
Fast Matrix-Free High-Order Discontinuous Galerkin Kernels:
Performance Optimization and Modeling

Martin Kronbichler

in collaboration with

Niklas Fehn Katharina Kormann Wolfgang A. Wall

Institute for Computational Mechanics
Technical University of Munich

March 8, 2018

Supported by SPPEXA (Software for exascale computing, DFG), project ExaDG
Supported by Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen
(KONWIHR)

M. Kronbichler Application Matrix-free algorithm Performance modeling 1



Outline

Application background

Matrix-free algorithm

Performance modeling

Summary

M. Kronbichler Application Matrix-free algorithm Performance modeling 2



High-order discontinuous Galerkin methods

I Complex fluid dynamics simulations
I Code development based on deal.II library, dealii.org
I Main interest in incompressible flow at high Reynolds

numbers→ solutions smooth, but fine features→ high
resolution

I High-order polynomials within elements
I Fluxes at the element boundaries to weakly enforce

continuity, allow for upwind fluxes similar to finite volumes
I Built-in numerical dissipation, in particular in underresolved

scenarios
I fewer degrees of freedom
I particularly attractive for convection-dominated flows

due to low dispersion errors

Visualization: turbulent flow in channel at Reτ =
590, vortices visualized by lambda2-criterion DNS,
643 mesh with k = 4

Implicit LES, 163 mesh with k = 4

M. Kronbichler Application Matrix-free algorithm Performance modeling 3



3D Taylor–Green vortex problem

Taylor–Green vortex at Re =
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude

t=0

t=10

t=20

Opportunities with tuned implementation: We are one order of magni-
tude faster than all results from Wang et al. (2013), normalized run time

101 102 103 104 105 106 107

10−3

10−2

10−1

100

normalized work units

re
la

tiv
e

er
ro

ri
n

dE
k

dt

Our solver k = 2

Our solver, k = 7

Data by Wang et al. (2013)

Flexi code k = 7

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved
turbulent incompressible flows, arXiv:1802.01439, 2018

Compressible DG code Flexi: https://github.com/flexi-framework/flexi
M. Kronbichler Application Matrix-free algorithm Performance modeling 4



High-order geometry example: Flow over periodic hills

High order usually includes
high-order geometry: mani-
fold descriptions
Support for unstructured
and adaptive meshes
through deal.II and
p4est libraries

Computations with up to
800m DoFs and 9m time
steps

Krank, Kronbichler, Wall, Direct numerical simula-
tion of flow over periodic hills up to Reτ = 10,595,
submitted, 2017

Mesh illustration

M. Kronbichler Application Matrix-free algorithm Performance modeling 5



Implementation: Scales to 147k cores

32 256 2048 16384 131072

10
−2

10
−1

10
0

Number of Cores

T
im

e
 s

te
p
 [
s
]

 

 

111K DoFs per Core, 5th order

convective step

implicit pressure step

local projection step

implicit viscous step

4096 8192 16384 32768 65536 147456

10
−2

10
−1

10
0

10
1

Number of Cores

T
im

e
 s

te
p
 [
s
]

 

 

14.5G Dofs, 5th order

convective step

implicit pressure step

local projection step

implicit viscous step

ideal

Weak and strong scaling on SuperMUC (9 216 nodes with 16 Sandy Bridge cores each)

I Very good scaling to largest size. Algorithmic components:
I Explicit convective step (typical explicit time stepping)
I Solution of pressure Poisson equation (geometric multigrid)
I Projection step + Helmholtz equation: CG solver preconditioned by inverse mass matrix

Krank, Fehn, Wall, Kronbichler, A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel
flow. J. Comput. Phys., 348, 2017

M. Kronbichler Application Matrix-free algorithm Performance modeling 6



Prototype: Discretization of Laplacian with DG-SIP

Symmetric interior penalty discretization of the Laplacian ∇2u:

∑
K∈cells

(∇ϕi ,∇u)K

−
〈

ϕi ,
n · (∇u−+∇u+)

2

〉
∂K

−
〈

n∇ϕi ,
u−+u+

2

〉
∂K

+
〈
ϕi ,τ(u−−u+)

〉
∂K

Notation in face integrals 〈·, ·〉
∂K

I u− is solution inside element K
I u+ is solution on neighbor over

the face
I At boundary, u+ from b.c., e.g.

u+ =−u−

Matrix-vector product v = Au
Entry vi generated by testing with ϕi

Matrix-free algorithm: loop over cells K

I Extract local vector values on cell: uK = PK u
I Compute cell integral (∇ϕi ,∇u) from local

interpolation of uK , i = 1, . . . ,(k +1)d

I Loop over all faces, f = 1, . . . ,2d :

I Load neighboring values u+
K ,f

I Compute face integral contributions and
add to cell integral

I Write contribution back into vector

Kronbichler, Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63 (2012)
Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590 (2017)

M. Kronbichler Application Matrix-free algorithm Performance modeling 7



Data access pattern and initial matrix version

Illustration for k = 3 (4th order) in
2D

Degrees of freedom in mesh

Read access element i, j

Read + write access element i, j

Basic matrix version:

vi,j =A0,0ui,j +A+,0ui+1,j +A−,0ui−1,j

+A0,+ui,j+1 +A0,−ui−1,j−1

Full matrix complexity (k + 1)2d : Very inefficient at
high degree k in 3D

Tensor product of 1D matrices

A0,0 = A0
1D⊗M1D +M1D⊗A0

1D

More efficient evaluation with sum factorization

vi,j =
(
A0

1DUi,j +A+
1DUi+1,j +A−1DUi−1,j

)
MT

1D+

M1D

(
Ui,jA

0,T
1D +Ui,j+1A+,T

1D +Ui,j−1A−,T1D

)
Ui,j column-major matrification of ui,j

Complexity: d(k +1)d+1

M. Kronbichler Application Matrix-free algorithm Performance modeling 8



Data access pattern and initial matrix version

Illustration for k = 3 (4th order) in
2D

Degrees of freedom in mesh

Read access element i, j

Read + write access element i, j

Basic matrix version:

vi,j =A0,0ui,j +A+,0ui+1,j +A−,0ui−1,j

+A0,+ui,j+1 +A0,−ui−1,j−1

Full matrix complexity (k + 1)2d : Very inefficient at
high degree k in 3D

Tensor product of 1D matrices

A0,0 = A0
1D⊗M1D +M1D⊗A0

1D

More efficient evaluation with sum factorization

vi,j =
(
A0

1DUi,j +A+
1DUi+1,j +A−1DUi−1,j

)
MT

1D+

M1D

(
Ui,jA

0,T
1D +Ui,j+1A+,T

1D +Ui,j−1A−,T1D

)
Ui,j column-major matrification of ui,j

Complexity: d(k +1)d+1

M. Kronbichler Application Matrix-free algorithm Performance modeling 8



Initial optimization: Choice of basis

Evaluation of vi,j =
(
A0

1DUi,j +A+
1DUi+1,j +A−1DUi−1,j

)
MT

1D +M1D

(
Ui,jA

0,T
1D +Ui,j+1A+,T

1D +Ui,j−1A−,T1D

)
I Choice 1 (spectral elements): Use basis where M

is diagonal
I Full neighbor pulled in (possible indirect

addressing)
I Interpolation matrix from neighbor with (k +1)d

points
I Total number of tensor product interpolations:

6 in 2D, 9 in 3D
I Choice 2: Basis with two 1D shape functions have

φi(0) 6= 0 and φ ′i (0) 6= 0 (Hermite)
I Coupling matrices cheaper
I Cheaper despite additional mass matrices
I Total number of tensor product interpolations:

4 in 2D, 8 in 3D

Choice 2 gives (much) better performance

Data access Hermite basis k = 3

Data access Hermite-like k = 5

M. Kronbichler Application Matrix-free algorithm Performance modeling 9



Comparison to finite differences: throughput

Evaluation on Cartesian mesh on 2×14 core Intel Broadwell Xeon E5-2690 v4

1 4 8 12 16 20 24 28
0

1

2

3

4
·109

Number of cores

D
oF

s/
s

FD 7-pt, tiling DG precomputed Q3 DG integrate Q3

FD 7-pt, no tiling DG precomputed Q7 DG integrate Q7

Tuned finite difference stencils with tiling together with K.-R. Wichmann, W. A. Wall

Upper performance limit: 4.7
DoFs/s (read input vector from
RAM at 112 GB/s, read + write
output vector)

DG operator evaluation almost
for free because additional
arithmetics on cacheable
data, mostly hidden behind
transfer on otherwise memory-
starved system

M. Kronbichler Application Matrix-free algorithm Performance modeling 10



Evaluation of generic problems

I Final stencil only separable into precomputed 1D matrices A0
1D, A+

1D, A−1D, M1D for
axis-aligned (Cartesian) meshes and constant coefficients

I Want to address numerical integration for general geometries and nonlinear operators
I Sum factorization not in final matrix but for transformation between vector entries and

quadrature points (established by spectral element community)

M. Kronbichler Application Matrix-free algorithm Performance modeling 11



Generic matrix-free implementation with integration

Efficient matrix-free implementation using deal.II1 2 www.dealii.org

General layout for interpolation into quadrature points:

Vector values uK on nodes ∂

∂ξ
uh on quadrature points

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

Dξ UK Sη TK

∂

∂ξ
uh(ξq ,ηq)

∣∣
q points = (Dξ ⊗Sη )uK

Dense matrix-matrix multiply Dξ UK ST
η

Evaluation cost: O((k +1)4) per
element (degree k in 3D)

Naive evaluation: O((k +1)6)

1Kronbichler, Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012)
2Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, arXiv:1711.03590 (2017)

M. Kronbichler Application Matrix-free algorithm Performance modeling 12



Performance characterization with DG operator evaluation

Objective assessment much less mature than in finite difference or lattice Boltzmann
communities

I What is the expected number of arithmetic operations?
I Sum factorization most beneficial on quad/hex elements
I Evaluation without sum factorization is too much work for k ≥ 3 (except triangles)
I Evaluate the geometry on the fly or load precomputed data?
I Which basis and what evaluation techniques appropriate?

I What is the expected memory transfer?
I Some projects separate face integrals into global data structure→ several sweeps through

data for a single operator evaluation
I Some projects split loops in quadrature into global loops

I Must use implementation-independent throughput metric: degrees of freedom per
second (DoFs/s)

I No DG cross-project benchmarking yet (?) corresponding recent CEED initiative for
FEM http://ceed.exascaleproject.org/bps

M. Kronbichler Application Matrix-free algorithm Performance modeling 13



Performance expectations

I Ideal memory access: A single load to source, a single store (or load+store with
read-for-ownership)

I Arithmetics: Around 120–250 operations per DoF
I Balance: 5–10 FLOPs/Byte

Must consider both compute and memory access!

M. Kronbichler Application Matrix-free algorithm Performance modeling 14



Arithmetic optimization 1: SIMD vectorization

Only cell integrals, only compute phase of 3D Laplacian, 2×14 core Intel Broadwell E5-2690
v4, 2.9 GHz (incl AVX-2 turbo)
Forced vectorization within cells, 4-
times blocking in z

x

z

Values in nodes

z

Values in q-points

x
y

Vectorize over several cells

. . .

. . .

. . .
...

...
...

0 4 8 12
16 20 24 28
32 36 40 44
48 52 56 60

1 5 9 13
17 21 25 29
33 37 41 45
49 53 57 61

2 6 10 14
18 22 26 30
34 38 42 46
50 54 58 62

3 7 11 15
19 23 27 31
35 39 43 47
51 55 59 63

0 5 10 15 20 25

109

1010

112 GB/s

hypothetical 2× read + 1× write

Polynomial degree k
D

oF
s/

s

vectorized over cells vectorized within cells auto-vectorization only

Conclusion: Must explicitly vectorize
M. Kronbichler Application Matrix-free algorithm Performance modeling 15



Doesn’t vectorization over cells drown caches?

Yes, but there are outer level caches. . .
Higher degree: more cache access→ more arithmetics → no big impact for k < 20 on
Broadwell (or k < 12 on KNL)

Cache transfer analysis
with the Likwid tool
github.com/RRZE-

HPC/likwid (hardware
performance counters)

Performance can be
improved by tiling within
tensor product, see
Kronbichler & Kormann,
arXiv:1711.03590

0 5 10 15 20 25
0

100

200

300

400

Polynomial degree k

B
yt

es
/D

oF

vectorized over cells plain L1↔ L2 L2↔ L3 L3↔ RAM

vectorized within cell L1↔ L2 L2↔ L3 L3↔ RAM

M. Kronbichler Application Matrix-free algorithm Performance modeling 16



Doesn’t vectorization over cells drown caches?

Yes, but there are outer level caches. . .
Higher degree: more cache access→ more arithmetics → no big impact for k < 20 on
Broadwell (or k < 12 on KNL)

Cache transfer analysis
with the Likwid tool
github.com/RRZE-

HPC/likwid (hardware
performance counters)

Performance can be
improved by tiling within
tensor product, see
Kronbichler & Kormann,
arXiv:1711.03590

0 5 10 15 20 25
0

0.5

1

1.5

Polynomial degree k

B
yt

es
/F

LO
P

vectorized over cells plain L1↔ L2 L2↔ L3 L3↔ RAM

vectorized within cell L1↔ L2 L2↔ L3 L3↔ RAM

M. Kronbichler Application Matrix-free algorithm Performance modeling 16



Arithmetic optimization II: Small matrix-matrix multiply

Test of throughput on 2×14 core Intel Broadwell E5-2690 v4, 2.9 GHz (incl AVX-2 turbo),
1,299 GFLOPs/s arithmetic peak

0 5 10 15 20

109

1010

112 GB/s

Polynomial degree k

D
oF

s/
s

0 5 10 15 20
0

200

400

600

800

1,000

Polynomial degree k

G
FL

O
P

s/
s

templated, even-odd templated, unrolling 4×3 (inspired by libxsmm) templated loop bounds non-templated loops

Favorite method: even-odd decomposition3, compile-time loop bounds
3Kopriva, Implementing spectral methods for partial differential equations, Springer, 2009

M. Kronbichler Application Matrix-free algorithm Performance modeling 17



Cell integrals with vector transfer

Compare 2×14 core Intel Broadwell E5-2690 v4 (at 2.9 GHz) and 64 core Intel Knights
Landing 7210 (at 1.1 GHz), problem size 8M to 56M

0 5 10 15 20

109

1010

112 GB/s

450 GB/s

Polynomial degree k

D
oF

s/
s

2D

0 5 10 15 20

109

1010

112 GB/s

450 GB/s

Polynomial degree k

D
oF

s/
s

3D

2×14 C Broadwell 2×14 C Broadwell compute 64 C KNL 64 C KNL compute

Both KNL and Broadwell reach > 50% of arithmetic peak for instruction mix with 35% FMA,
30% add, 35% multiply

M. Kronbichler Application Matrix-free algorithm Performance modeling 18



Arithmetics including face integrals

I Face integrals constitute
significant portion of
arithmetics

I 80% at k = 1
I 52% at k = 5
I 35% at k = 11

I Involve additional gather
access into neighbors for
vectorization over cells not
displayed here 0 5 10 15 20 25

109

1010

Polynomial degree k

D
oF

s/
s

Laplacian

2D, 2×14 C Broadwell 2D, 64 C KNL
3D, 2×14 C Broadwell 3D, 64 C KNL

M. Kronbichler Application Matrix-free algorithm Performance modeling 19



Throughput of operator evaluation: 3D DG-SIP Laplacian

Two parallelization options:
I OpenMP: direct access to

neighbors in shared memory
I MPI: Must explicitly send

data, pack & unpack and MPI
routines take around 35% of
time at k = 6

I Shared memory model
clearly better

System: 2× 14 core Intel Broad-
well E5-2690 v4, utilize streaming
stores

1 3 5 7 9 11 13 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
·109

Polynomial degree k
D

oF
s/

s

OMP precomputed, Cartesian OMP integration, Cartesian

MPI integration, Cartesian MPI integration coll, Cartesian

MPI integration, curvilinear

M. Kronbichler Application Matrix-free algorithm Performance modeling 20



Performance characterization by roofline

1
8

1
4

1
2

1 2 4 8 16

16

32

64

128

256

512

1024 1
3 FMA, ADD, MUL

L1 read/write

pu
re

rea
d bw

13
0 GB/s

Peak FMA DP 2.9 GHz

STREAM
tria

d bw
11

0 GB/s

no vectorization

FLOP/byte ratio for RAM access

G
FL

O
P

/s
precomputed, OpenMP parallel

integrate, OpenMP parallel

integrate, MPI parallel

integrate curvilinear, MPI parallel

sparse matrix-vector product

Explicit vectorization over several
elements

Actual memory transfer

Measured with likwid tool; transfers
mostly unavoidable global data: Fetch
source and result vectors, pack/unpack
in MPI, fetch Jacobians (curvilinear)

System:
2-socket Intel Xeon E5-2690 v4 (Broad-
well, 2.6 GHz, 2×14 cores)

Arithmetic balance for polynomial degrees k = 3,5,9
M. Kronbichler Application Matrix-free algorithm Performance modeling 21



Comparison to other schemes

Continuous finite elements, DG-SIP, hybridizable discontinuous Galerkin (HDG) representing
efficient sparse matrix-based scheme
Throughput measured using run time against ncells(k +1) “equivalent” DoFs to make different
discretizations comparable4

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

E
qu

iv
al

en
tD

oF
s/

s

3D Cartesian mesh

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

E
qu

iv
al

en
tD

oF
s/

s

3D curved mesh

continuous FEM matrix-free continuous FEM stat. cond. matrix DG-SIP matrix-free HDG trace matrix

4Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, arXiv:1611.03029 (2016)

M. Kronbichler Application Matrix-free algorithm Performance modeling 22



Summary

I Comprehensive approach to tuning – not just FLOPs or GB/s but
I choose mathematical formulation considering both data access and computations
I apply arithmetic optimizations such as even-odd decomposition guided by throughput, not

GFLOPs/s
I vectorization over cells very efficient on Intel machines (but not on GPUs, see Ljungkvist &

Kronbichler, 2017)

I Realization by matrix-free approach with sum factorization on hexahedra is highly
efficient! Reaches 3 billions DoFs/s = finite different performance

I Challenge 1: Memory transfer of geometry
I Challenge 2: BLAS-1 vector operations take large share of time

I More than 60% in conjugate gradient solver with simple precond.
I More than 30% in Chebyshev smoother with multigrid

Need programming model that interleaves global operations as much as possible
Ljungkvist, Kronbichler, Multigrid for matrix-free finite element computations on graphics processors. Technical Report IT-2017-006, Uppsala University, 2017

M. Kronbichler Application Matrix-free algorithm Performance modeling 23


	Application background
	Matrix-free algorithm
	Performance modeling

