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High-order discontinuous Galerkin methods

I Complex fluid dynamics simulations
I Code development based on deal.II library, dealii.org
I Main interest in incompressible flow at high Reynolds

numbers→ solutions smooth, but fine features→ high
resolution

I High-order polynomials within elements
I Fluxes at the element boundaries to weakly enforce

continuity, allow for upwind fluxes similar to finite volumes
I Built-in numerical dissipation, in particular in underresolved

scenarios
I fewer degrees of freedom
I particularly attractive for convection-dominated flows

due to low dispersion errors

Visualization: turbulent flow in channel at Reτ =
590, vortices visualized by lambda2-criterion DNS,
643 mesh with k = 4

Implicit LES, 163 mesh with k = 4

M. Kronbichler Application Matrix-free algorithm Performance modeling 3



3D Taylor–Green vortex problem

Taylor–Green vortex at Re =
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude
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Opportunities with tuned implementation: We are one order of magni-
tude faster than all results from Wang et al. (2013), normalized run time
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Our solver k = 2

Our solver, k = 7

Data by Wang et al. (2013)

Flexi code k = 7

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved
turbulent incompressible flows, arXiv:1802.01439, 2018

Compressible DG code Flexi: https://github.com/flexi-framework/flexi
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High-order geometry example: Flow over periodic hills

High order usually includes
high-order geometry: mani-
fold descriptions
Support for unstructured
and adaptive meshes
through deal.II and
p4est libraries

Computations with up to
800m DoFs and 9m time
steps

Krank, Kronbichler, Wall, Direct numerical simula-
tion of flow over periodic hills up to Reτ = 10,595,
submitted, 2017

Mesh illustration
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Implementation: Scales to 147k cores
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111K DoFs per Core, 5th order
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local projection step
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14.5G Dofs, 5th order

convective step

implicit pressure step

local projection step

implicit viscous step

ideal

Weak and strong scaling on SuperMUC (9 216 nodes with 16 Sandy Bridge cores each)

I Very good scaling to largest size. Algorithmic components:
I Explicit convective step (typical explicit time stepping)
I Solution of pressure Poisson equation (geometric multigrid)
I Projection step + Helmholtz equation: CG solver preconditioned by inverse mass matrix

Krank, Fehn, Wall, Kronbichler, A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel
flow. J. Comput. Phys., 348, 2017
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Prototype: Discretization of Laplacian with DG-SIP

Symmetric interior penalty discretization of the Laplacian ∇2u:

∑
K∈cells

(∇ϕi ,∇u)K

−
〈

ϕi ,
n · (∇u−+∇u+)

2

〉
∂K

−
〈

n∇ϕi ,
u−+u+

2

〉
∂K

+
〈
ϕi ,τ(u−−u+)

〉
∂K

Notation in face integrals 〈·, ·〉
∂K

I u− is solution inside element K
I u+ is solution on neighbor over

the face
I At boundary, u+ from b.c., e.g.

u+ =−u−

Matrix-vector product v = Au
Entry vi generated by testing with ϕi

Matrix-free algorithm: loop over cells K

I Extract local vector values on cell: uK = PK u
I Compute cell integral (∇ϕi ,∇u) from local

interpolation of uK , i = 1, . . . ,(k +1)d

I Loop over all faces, f = 1, . . . ,2d :

I Load neighboring values u+
K ,f

I Compute face integral contributions and
add to cell integral

I Write contribution back into vector

Kronbichler, Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63 (2012)
Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590 (2017)
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Data access pattern and initial matrix version

Illustration for k = 3 (4th order) in
2D

Degrees of freedom in mesh

Read access element i, j

Read + write access element i, j

Basic matrix version:

vi,j =A0,0ui,j +A+,0ui+1,j +A−,0ui−1,j

+A0,+ui,j+1 +A0,−ui−1,j−1

Full matrix complexity (k + 1)2d : Very inefficient at
high degree k in 3D

Tensor product of 1D matrices

A0,0 = A0
1D⊗M1D +M1D⊗A0

1D

More efficient evaluation with sum factorization

vi,j =
(
A0

1DUi,j +A+
1DUi+1,j +A−1DUi−1,j

)
MT

1D+

M1D

(
Ui,jA

0,T
1D +Ui,j+1A+,T

1D +Ui,j−1A−,T1D

)
Ui,j column-major matrification of ui,j

Complexity: d(k +1)d+1
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Initial optimization: Choice of basis

Evaluation of vi,j =
(
A0

1DUi,j +A+
1DUi+1,j +A−1DUi−1,j

)
MT

1D +M1D

(
Ui,jA

0,T
1D +Ui,j+1A+,T

1D +Ui,j−1A−,T1D

)
I Choice 1 (spectral elements): Use basis where M

is diagonal
I Full neighbor pulled in (possible indirect

addressing)
I Interpolation matrix from neighbor with (k +1)d

points
I Total number of tensor product interpolations:

6 in 2D, 9 in 3D
I Choice 2: Basis with two 1D shape functions have

φi(0) 6= 0 and φ ′i (0) 6= 0 (Hermite)
I Coupling matrices cheaper
I Cheaper despite additional mass matrices
I Total number of tensor product interpolations:

4 in 2D, 8 in 3D

Choice 2 gives (much) better performance

Data access Hermite basis k = 3

Data access Hermite-like k = 5
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Comparison to finite differences: throughput

Evaluation on Cartesian mesh on 2×14 core Intel Broadwell Xeon E5-2690 v4
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Number of cores

D
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s/
s

FD 7-pt, tiling DG precomputed Q3 DG integrate Q3

FD 7-pt, no tiling DG precomputed Q7 DG integrate Q7

Tuned finite difference stencils with tiling together with K.-R. Wichmann, W. A. Wall

Upper performance limit: 4.7
DoFs/s (read input vector from
RAM at 112 GB/s, read + write
output vector)

DG operator evaluation almost
for free because additional
arithmetics on cacheable
data, mostly hidden behind
transfer on otherwise memory-
starved system
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Evaluation of generic problems

I Final stencil only separable into precomputed 1D matrices A0
1D, A+

1D, A−1D, M1D for
axis-aligned (Cartesian) meshes and constant coefficients

I Want to address numerical integration for general geometries and nonlinear operators
I Sum factorization not in final matrix but for transformation between vector entries and

quadrature points (established by spectral element community)
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Generic matrix-free implementation with integration

Efficient matrix-free implementation using deal.II1 2 www.dealii.org

General layout for interpolation into quadrature points:

Vector values uK on nodes ∂

∂ξ
uh on quadrature points
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Dξ UK Sη TK

∂

∂ξ
uh(ξq ,ηq)

∣∣
q points = (Dξ ⊗Sη )uK

Dense matrix-matrix multiply Dξ UK ST
η

Evaluation cost: O((k +1)4) per
element (degree k in 3D)

Naive evaluation: O((k +1)6)

1Kronbichler, Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012)
2Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, arXiv:1711.03590 (2017)
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Performance characterization with DG operator evaluation

Objective assessment much less mature than in finite difference or lattice Boltzmann
communities

I What is the expected number of arithmetic operations?
I Sum factorization most beneficial on quad/hex elements
I Evaluation without sum factorization is too much work for k ≥ 3 (except triangles)
I Evaluate the geometry on the fly or load precomputed data?
I Which basis and what evaluation techniques appropriate?

I What is the expected memory transfer?
I Some projects separate face integrals into global data structure→ several sweeps through

data for a single operator evaluation
I Some projects split loops in quadrature into global loops

I Must use implementation-independent throughput metric: degrees of freedom per
second (DoFs/s)

I No DG cross-project benchmarking yet (?) corresponding recent CEED initiative for
FEM http://ceed.exascaleproject.org/bps
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Performance expectations

I Ideal memory access: A single load to source, a single store (or load+store with
read-for-ownership)

I Arithmetics: Around 120–250 operations per DoF
I Balance: 5–10 FLOPs/Byte

Must consider both compute and memory access!
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Arithmetic optimization 1: SIMD vectorization

Only cell integrals, only compute phase of 3D Laplacian, 2×14 core Intel Broadwell E5-2690
v4, 2.9 GHz (incl AVX-2 turbo)
Forced vectorization within cells, 4-
times blocking in z

x

z

Values in nodes

z

Values in q-points

x
y

Vectorize over several cells

. . .

. . .

. . .
...

...
...

0 4 8 12
16 20 24 28
32 36 40 44
48 52 56 60

1 5 9 13
17 21 25 29
33 37 41 45
49 53 57 61

2 6 10 14
18 22 26 30
34 38 42 46
50 54 58 62

3 7 11 15
19 23 27 31
35 39 43 47
51 55 59 63
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Polynomial degree k
D
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s

vectorized over cells vectorized within cells auto-vectorization only

Conclusion: Must explicitly vectorize
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Doesn’t vectorization over cells drown caches?

Yes, but there are outer level caches. . .
Higher degree: more cache access→ more arithmetics → no big impact for k < 20 on
Broadwell (or k < 12 on KNL)

Cache transfer analysis
with the Likwid tool
github.com/RRZE-

HPC/likwid (hardware
performance counters)

Performance can be
improved by tiling within
tensor product, see
Kronbichler & Kormann,
arXiv:1711.03590
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Arithmetic optimization II: Small matrix-matrix multiply

Test of throughput on 2×14 core Intel Broadwell E5-2690 v4, 2.9 GHz (incl AVX-2 turbo),
1,299 GFLOPs/s arithmetic peak

0 5 10 15 20

109

1010

112 GB/s

Polynomial degree k

D
oF

s/
s

0 5 10 15 20
0

200

400

600

800

1,000

Polynomial degree k

G
FL

O
P

s/
s

templated, even-odd templated, unrolling 4×3 (inspired by libxsmm) templated loop bounds non-templated loops

Favorite method: even-odd decomposition3, compile-time loop bounds
3Kopriva, Implementing spectral methods for partial differential equations, Springer, 2009
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Cell integrals with vector transfer

Compare 2×14 core Intel Broadwell E5-2690 v4 (at 2.9 GHz) and 64 core Intel Knights
Landing 7210 (at 1.1 GHz), problem size 8M to 56M
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3D

2×14 C Broadwell 2×14 C Broadwell compute 64 C KNL 64 C KNL compute

Both KNL and Broadwell reach > 50% of arithmetic peak for instruction mix with 35% FMA,
30% add, 35% multiply
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Arithmetics including face integrals

I Face integrals constitute
significant portion of
arithmetics

I 80% at k = 1
I 52% at k = 5
I 35% at k = 11

I Involve additional gather
access into neighbors for
vectorization over cells not
displayed here 0 5 10 15 20 25

109

1010

Polynomial degree k

D
oF

s/
s

Laplacian

2D, 2×14 C Broadwell 2D, 64 C KNL
3D, 2×14 C Broadwell 3D, 64 C KNL
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Throughput of operator evaluation: 3D DG-SIP Laplacian

Two parallelization options:
I OpenMP: direct access to

neighbors in shared memory
I MPI: Must explicitly send

data, pack & unpack and MPI
routines take around 35% of
time at k = 6

I Shared memory model
clearly better

System: 2× 14 core Intel Broad-
well E5-2690 v4, utilize streaming
stores
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Performance characterization by roofline
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sparse matrix-vector product

Explicit vectorization over several
elements

Actual memory transfer

Measured with likwid tool; transfers
mostly unavoidable global data: Fetch
source and result vectors, pack/unpack
in MPI, fetch Jacobians (curvilinear)

System:
2-socket Intel Xeon E5-2690 v4 (Broad-
well, 2.6 GHz, 2×14 cores)

Arithmetic balance for polynomial degrees k = 3,5,9
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Comparison to other schemes

Continuous finite elements, DG-SIP, hybridizable discontinuous Galerkin (HDG) representing
efficient sparse matrix-based scheme
Throughput measured using run time against ncells(k +1) “equivalent” DoFs to make different
discretizations comparable4
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4Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, arXiv:1611.03029 (2016)

M. Kronbichler Application Matrix-free algorithm Performance modeling 22



Summary

I Comprehensive approach to tuning – not just FLOPs or GB/s but
I choose mathematical formulation considering both data access and computations
I apply arithmetic optimizations such as even-odd decomposition guided by throughput, not

GFLOPs/s
I vectorization over cells very efficient on Intel machines (but not on GPUs, see Ljungkvist &

Kronbichler, 2017)

I Realization by matrix-free approach with sum factorization on hexahedra is highly
efficient! Reaches 3 billions DoFs/s = finite different performance

I Challenge 1: Memory transfer of geometry
I Challenge 2: BLAS-1 vector operations take large share of time

I More than 60% in conjugate gradient solver with simple precond.
I More than 30% in Chebyshev smoother with multigrid

Need programming model that interleaves global operations as much as possible
Ljungkvist, Kronbichler, Multigrid for matrix-free finite element computations on graphics processors. Technical Report IT-2017-006, Uppsala University, 2017
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