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Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

» Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.
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Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).
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Performance Models

= Can't think about all these terms all the time for every application...

Computational  _ __ __ ______ o _______

Complexity i #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
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Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.
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Williams et al, "Roofline: An Insightful Visual Performance Model For
Multicore Architectures", CACM, 20009.
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Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.

#FP operations
Cache data movement
DRAM data movement
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Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware
Accelerators", ISCA, 2017.
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Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache ¢
DRAM ©

PCle o

ata movement
ata movement
ata movement

' MPI Send:Wait ratio
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model - one step closer towards a realistic model for parallel

computation”, SPAA, 1995.
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Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
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Culler, et al, "LogP: a practical model of parallel computation”, CACM,
1996.
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Roofline Model:

Arithmetic Intensity and Bandwidth



Performance Models / Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

Out-of-order execution (hardware discovers parallelism to hide latency)
HW stream prefetching (hardware speculatively loads data)
Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime




Roofline Model

= Roofline Model is a throughput-
oriented performance model...
« Tracks rates not times

’\| | COMPUTATIONAL RESEARCH
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CRD PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—
Home » Performance and Algorithms Research » Research » Roofline

Performance and Algorithms Research
° Augmented with Little’s Law ano anee - Roofline Performance Model

ALGORITHMS

RESEARCH Roofiine is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on

— * - Research multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
C O n C u r re n C — ate n C a n WI t (i assess the quality of attained performance by combining locality, bandwidth, and different parallelization paradigms into a single
— performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
limitations.
» » A = Arithmetic Intensity

. I n d e e n d e n t Of I SA a n d a rC h I te Ct u re a I I e S GGGGG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofiine total data movement (byles). A BLAS-1 vector-vector increment ( x(il+=y[i] ) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SSSSS / 24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex

1 oooooo transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

tO C P U S G P U S G O O I e T P U S etC Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would

] ] L) LI ] limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte
A A A
Google:
&
Twitter
Oo(1) O(log(N) ) O(N)
=

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

~

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor "\l.ﬂ
Processing Unit”, |SCA, 2017. BERKELEY LAB



https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [ (GBS
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)

(HFP ops / Peak GFlop/s
Time = max <

_#Bytes / Peak GB/s




(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: | (65
ldealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
Time 1/ Peak GFlop/s
#FP ops MaX~
P _#Bytes | #FP ops / Peak GB/s




(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [ (GBS
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
#FP ops _ . _ Peak GFlop/s
Time
€ _(#FP ops / #Bytes) * Peak GB/s




(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [ (GBS
* |dealized processor/caches DRAM
« Cold start (data in DRAM) (data, GB)

" Peak GFlop/s
GFlop/s = min <

_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM )




(DRAM) Roofline

= Plot Roofline bound using

Arithmetic Intensity as the x-axis I /
= Log-log scale makes it easy to Peak Flop/s :
doodle, extrapolate performance !
along Moore’s Law, etc... é
= Kernels with Al less than machine 5
balance are ultimately DRAM < DRAN-bound | Compute-bound
bound (we’'ll refine this later...) <
Arithmetic Intensity (Flop:':Byte) g




Roofline Example #1

= Typical machine balance is 5-10

A
flops per byte...
40-80 flops per double to exploit compute capability Peak Flop/s
«  Artifact of technology and money "
« Unlikely to improve ?OL
[
ko)
®)
&
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;1<N;i++){
z[i] = x[i] + alpha*Y[i];
} ! >
_ _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
Al = 0.083 flops per byte == Memory bound

~
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Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...

« 7 flops
« 8 memory references (7 reads, 1 store) per point
« Cache can filter all but 1 read and 1 write per point
« Al =0.44 flops per byte == memory bound,
but 5x the flop rate

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1l;j++){
for(i=1;i<dim+1;i++){
new[k]J[j][i] = -6.0*o1d[k 1[j I[i 1]
+ old[k 1[j J[i-1]

old[k J[j 1[i+1]
old[k J[j-1][1 ]
old[k J[j+1][1 ]
old[k-11[3 I[i ]
old[k+1]1[3 1[1 1;

Attainable Flop/s

Peak Flop/s

Gflop/s < Al * DRAM GB/s

7-point
Stencil

RIAD

0.083 0.44
Arithmetic Intensity (Flop:Byte)

-~
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Hierarchical Roofline

» Real processors have multiple levels of
memaory
* Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
« DDR (main memory)
« NVRAM (non-volatile memory)

= Applications can have locality in each
level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

-~
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Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... c%;
DRAM)... = DDR Bound
= DDR AI*BW <
... performance is bound by the < VICDRAM AIBW
minimum

Arithmetic Intensity (Flop:Byte)
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Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth .  Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... c%;
DRAM)... T

. ...performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)
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Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple é
Al's and multiple bounds (flops, L1, L2, ... cié MCDRAM bound
DRAM)... 3 O e
. ...performance is bound by the <
minimum
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Hierarchical Roofline

= Construct superposition of

A
Rooflines...
= Measure a bandwidth Peak Flop/s
= Measure Al for each level of memory 4
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... 5
DRAM)... g
. ...performance is bound by the < Sy bottieneck nulls
minimum performance below
DDR Roofline

™
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Roofline Model:

Modeling In-core Performance Effects



Data, Instruction, Thread-Level Parallelism...

= Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

e W=X*Y+zIisSgcommon
idiom in \neg” algebra

mudtiply and add in a
single pipeline so that it
can complete FMA/cycle

Vector Instructions

« Many HPC codes apply

the same operation to a
vector of elements

* Vendors provide vector

Instructions that apply
the same operation to 2,
4, 8, 16 elements...

X [0:7] *y [0:7] + z [0:7]

 Vector FPUs complete 8

vector operations/cycle

Deep pipelines

The hardware for a FMA
IS substantial.

Breaking a single FMA
up into several smaller
operations and pipelining
them allows vendors to
Increase GHz

Little’'s Law applies...
need FP_Latency *
FP_bandwidth
Independent instructions

-~
U
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Data, Instruction, Thread-Level Parallelism...

= |f every instruction were an ADD (instead

A
of FMA), performance would drop by 2x
on KNL or 4x on Haswell Peak Flop/s
= Similarly, if one failed to vectorize, © Add-only{No FMA)
performance would drop by another 8x 2
on KNL and 4x on Haswell S
. . . S
= Lack of threading (or load imbalance) will g
reduce performance by another 64x on -
Poor vectorization
KN L pulls performance
below DDR
Arithmetic Intens Roofline

-~
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Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell s
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

25% FP (75% int)

12% FP (88% int)

Attainable Flop/s

-~
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Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell Peak Flop/s ' o: Ep

e 4-issue superscalar
 Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

50% FP (50% int)

25% FP (75% int)

Attainable Flop/s
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Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell o toowr
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

50% FP (50% int)

25% FP (75% int)

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)
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Superscalar vs. Iinstruction mix

= Define in-core ceilings based on
instruction mix...

] e_g_ Haswe” Peak Flop/s
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

25% FP (75% int)

Attainable Flop/s

non-FP instructions
can sap instruction
iIssue bandwidth and
pull performance
below Rooflin

Arithmetic Intensity

~
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Divides and other Slow FP instructions

= FP Divides (sqrt, rsqrt, ...) might
support only limited pipelining

= As such, their throughput Is Peak Flop/s
substantially lower than FMA's

= |f divides constitute even if 3% of the
flop’s come from divides,
performance can be cut in half.

» Penalty varies substantially between
architectures and generations (e.g.
IVB, HSW, KNL, ...)

6% VDIVPD

Attainable Flop/s

A divide in the inner
loop can easily cut
peak performance in
half

Arithmetic Intensity
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Roofline Model:

Modeling Cache Effects



Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

Peak Flop/s

Attainable Flop/s

__ #Flop’s
~ Compulsory Misses

Al

™
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Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s

2]
can lower Al g
T8
L
8 o
= =] <
£ No vectc rigaﬂog*
< =T
gz
©
13

Arithmetic Intensity (Flop:Byte)
__ #Flop’s
~ Compulsory Misses + Write Allocates

Al

~
fffffff
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Locality Wallls

= Naively, we can bound Al using

A
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al 8 . 0 FMA
. . m %
= Cache capacity misses can have 2 2
g OY % 21z
a huge penalty E §> No vectcrigaﬂo%f‘
* HE
& =
- AR
Arithmetic Intensity (Flop:Byte)
Al = #Flop's

~ Compulsory Misses + Write Allocates + Capacity Misses

-~
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Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al

= Cache capacity misses can have
a huge penalty

» Compute bound became
memory bound

Attainable Flop/s

__ #Flop’s
~ Compulsory Misses + Write Allocates + Capacity Misses

Al

BERKELEY LAB
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Roofline Model:

General Strategy Guide



General Strategy Guide

= Broadly speaking, there are three X
approaches to improving
performance: Peak Flop/s

Attainable Flop/s




General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable Flop/s




General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Attainable Flop/s




General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

= Minimize data movement :
(I nNncrease A|) Arithmetic Intensity (Flop:Byte)

Attainable Flop/s

Compulsory Al
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Constructing a Roofline Model
requires answering some
questions...



Questions can overwhelm users...

Properties of.-the
target machine

Fundamental
properties of the
- kernel constrained
by hardware

Properties of an
(Benchmarking) application’s execution

(Instrumentation)
(Theory)




~
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We need tools...



Node Characterization?

10000 Cori / KNL

= “Marketing Numbers” can be

deceptive... o e

*  Pin BW vs. real bandwidth

« TurboMode / Underclock for AVX o # o0 —{SUMmMitDev / 4GPUs

« compiler failings on high-Al loops. 5t omues oo
= LBL developed the Empirical

Roofline Toolkit (ERT)...

* Characterize CPU/GPU systems

« Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

~
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https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Instrumentation with Performance Counters?

= Characterizing applications with performance counters can be
problematic...

X Flop Counters can be broken/missing in production processors
X Vectorization/Masking can complicate counting Flop’s

X Counting Loads and Stores doesn’t capture cache reuse while counting
cache misses doesn’t account for prefetchers.

X DRAM counters (Uncore PMU) might be accurate, but...
X are privileged and thus nominally inaccessible in user mode

X may need vendor (e.g. Cray) and center (e.g. NERSC) approved
OS/kernel changes




Forced to Cobble Together Tools...

= Use tools known/observed to work on NERSC’s N
Cori (KNL, HSW)... NERSC [gmessiiiiee

HOME  ABOUT  SCIENCEATNERSC ~ SYSTEMS MUY NEWSGPUBLICATIONS RE&D EVENTS LIVESTATUS  TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intens

MEASURING ARITHMETIC INTENSITY

Arithmetic intensity is a measure of

 Used Intel SDE (Pin binary instrumentation +
emulation) to create software Flop counters

Used Intel VTune performance tool (NERSC/Cray

Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B
calculation. Some modern processors such as Intel's Ivy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not

approved) to access uncore counters eI Sty

i s of is is
critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space If tracing is enabled for
more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.

» Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

» Used by NESAP (NERSC KNL application T

= -global_region will include any threads spawned by a process (needed for OpenMP)

readiness project) to characterize apps on Cori... . P

| $ srun -n 4 -c 6 sde -ivh -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -

* Where:
o -ivbls used to target Edison's Ivy Bridge ISA (use -hsw for Cori's Haswell processors)
« -d specifies to only collect dynamic profile information

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division -
.ﬁ

CRD is LBL's Computational Research Division ”,ml
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) ——

NESAP is NERSC’s KNL application readiness project


http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

2P HSW

KNL

Initial Roofline Analysis of NESAP Codes
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Evaluation of LIKWID

= LIKWID provides easy to use wrappers AR op o 1 et actefiration
for measuring performance counters. .. =5
v" Works on NERSC production systems Am —~Rooline
v Minimal overhead (<1%) éz‘%
v Scalable in distributed memory (MPI-friendly) £
v Fast, high-level characterization é o4
X No detailed timing breakdown or optimization advice @
X Limited by quality of hardware performance counter 16
Implementation (garbage in/garbage out) o
» Useful tool that complements other tools g g ; g 2 ; EZ E E i
s 3
https://github.com/RRZE-HPC/likwid oy
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* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v" Computes FLOPS and Al for each
function

nalytics | Assemiy | & Recommendations | & Why No Vectorkation?
I rarha hlackinn ate
ik &5 B &z @ O Start Survey Analysis | »| & (@

Start Survey Analysis
Start Trip Counts and FLOP Analysis

Start Roofline Analysis .

Start Memory Access Patterns Analysis Threads v]m| Loads and stores -

Start Dependencies Analysis / '
Fean: -

Welcorne | @000 X

(@ | Elapsed time: 8.80s
FILTER: [

HlSummary & Survey &

AN

AV X-512 support that incorporates masks

v Integrated Cache Simulator! | —= - | Comroemsreare
(hierarchical roofline / multiple Al’s) 0l swtt 2 g - R
v Automatically benchmarks target system P T R T oA

( Source |Top Down | Code Analytics | Assermbly |Q Recormmendations | @ Why No Vectorization?

(calculates ceilings)

Address |Line Assembly Total Time Y Self Time

/ - . . - - . |function » 0x4107d0 Block 1: 146029716 © '
0x4107d0 492 hg %rb 0.020: 0.020:
Full integration with existing Advisor SIS e oy

capabilities

Ox4107d4 452

sub $0x210, %rsp

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Technology Preview, not in official product roadmap so far.

~
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Tracking Optimization Behavior

BerkeleyGW: Optimization

Haswell Roofline Optimization Path KNL Roofline Optimization Path
process for Kernel-C (Sigma
2 ~e- Peak * -ePeark (HBM) COdeE):
== - |LP == Peak (DDR)
== - AVX ¢ =o_|LP(HBM)
- BGW ——_ILP (DDR) 1. Refactor (3 Loops for

" " ~e=- AVX (HBM) MPI, OpenMP, Vectors)

o a ~e= - AVX (DDR)

9 O ° —BGW@ODR 2 Add Opean_D _

G = -=-scw Hem) 3. Initial Vectorization (loop
reordering, conditional
removal)

2 4. Cache-Blocking
1 L
0012 5012 5 1 2 510 2 5100 0012 5042 5 1 2 5102 5100 5. Im_prgved Vectorization
Arithmetic Intensity Arithmetic Intensity (Divides)

6. Hyper-threading

BerkeleyGW is a material science application that is dominated by dense linear algebra, including distributed
matrix multiplication, inversion, diagonalization, and contraction and fast fourier transforms (FFT).
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