Relationship between the block size and the convergence is similar
for any 𝑧𝑖 → Shifts values are close on imaginary plane.

On each line, the shift value is different.
Y-Axis is calculated as “computational time with each block size / block size 4”

on each shift.
We can apply improvement ratios of the convergence to any 𝑧𝑖𝐼 − 𝐴 .

→ The convergence ratio with block size 32 is twice as fast as block
size 4 on shift data 𝑧𝑖, it is same on the other shifts

Image of SS or FEAST method

Method to find the best block size.

20

The target range of the previous result is small.
-5e-2 < Real part < 5e-2

3e-3 < Imaginary part < 5e-2

We verified the same relationship on
a larger target range and the other model.

We can find the best size of block with “number of shift data” +
“number of sampling points of block size” times trials.

To find the best size of block,
1. Solving the equations on all shifts with block size 4

→ Measuring the computational time per one iteration and convergence
2. Solving the equations with all block size (4, 8, 16, 32, 64) .
After above steps, we can use the suggested best size of the block on each
iterations.

Image of SS or FEAST method

Method to find the best block size.

21

The target range of the previous result is small.
-5e-2 < Real part < 5e-2

3e-3 < Imaginary part < 5e-2

We verified the same relationship on
a larger target range and the other model.

We can find the best size of block with “number of shift data” +
“number of sampling points of block size” times trials.

To find the best size of block,
1. Solving the equations on all shifts with block size 4

→ Measuring the computational time per one iteration and convergence
2. Solving the equations with all block size (4, 8, 16, 32, 64) .
After above steps, we can use the suggested best size of the block on each
iterations.

I’m sorry, there is no evaluations…. This is a idea.

Index

22

Introduction

Massively parallelized ILU preconditioner with robustness

Parameter research of the ILU

Conclusion

Conclusion

23

 Introducing the parallel ILU preconditioner for eigenvalue
problems of quantum systems
 The regularizations for ILU preconditioner
 The hierarchical parallelization for the multi-coloring

 We discussed to find the best size of block

Future works
 Numerical evaluations
 Checking the trends on more shifts and models

 I checked on 2 models, 4 different DoF, 2 types of shifts
 The effect of matrix 𝐵 and right hand vector 𝑟

Publication of the parallelized ILU

24

git@bitbucket.org:essex/phist.git

We have implemented our ILU preconditioner in the PHIST.

PHIST is developed by ESSEX-II member of SPPEXA project.
By using the PHIST, user can choose mathematical kernel libraries.

Implemented ILU preconditioner only supports symmetric real values.
Complex values will support in the near future.

For the Fortran user, we publish pk-Open-SOL on the ppOpen-HPC web page.
http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/

25

Thank you for your kind attention

ESSEX-II

26

Reedbush-u 32 nodes
Node specifications

Intel Xeon E5-2695v4 x 2socket (1.210 TF)
Broadwell-EP, 2.1GHz 18core

→36 Cores per node
256 GiB (153.6GB/sec)

Network specifications
InfiniBand EDR

Hybrid parallelization
1process-18 threads (1process per socket)

 Coloring algorithm for test
Greedy, AMC, CM-Greedy, CM-AMC

 Iteration is stop if relative residual fills the requirement
𝑟𝑘

𝑟0
2

≤ 10−7

 Target problems
Parabolic_FEM, Thermal2, FLAN1565, Original Poisson model
(Florida matrix collections) 27

Evaluations of the numerical analysis 1/2

Evaluating differences between the sequential and the parallelized multi-
coloring on the convergence and the performance

Comparing the convergence and calculation time

28

Convergence and calculations are similar to sequential coloring.
N

o
rm

al
iz

ed
re

su
lt

b
as

ed
o

n
se

q
u

en
ti

al
co

lo
ri

n
g

1.32(largest)

Y-axis = sequential / parallel of computational time or convergence

Parallelization of multi-coloring algorithms

29

Proposing hierarchical parallelization for the multi-coloring
algorithms
→For supporting any algorithms.

Existing reordering algorithms
Level-set ordering

• Lexicographic
• Breadth First Search
• Cuthill-Mckee (CM)
• Reverse CM

Independent set
(Multi-color) ordering
• Greedy
• Algebraic Multi-coloring(AMC)
• Block AMC

1. The best algorithm
depends on applications.

2. We need the robustness
for the target problems.

Need a versatile
parallelization method
which is not changing
properties

Objective of multi-coloring

30

Coloring all nodes without neighboring same color
→ Parallelizing IC preconditioner based on coloring results

Parallelizing this process with hierarchical approach

31

Hierarchical parallelization (two-level) 1/9

Proc1 Proc2

Proc3 Proc4

Process of a two-level hierarchical parallelization

Initial conditions

Proc1 Proc2

Proc3 Proc4 32

Hierarchical parallelization (two-level) 2/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.

33

Hierarchical parallelization (two-level) 3/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.

Proc1
Gather

34

Hierarchical parallelization (two-level) 4/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.

Proc1
1

1

1

2

2

2

3

4

1

1

1 2

2

2

3

4 35

Hierarchical parallelization (two-level) 5/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.
4.Broadcast coloring result.

Scatter

Proc1 Proc2

Proc3 Proc4 36

Hierarchical parallelization (two-level) 6/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.
4.Broadcast coloring result.
5.Each process colors all nodes with

any algorithm in parallel.

Proc1 Proc2

Proc3 Proc4 37

Hierarchical parallelization (two-level) 7/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.
4.Broadcast coloring result.
5.Each process colors all nodes with

any algorithm in parallel.

Proc1 Proc2

Proc3 Proc4 38

Hierarchical parallelization (two-level) 8/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.
4.Broadcast coloring result.
5.Each process colors all nodes with

any algorithm in parallel.

Proc1 Proc2

Proc3 Proc4 39

Hierarchical parallelization (two-level) 9/9

Process of the two-level hierarchical parallelization

Initial conditions
1.Each process separates calculation

area.
2.Gather the graph structures.
3.Master process colors the nodes

with any method.
4.Broadcast coloring result.
5.Each process colors all nodes with

any algorithm in parallel.

Finish

ILU preconditioner for the target problems

40

IC preconditioning matrix is constructed through the incomplete
version of a LU factorization.

On ill-conditioned problem, ILU factorization increases numerical
errors.

Needed a modification of the ILU preconditioner for more robustness

If the diagonal entries are much smaller than off-diagonal entries……

Factorized part

Unfactorized part

Factorizing part

①

②

① In updating elements of a same row, off-
diagonal(large) values divided by a
diagonal(small) value have large numerical
errors.

② Numerical errors are scattered in the
process of updating unfactorized part.

→On the worst case, a factorization fault occurs

Regularization ①

41

Applying 2 regularization methods for ILU preconditioner
→For robustness and improving convergence

 Blocking technique (Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

1. 2.

Regularization ②

42

Applying 2 regularization methods for ILU preconditioner
→For robustness and improving convergence

 Blocking technique (Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

 Diagonal transformation (Regularization②)
• Adding constant value 𝛼 to the diagonal elements
• Directly method to make the diagonally dominant matrix

 𝐴𝑧 = 𝐴𝑧 + 𝛼𝐼 𝐼 = identity matrix

Applying the ILU factorization to the matrix 𝐴𝑧

Target problems

43

 Graph
 4 data sets : 1k, 10k, 100k, 1M

 2 shift data sets : shift-1, shift-2
 8 shift values in each data

 Topi
 4 data sets : 1k, 10k, 100k, 1M

 2 shift data sets : shift-1, shift-2
 8 shift values in each data

1k 10k 100k 1M

DoF 1,000 10,000 100,000 1,000,000

non-zero 13,000 130,000 1,300,000 13,000,000

1k 10k 100k 1M

DoF 1,000 10,240 102,400 1,024,000

non-zero 12,200 122,880 1,228,800 12,492,800

Total:128 data sets

Shift-2 of each problems make difficult conditions, comparatively

Multi-color ordering for parallelizing BIC preconditioner

44

Proc1

Proc2

Proc3

Proc4

Proc1
Proc2
Proc3
Proc4
Proc1
Proc2
Proc3
Proc4

Color1 Color2 Color3 Sparse nonzero entries

Parallelization method of BIC preconditioner with multi-coloring

Forward and backward
substitution has sequentiality.

By applying the Multi-color
ordering,

Example of 3-colored matrix

Multi-color ordering for parallelizing BIC preconditioner

45

Proc1

Proc2

Proc3

Proc4

Proc1
Proc2
Proc3
Proc4
Proc1
Proc2
Proc3
Proc4

Color1 Color2 Color3 Sparse nonzero entries

Parallelization method of BIC preconditioner with multi-coloring

Forward and backward
substitution has sequentiality.

By applying the Multi-color
ordering,

 No relationship
between same color

 Calculating the
elements with same
color, parallely

The convergence of the multi-
colored ICCG is changed.

Example of 3-colored matrix

IC decomposition with multi-coloring

46

In the program, we calculate the upper triangular matrix
directly from the colored base matrix.

Process0

Process1

Process2

Process3

Upper triangular matrix

Reordering

Process0

Process1

Process2

Process3

AMC

47

ncolor=some value ! Set number of used colors

color(1:n)=0 ! Initialize the array color

icolor=1

do i=1,n

j=1

do while(j <= lnz(i))

if (color(lnzc(i, j))==icolor) then

icolor=mod(icolor, ncolor)+1 !To next color

j=0

endif

j=j+1

enddo

color(i)=icolor ! Assignment of color

icolor=mod(icolor, ncolor)+1 !To next color

enddo

Applying algebraic multi-coloring(AMC) method

 We can control the
number of colors.
→ The convergence ratio
and computation time have
dependency on the number
of colors.

 The number of
unknowns are nearly
even in each colors,
relatively.

→ Load is evenly
distributed.

Ref: T. Iwashita. et al. “Algebraic Multi-Color Ordering Method for
Parallelized ICCG Solver in Unstructured Finite Element Analyses”

Sample code of AMC

Result of hierarchical coloring 1/3

48

Compared the convergence between the sequential method and
the proposed(32 processes) method.

→Showed similar properties.

N
u

m
b

er
 o

f
it

er
at

io
n

s
N

u
m

b
er

 o
f

it
er

at
io

n
s

N
u

m
b

er
 o

f
it

er
at

io
n

s
N

u
m

b
er

 o
f

it
er

at
io

n
s

Result of hierarchical coloring 2/3

49

Unshowed large difference in the calculation times.

Graphs shows the computational time of iterations(32 processes).

C
al

cu
la

ti
o

n
 t

im
e

[s
]

C
al

cu
la

ti
o

n
 t

im
e

[s
]

C
al

cu
la

ti
o

n
 t

im
e

[s
]

C
al

cu
la

ti
o

n
 t

im
e

[s
]

Hierarchical parallelization (Multi-level)

50

We applied the multi-level algorithm for massively parallelism.
→To reduce the time of the gathering, the scattering and

the coloring on the master process

Gathering
new graph

Scattering
coloring
results

Coloring graph parallely on each level

Implementation of hierarchical approach

51

Comm_split

Group_incl
Create comm

For robustness (Previous study)

52

Multi-coloring

Block IC decomposition

do itr = 1, DoF

dot_product

𝑞 = 𝐴−1𝑟(preconditioning)

Matrix Vector Multiplication

enddo

A simplified code of BIC-CG

IC preconditioned CG with regularization methods solve the targets

 Applied regularization methods
 Blocking technique
 Diagonal shifting

For massively parallelization (Objective)

53

Proposing hierarchical parallelization for multi-color algorithms

→Needed for solving the large scale SLEs
on massively parallel systems

Multi-coloring

Block IC decomposition

do itr = 1, DoF

dot_product

𝑞 = 𝐴−1𝑟(preconditioning)

Matrix Vector Multiplication

enddo

For massively parallelization (Objective)

54

Proposing hierarchical parallelization for multi-coloring algorithms

→Needed for solving the large scale SLEs
on massively parallel systems

 Multi-color ordering is used for parallelize BIC-CG method.
 Multi-coloring algorithms are not parallelized.

Multi-coloring

Block IC decomposition

do itr = 1, DoF

dot_product

𝑞 = 𝐴−1𝑟(preconditioning)

Matrix Vector Multiplication

enddo

Parallelizing with multi-coloring

Parallelizing easily

Still sequentially

Index

55

Introduction

Parallelization of BIC-CG

Hierarchical parallelization of multi-coloring algorithms

Numerical experiments

Conclusion

Multi-color ordering for parallelizing BIC preconditioner

56

Parallelizing the BIC preconditioner with multi-coloring

Forward and backward
substitution has sequentiality.

Example of IC decomposed matrix(Only upper)

Sparse nonzero entries

Effect of multi-coloring on convergence

57

The result of multi-coloring influences the convergence
and performance.
→ Multi-coloring changes the order of the matrices.

There are many multi-coloring algorithms.

Decomposed matrix
is dense
→𝐼𝐶(𝐴𝑧) ≈ 𝐶(𝐴𝑍) ??

Same matrix

Zero and Nonzero
pattern is same
completely.
→𝐼𝐶(𝐴𝑧) = 𝐶(𝐴𝑍)

𝐴𝑧

𝐴𝑧

Cholesky
decomposition

𝐶(𝐴𝑧)

Cholesky
decomposition

𝐶(𝐴𝑧)

Index

58

Introduction

Parallelization of BIC-CG

Hierarchical parallelization of multi-coloring algorithms

Numerical experiments

Conclusion

Result of computational time on larger problems.

59

Poisson 512*512*1024

2194

1964

1936
1937

1969

1824

1957

Showed the similar convergence and performance on larger
problems

Index

60

Introduction

Parallelization of BIC-CG

Hierarchical parallelization of multi-coloring algorithms

Numerical experiments

Conclusion

Conclusion

61

Proposing the hierarchical parallelization for multi-coloring algorithms
Versatile parallelization method

Numerical experiments showed the results as we had expected.
There are no large differences between the sequentially and the
parallelized coloring.

→ Properties of the existing coloring algorithms are not changed.
We have solved the large scale problem.

Future works
Needed more performance for massively parallel system

 Communication hide by coloring
Attacking to more large problems derived from quantum systems

62

Performance of the coloring

63

The performance of coloring routine is good.

Poisson 512*512*1024

The time of coloring is less than 2.5% in 128 nodes.

64

Evaluations of the numerical analysis 2/2

Oakleaf-FX 4 ～ 1024 nodes
Node specifications

SPARC64TM IXfx 16cores
32GiB

Network specifications
Tofu

Hybrid parallelization
1process-16 threads (1process per node)

 Coloring algorithm for test
Hierarchical parallelized AMC(10)

 Target problem
Graphen8194×4096 ≒ 33M DoF

Source : The electronic properties of graphene

Performance on graphene problem

65

Number of nodes Number of nodes

Pe
rf

o
rm

an
ce

 e
va

lu
at

io
n

(b
as

ed
 o

n
 4

 n
o

d
es

)

Pe
rf

o
rm

an
ce

 e
va

lu
at

io
n

(b
as

ed
 o

n
 4

 n
o

d
es

)

Performance of the iteration part Performance of the coloring part

Number of nodes

4 8 16 32 64 128 256 512 1024

of iterations 27,812 27,823 27,812 27,823 27,801 27,823 27,823 27,801 27,823

Showed good performance both iteration and coloring part

Regularizations 1/2

66

Needed robust IC preconditioner to solve target SLEs
→Proposing to apply regularizations

Properties of the matrix 𝐴𝑧
• Complex symmetric
• Sparse
• Large DoF
• Small diagonal entries compared with off-diagonal
• Positive and negative diagonal entries
• ill-conditioned: high condition number

Regularizations 2/2

67

Needed robust IC preconditioner to solve target SLEs
→Proposing to apply regularizations

Properties of the matrix 𝐴𝑧
• Complex symmetric
• Sparse
• Large DoF
• Small diagonal entries compared with off-diagonals
• Positive and negative diagonal entries
• ill-conditioned: high condition number

These properties is increasing computational errors in the IC
factorization.
→① By applying regularizations, we try to approximating

𝐴𝑧 by 𝐴𝑧 which is a diagonal dominant matrix.
→② Factorizing 𝐴𝑧

Regularization① 1/2

68

Applying 2 regularization methods for IC preconditioner
→For robustness and improving convergence

 Blocking technique(Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

1.

Regularization① 2/2

69

Applying 2 regularization methods for IC preconditioner
→For robustness and improving convergence

 Blocking technique(Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

2.

Block IC
factorization

Block IC factorized matrix (block size is 2)

Regularization②

70

Applying 2 regularization methods for the IC preconditioner
→For robustness and improving convergence

 Blocking technique(Regularization①)
• Applying the incomplete decomposition to a block matrix

1. More robustness because of including non-small off-diagonals
2. Better convergence ratio because of allowing more fill-ins

 Diagonal transformation(Regularization②)
• Adding constant value 𝛼 to the diagonal elements
• Directly method to make the diagonally dominant matrix

 𝐴𝑧 = 𝐴𝑧 + 𝛼𝐼 𝐼 = identity matrix

* 𝐴𝑧 is a matrix for IC factorization.
Regularization② is only applied for the matrix.

Analysis conditions(previous report)

71

 Iteration method: COCG
 The algorithm is similar to CG method
 For the complex symmetric coefficient matrix

 Preconditioner : IC decomposition with
 Blocking technique
 Diagonal shifting

𝑏 = 𝑟𝑎𝑛𝑑𝑎𝑚 𝑚𝑖𝑛 = 1,𝑚𝑎𝑥 = 10
*both real and imaginary parts

Iteration is stop if the number of iteration reach to DoF

or relative residual fills the requirement
𝑟𝑘

𝑟0
2

≤ 10−7

Target problems

72

 Graphene (Real values)
 4 data sets : 1k, 10k, 100k, 1M

 16 z data sets

 Topological insulator (Complex values)
 4 data sets : 1k, 10k, 100k, 1M

 16 z data sets

1k 10k 100k 1M

DoF 1,000 10,000 100,000 1,000,000

non-zero 13,000 130,000 1,300,000 13,000,000

1k 10k 100k 1M

DoF 1,000 10,240 102,400 1,024,000

non-zero 12,200 122,880 1,228,800 12,492,800

Total:128 data sets

Result

73

Solved all data sets

(0.0,1.0)-BICCG(64) :Diagonal shifting is (0.0, 1.0) Block size is 64

0

20

40

60

80

100

120

140

no-shifts
BIC-COCG(4)

(0.0, 1.0)shifts
BIC-COCG(64)

N
u

m
b

er
 o

f
ca

se
s

Solved Unconverged

Example of eigenvalue

74

Freq:147.0 Hz

Ref:Nastran HP

Block ICCG preconditioner for CG method

75

The ICCG preconditioner with a blocking technique

 More convergence than the general ICCG
→Permitting more fill-ins

 More robustness
→Diagonal matrix including off-diagonal

elements

Hierarchical parallelization (Multi-level)

76

Comm_split

Group_incl
Create comm

We applied the multi-level algorithm

e

77

Parallelization of multi-coloring

78

Proposing hierarchical parallelization
for the multi-coloring algorithms

General coloring algorithms are sequential.

Two approaches for parallelizing the multi-coloring algorithms
 Proposing special parallelized multi-coloring algorithms.

 Better for performance of coloring
 Sometimes, not good for convergence and performance of

BIC-CG

 Proposing versatile parallelization method
→ Hierarchical approach
 Parallelize any coloring algorithms

 Can we parallelize coloring algorithms
without changing properties?

←Investigating with numerical experiments

