Fast Matrix-Free High-Order Discontinuous Galerkin Kernels: Performance Optimization and Modeling

Martin Kronbichler
in collaboration with
Niklas Fehn Katharina Kormann Wolfgang A. Wall
Institute for Computational Mechanics
Technical University of Munich

March 8, 2018

Outline

Application background

Matrix-free algorithm

Performance modeling

Summary

- Complex fluid dynamics simulations
- Code development based on deal.II library, dealii.org
- Main interest in incompressible flow at high Reynolds numbers \rightarrow solutions smooth, but fine features \rightarrow high resolution
- High-order polynomials within elements
- Fluxes at the element boundaries to weakly enforce continuity, allow for upwind fluxes similar to finite volumes
Built-in numerical dissipation, in particular in underresolved scenarios
- fewer degrees of freedom
- particularly attractive for convection-dominated flows due to low dispersion errors

Opportunities with tuned implementation: We are one order of magnitude faster than all results from Wang et al. (2013), normalized run time

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013
Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows, arXiv:1802.01439, 2018
Compressible DG code Flexi: https://github.com/flexi-framework/flexi

High order usually includes high-order geometry: manifold descriptions
Support for unstructured and adaptive meshes through deal.II and p4est libraries

Computations with up to 800 m DoFs and 9m time steps

Krank, Kronbichler, Wall, Direct numerical simulation of flow over periodic hills up to $\mathrm{Re}_{\tau}=10,595$, submitted, 2017

Implementation: Scales to 147k cores

Weak and strong scaling on SuperMUC (9216 nodes with 16 Sandy Bridge cores each)

- Very good scaling to largest size. Algorithmic components:
- Explicit convective step (typical explicit time stepping)
- Solution of pressure Poisson equation (geometric multigrid)
- Projection step + Helmholtz equation: CG solver preconditioned by inverse mass matrix

Krank, Fehn, Wall, Kronbichler, A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J. Comput. Phys., 348, 2017

Symmetric interior penalty discretization of the Laplacian $\nabla^{2} u$:

$$
\begin{aligned}
\sum_{K \in \text { cells }} & \left(\nabla \varphi_{i}, \nabla u\right)_{K} \\
& -\left\langle\varphi_{i}, \frac{\mathbf{n} \cdot\left(\nabla u^{-}+\nabla u^{+}\right)}{2}\right\rangle_{\partial K} \\
& -\left\langle\mathbf{n} \nabla \varphi_{i}, \frac{u^{-}+u^{+}}{2}\right\rangle_{\partial K} \\
& +\left\langle\varphi_{i}, \tau\left(u^{-}-u^{+}\right)\right\rangle_{\partial K}
\end{aligned}
$$

Notation in face integrals $\langle\cdot, \cdot\rangle_{\partial K}$

- u^{-}is solution inside element K
- u^{+}is solution on neighbor over the face
- At boundary, u^{+}from b.c., e.g.

$$
u^{+}=-u^{-}
$$

Matrix-vector product $v=A u$

Entry v_{i} generated by testing with φ_{i}

Matrix-free algorithm: loop over cells K

- Extract local vector values on cell: $u_{K}=P_{K} u$
- Compute cell integral $\left(\nabla \varphi_{i}, \nabla u\right)$ from local interpolation of $u_{k}, i=1, \ldots,(k+1)^{d}$
- Loop over all faces, $f=1, \ldots, 2 d$:
- Load neighboring values $u_{k, f}^{+}$
- Compute face integral contributions and add to cell integral
- Write contribution back into vector

Illustration for $k=3$ (4th order) in 2D

- Degrees of freedom in mesh
- Read access element i, j
- Read + write access element i, j

Basic matrix version:

$$
\begin{aligned}
v_{i, j}= & A^{0,0} u_{i, j}+A^{+, 0} u_{i+1, j}+A^{-, 0} u_{i-1, j} \\
& +A^{0,+} u_{i, j+1}+A^{0,-} u_{i-1, j-1}
\end{aligned}
$$

Full matrix complexity $(k+1)^{2 d}$: Very inefficient at high degree k in 3D
Tensor product of 1D matrices

$$
A^{0,0}=A_{1 \mathrm{D}}^{0} \otimes M_{1 \mathrm{D}}+M_{1 \mathrm{D}} \otimes A_{1 \mathrm{D}}^{0}
$$

Illustration for $k=3$ (4th order) in 2D

- Degrees of freedom in mesh
- Read access element i, j
- Read + write access element i, j

Basic matrix version:

$$
\begin{aligned}
v_{i, j}= & A^{0,0} u_{i, j}+A^{+, 0} u_{i+1, j}+A^{-, 0} u_{i-1, j} \\
& +A^{0,+} u_{i, j+1}+A^{0,-} u_{i-1, j-1}
\end{aligned}
$$

Full matrix complexity $(k+1)^{2 d}$: Very inefficient at high degree k in 3D
Tensor product of 1D matrices

$$
A^{0,0}=A_{1 \mathrm{D}}^{0} \otimes M_{1 \mathrm{D}}+M_{1 \mathrm{D}} \otimes A_{1 \mathrm{D}}^{0}
$$

More efficient evaluation with sum factorization

$$
\begin{aligned}
& \qquad v_{i, j}=\left(A_{1 \mathrm{D}}^{0} U_{i, j}+A_{1 \mathrm{D}}^{+} U_{i+1, j}+A_{1 \mathrm{D}}^{-} U_{i-1, j}\right) M_{1 \mathrm{D}}^{\top}+ \\
& M_{1 \mathrm{D}}\left(U_{i, j} A_{1 \mathrm{D}}^{0, T}+U_{i, j+1} A_{1 \mathrm{D}}^{+, \mathrm{T}}+U_{i, j-1} A_{1 \mathrm{D}}^{-, \mathrm{T}}\right) \\
& U_{i, j} \text { column-major matrification of } u_{i, j} \\
& \text { Complexity: } d(k+1)^{d+1}
\end{aligned}
$$

Initial optimization: Choice of basis

Evaluation of $v_{i, j}=\left(A_{1 \mathrm{D}}^{0} U_{i, j}+A_{1 \mathrm{D}}^{+} U_{i+1, j}+A_{1 \mathrm{D}}^{-} U_{i-1, j}\right) M_{1 \mathrm{D}}^{\top}+M_{1 \mathrm{D}}\left(U_{i, j} A_{1 \mathrm{D}}^{0, \mathrm{~T}}+U_{i, j+1} A_{1 \mathrm{D}}^{+, \top}+U_{i, j-1} A_{1 \mathrm{D}}^{-, \mathrm{T}}\right)$

- Choice 1 (spectral elements): Use basis where M is diagonal
- Full neighbor pulled in (possible indirect addressing)
- Interpolation matrix from neighbor with $(k+1)^{d}$ points
- Total number of tensor product interpolations: 6 in 2D, 9 in 3D
- Choice 2: Basis with two 1D shape functions have $\phi_{i}(0) \neq 0$ and $\phi_{i}^{\prime}(0) \neq 0$ (Hermite)
- Coupling matrices cheaper
- Cheaper despite additional mass matrices
- Total number of tensor product interpolations: 4 in 2D, 8 in 3D

Choice 2 gives (much) better performance

Data access Hermite basis $k=3$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Data access Hermite-like $k=5$


```
\circo% ooooo8 %oooo% %oooo% %o%
000.0000000000000000.00
```



```
000 000 0e - 000 000000 000
000 000 0e 00000000000 000
```



```
000:0099% %90.00% OOO OOO OOO
000 000000 000000 000000 000
000 000000 000000 000000 000
```


Evaluation on Cartesian mesh on 2×14 core Intel Broadwell Xeon E5-2690 v4

Upper performance limit: 4.7 DoFs/s (read input vector from RAM at $112 \mathrm{~GB} / \mathrm{s}$, read + write output vector)

DG operator evaluation almost for free because additional arithmetics on cacheable data, mostly hidden behind transfer on otherwise memorystarved system

Tuned finite difference stencils with tiling together with K.-R. Wichmann, W. A. Wall

- Final stencil only separable into precomputed 1D matrices $A_{1 \mathrm{D}}^{0}, A_{1 \mathrm{D}}^{+}, A_{1 \mathrm{D}}^{-}, M_{1 \mathrm{D}}$ for axis-aligned (Cartesian) meshes and constant coefficients
- Want to address numerical integration for general geometries and nonlinear operators
- Sum factorization not in final matrix but for transformation between vector entries and quadrature points (established by spectral element community)

Efficient matrix-free implementation using deal.II ${ }^{12}$ www. dealii.org
General layout for interpolation into quadrature points:

Vector values u_{K} on nodes

$$
\left.\frac{\partial}{\partial \xi} u^{h}\left(\xi_{q}, \eta_{q}\right)\right|_{\text {q-points }}=\left(D_{\xi} \otimes S_{\eta}\right) \mathbf{u}_{K}
$$

Dense matrix-matrix multiply $D_{\xi} \mathbf{U}_{K} S_{\eta}^{\top}$

$\frac{\partial}{\partial \xi} u^{h}$ on quadrature points
Evaluation cost: $\mathscr{O}\left((k+1)^{4}\right)$ per element (degree k in 3D)
Naive evaluation: $\mathscr{O}\left((k+1)^{6}\right)$

[^0]Objective assessment much less mature than in finite difference or lattice Boltzmann communities
-What is the expected number of arithmetic operations?

- Sum factorization most beneficial on quad/hex elements
- Evaluation without sum factorization is too much work for $k \geq 3$ (except triangles)
- Evaluate the geometry on the fly or load precomputed data?
- Which basis and what evaluation techniques appropriate?
- What is the expected memory transfer?
- Some projects separate face integrals into global data structure \rightarrow several sweeps through data for a single operator evaluation
- Some projects split loops in quadrature into global loops
- Must use implementation-independent throughput metric: degrees of freedom per second (DoFs/s)
- No DG cross-project benchmarking yet (?) corresponding recent CEED initiative for FEM http://ceed.exascaleproject.org/bps
- Ideal memory access: A single load to source, a single store (or load+store with read-for-ownership)
- Arithmetics: Around 120-250 operations per DoF
- Balance: 5-10 FLOPs/Byte

Must consider both compute and memory access!

Arithmetic optimization 1: SIMD vectorization

Only cell integrals, only compute phase of 3D Laplacian, 2×14 core Intel Broadwell E5-2690 v4, 2.9 GHz (incl AVX-2 turbo)
Forced vectorization within cells, 4times blocking in z

Vectorize over several cells

-

Conclusion: Must explicitly vectorize

Yes, but there are outer level caches...
Higher degree: more cache access \rightarrow more arithmetics \rightarrow no big impact for $k<20$ on Broadwell (or $k<12$ on KNL)

Cache transfer analysis with the Likwid tool github.com/RRZEHPC/likwid (hardware performance counters)

Performance can be improved by tiling within tensor product, see Kronbichler \& Kormann, arXiv:1711.03590

Doesn't vectorization over cells drown caches?

Yes, but there are outer level caches...
Higher degree: more cache access \rightarrow more arithmetics \rightarrow no big impact for $k<20$ on Broadwell (or $k<12$ on KNL)

Cache transfer analysis with the Likwid tool github.com/RRZEHPC/likwid (hardware performance counters)

Performance can be improved by tiling within tensor product, see Kronbichler \& Kormann, arXiv:1711.03590

$$
\begin{aligned}
& \text { - vectorized over cells plain } \mathrm{L} 1 \leftrightarrow \mathrm{~L} 2-\mathrm{-}-\mathrm{L} 2 \leftrightarrow \mathrm{~L} 3 \cdots \cdots \cdots \mathrm{~L} 3 \leftrightarrow \mathrm{RAM} \\
& \text { - } \quad \text { vectorized within cell } \mathrm{L} 1 \leftrightarrow \mathrm{~L} 2 \quad-\mathrm{-} 2-\mathrm{L} 2 \leftrightarrow \mathrm{~L} 3 \cdots \cdots \cdots \mathrm{~L} 3 \leftrightarrow \mathrm{RAM}
\end{aligned}
$$

Arithmetic optimization II: Small matrix-matrix multiply

Test of throughput on 2×14 core Intel Broadwell E5-2690 v4, 2.9 GHz (incl AVX-2 turbo), $1,299 \mathrm{GFLOPs} / \mathrm{s}$ arithmetic peak


```
\bigcirc- templated, even-odd -\square templated, unrolling 4\times3 (inspired by libxsmm) - templated loop bounds }<\mathrm{ < non-templated loops
```


Favorite method: even-odd decomposition ${ }^{3}$, compile-time loop bounds

[^1]
Cell integrals with vector transfer

Compare 2×14 core Intel Broadwell E5-2690 v4 (at 2.9 GHz) and 64 core Intel Knights Landing 7210 (at 1.1 GHz), problem size 8 M to 56 M

Both KNL and Broadwell reach $>50 \%$ of arithmetic peak for instruction mix with 35% FMA, 30% add, 35% multiply

Arithmetics including face integrals

- Face integrals constitute significant portion of arithmetics
- 80% at $k=1$
- 52% at $k=5$
- 35% at $k=11$
- Involve additional gather access into neighbors for vectorization over cells not displayed here

Two parallelization options:

- OpenMP: direct access to neighbors in shared memory
- MPI: Must explicitly send data, pack \& unpack and MPI routines take around 35% of time at $k=6$
- Shared memory model clearly better

System: 2×14 core Intel Broadwell E5-2690 v4, utilize streaming stores

Performance characterization by roofline

Arithmetic balance for polynomial degrees $k=3,5,9$

Comparison to other schemes

Continuous finite elements, DG-SIP, hybridizable discontinuous Galerkin (HDG) representing efficient sparse matrix-based scheme
Throughput measured using run time against $n_{\text {cells }}(k+1)$ "equivalent" DoFs to make different discretizations comparable ${ }^{4}$

[^2][^3]- Comprehensive approach to tuning - not just FLOPs or GB/s but
- choose mathematical formulation considering both data access and computations
- apply arithmetic optimizations such as even-odd decomposition guided by throughput, not GFLOPs/s
- vectorization over cells very efficient on Intel machines (but not on GPUs, see Ljungkvist \& Kronbichler, 2017)
- Realization by matrix-free approach with sum factorization on hexahedra is highly efficient! Reaches 3 billions DoFs/s = finite different performance
- Challenge 1: Memory transfer of geometry
- Challenge 2: BLAS-1 vector operations take large share of time
- More than 60% in conjugate gradient solver with simple precond.
- More than 30\% in Chebyshev smoother with multigrid

Need programming model that interleaves global operations as much as possible

[^0]: ${ }^{1}$ Kronbichler, Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012)
 ${ }^{2}$ Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, arXiv:1711.03590 (2017)

[^1]: $3_{\text {Kopriva, Implementing spectral methods for partial differential equations, Springer, } 2009}$

[^2]: \longrightarrow continuous FEM matrix-free $__$continuous FEM stat. cond. matrix $-\square$ DG-SIP matrix-free $-*$ HDG trace matrix

[^3]: ${ }^{4}$ Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, arXiv:1611.03029 (2016)

