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Why Use Performance Models or Tools?

 Identify performance bottlenecks

 Motivate software optimizations

 Determine when we’re done optimizing

• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

 Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.



Performance Models

#FP operations

Cache data movement
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Network Gap

Network Latency

 Many different components can contribute to kernel run time.

 Some are characteristics of the application, some are characteristics of 

the machine, and some are both (memory access pattern + caches).



Performance Models

 Can’t think about all these terms all the time for every application…
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Performance Models

 Because there are so many components, performance models often 

conceptualize the system as being dominated by one or more of these 

components.
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Williams et al, "Roofline: An Insightful Visual Performance Model For 

Multicore Architectures", CACM, 2009.



Performance Models

 Because there are so many components, performance models often 

conceptualize the system as being dominated by one or more of these 

components.
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LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware 

Accelerators", ISCA, 2017.



Performance Models

 Because there are so many components, performance models often 

conceptualize the system as being dominated by one or more of these 

components.
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Alexandrov, et al, "LogGP: incorporating long messages into the LogP

model - one step closer towards a realistic model for parallel 

computation", SPAA, 1995.



Performance Models

 Because there are so many components, performance models often 

conceptualize the system as being dominated by one or more of these 

components.
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LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 

1996.
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Roofline Model:
Arithmetic Intensity and Bandwidth



Performance Models / Simulators

 Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

 The last two decades saw a number of latency-hiding techniques…

• Out-of-order execution (hardware discovers parallelism to hide latency)

• HW stream prefetching (hardware speculatively loads data)

• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

 Effective latency hiding has resulted in a shift from a latency-limited 

computing regime to a throughput-limited computing regime



Roofline Model

 Roofline Model is a throughput-

oriented performance model…

• Tracks rates not times

• Augmented with Little’s Law

(concurrency = latency*bandwidth) 

• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 

Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


(DRAM) Roofline

 One could hope to always attain 

peak performance (Flop/s)

 However, finite locality (reuse) and 

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s
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(DRAM) Roofline

 One could hope to always attain 

peak performance (Flop/s)

 However, finite locality (reuse) and 

bandwidth limit performance.
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(DRAM) Roofline

 One could hope to always attain 

peak performance (Flop/s)

 However, finite locality (reuse) and 

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s

Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline

 Plot Roofline bound using 

Arithmetic Intensity as the x-axis

 Log-log scale makes it easy to 

doodle, extrapolate performance 

along Moore’s Law, etc…

 Kernels with AI less than machine 

balance are ultimately DRAM 

bound (we’ll refine this later…)
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Roofline Example #1

 Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability

• Artifact of technology and money

• Unlikely to improve

 Consider STREAM Triad…

• 2 flops per iteration

• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

• AI = 0.083 flops per byte == Memory bound
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TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak Flop/s



Roofline Example #2

 Conversely, 7-point constant 

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate
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Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)

0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}



Hierarchical Roofline

 Real processors have multiple levels of 

memory

• Registers

• L1, L2, L3 cache

• MCDRAM/HBM (KNL/GPU device memory)

• DDR (main memory)

• NVRAM (non-volatile memory)

 Applications can have locality in each 

level

 Unique data movements imply unique AI’s

 Moreover, each level will have a unique 

bandwidth



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline

 Construct superposition of 

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the 

minimum
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Hierarchical Roofline

 Construct superposition of 
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 Measure a bandwidth
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MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 
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Hierarchical Roofline

 Construct superposition of 

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the 

minimum

Peak Flop/s
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MCDRAM 

bottleneck pulls 

performance below 
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Roofline Model:
Modeling In-core Performance Effects



Data, Instruction, Thread-Level Parallelism…

 Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

• w = x*y + z is a common 

idiom in linear algebra

• Rather than having 

separate multiple and 

add instructions, 

processors can use a 

fused multiply add (FMA)

• The FPU chains the 

multiply and add in a 

single pipeline so that it 

can complete FMA/cycle

Vector Instructions

• Many HPC codes apply 

the same operation to a 

vector of elements

• Vendors provide vector 

instructions that apply 

the same operation to 2, 

4, 8, 16 elements…

x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8 

vector operations/cycle

Deep pipelines

• The hardware for a FMA 

is substantial.  

• Breaking a single FMA 

up into several smaller 

operations and pipelining 

them allows vendors to 

increase GHz

• Little’s Law applies… 

need FP_Latency * 

FP_bandwidth

independent instructions

!



Data, Instruction, Thread-Level Parallelism…

 If every instruction were an ADD (instead 

of FMA), performance would drop by 2x 

on KNL or 4x on Haswell 

 Similarly, if one failed to vectorize, 

performance would drop by another 8x 

on KNL and 4x on Haswell

 Lack of threading (or load imbalance) will 

reduce performance by another 64x on 

KNL.
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No vectorization
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Superscalar vs. Instruction mix

 Define in-core ceilings based on 

instruction mix…
Peak Flop/s

25% FP (75% int)
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12% FP (88% int)

≥50% FP e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix

 Define in-core ceilings based on 

instruction mix…
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• 2 FP data paths

• Requires 100% of the instructions to be 

FP to get peak performance



Superscalar vs. instruction mix
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Superscalar vs. instruction mix

 Define in-core ceilings based on 

instruction mix…
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 e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 

to get peak performance

 e.g. KNL

• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 

FP to get peak performance

non-FP instructions 

can sap instruction 

issue bandwidth and 

pull performance 

below Roofline



Divides and other Slow FP instructions

 FP Divides (sqrt, rsqrt, …) might 

support only limited pipelining

 As such, their throughput is 

substantially lower than FMA’s

 If divides constitute even if 3% of the 

flop’s come from divides, 

performance can be cut in half.

 Penalty varies substantially between 

architectures and generations (e.g. 

IVB, HSW, KNL, …)
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Roofline Model:
Modeling Cache Effects



Locality Walls

 Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls

 Naively, we can bound AI using 

only compulsory cache misses

 However, write allocate caches 

can lower AI
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Locality Walls

 Naively, we can bound AI using 

only compulsory cache misses

 However, write allocate caches 

can lower AI

 Cache capacity misses can have 

a huge penalty
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Locality Walls

 Naively, we can bound AI using 

only compulsory cache misses

 However, write allocate caches 

can lower AI

 Cache capacity misses can have 

a huge penalty

 Compute bound became 

memory bound
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Roofline Model:
General Strategy Guide



General Strategy Guide

 Broadly speaking, there are three 

approaches to improving 

performance: Peak Flop/s
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General Strategy Guide

 Broadly speaking, there are three 

approaches to improving 

performance:

 Maximize in-core performance 

(e.g. get compiler to vectorize)
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General Strategy Guide

 Broadly speaking, there are three 

approaches to improving 

performance:

 Maximize in-core performance 

(e.g. get compiler to vectorize)

 Maximize memory bandwidth 

(e.g. NUMA-aware allocation)
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General Strategy Guide

 Broadly speaking, there are three 

approaches to improving 

performance:

 Maximize in-core performance 

(e.g. get compiler to vectorize)

 Maximize memory bandwidth 

(e.g. NUMA-aware allocation)

 Minimize data movement 

(increase AI)
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Constructing a Roofline Model 

requires answering some 

questions…



Questions can overwhelm users…

?
What is my 

machine’s 

peak flop/s?

?
What is my 

machine’s 

DDR GB/s?

L2 GB/s?

?
How much 

data did my 

kernel actually 

move?

?
What is my kernel’s 

compulsory AI?

(communication lower 

bounds)

?
How many 

flop’s did my 

kernel actually 

do?

?
How important is 

vectorization or 

FMA on my 

machine?

?Did my kernel 

vectorize?

?
Can my kernel 

ever be 

vectorized??How much did 

that divide 

hurt?

Properties of the 

target machine

(Benchmarking)

Properties of an 

application’s execution

(Instrumentation)

Fundamental 

properties of the 

kernel constrained 

by hardware

(Theory)



We need tools…



Node Characterization?

 “Marketing Numbers” can be 

deceptive…

• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

 LBL developed the Empirical 

Roofline Toolkit (ERT)…

• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

Cori / KNL

SummitDev / 4GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Instrumentation with Performance Counters?

 Characterizing applications with performance counters can be 

problematic…

x Flop Counters can be broken/missing in production processors

x Vectorization/Masking can complicate counting Flop’s

x Counting Loads and Stores doesn’t capture cache reuse while counting 

cache misses doesn’t account for prefetchers.

x DRAM counters (Uncore PMU) might be accurate, but…

x are privileged and thus nominally inaccessible in user mode

x may need vendor (e.g. Cray) and center (e.g. NERSC) approved 

OS/kernel changes



Forced to Cobble Together Tools…

 Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…

• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters

• Used Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters

 Accurate measurement of Flop’s (HSW) and 

DRAM data movement (HSW and KNL)

 Used by NESAP (NERSC KNL application 

readiness project) to characterize apps on Cori…

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division

CRD is LBL’s Computational Research Division

NESAP is NERSC’s KNL application readiness project

LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Initial Roofline Analysis of NESAP Codes
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Evaluation of LIKWID

 LIKWID provides easy to use wrappers 

for measuring performance counters…
 Works on NERSC production systems

 Minimal overhead (<1%)

 Scalable in distributed memory (MPI-friendly)

 Fast, high-level characterization

x No detailed timing breakdown or optimization advice

x Limited by quality of hardware performance counter 

implementation (garbage in/garbage out)

 Useful tool that complements other tools
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AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)
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https://github.com/RRZE-HPC/likwid

https://github.com/RRZE-HPC/likwid


Intel Advisor

 Includes Roofline Automation…

 Automatically instruments applications

(one dot per loop nest/function)

 Computes FLOPS and AI for each 

function 

 AVX-512 support that incorporates masks

 Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)

 Automatically benchmarks target system 

(calculates ceilings)

 Full integration with existing Advisor 

capabilities

Memory-bound, invest into 

cache blocking etc

Compute bound: invest 

into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017


Tracking Optimization Behavior

BerkeleyGW: Optimization 

process for Kernel-C (Sigma 

code):

1. Refactor (3 Loops for 

MPI, OpenMP, Vectors)

2. Add OpenMP

3. Initial Vectorization (loop 

reordering, conditional 

removal)

4. Cache-Blocking

5. Improved Vectorization 

(Divides)

6. Hyper-threading

BerkeleyGW is a material science application that is dominated by dense linear algebra, including distributed 

matrix multiplication, inversion, diagonalization, and contraction and fast fourier transforms (FFT). 



 This material is based upon work supported by the Advanced Scientific Computing Research Program

in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

 This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

 This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-

05CH11231.

 Special Thanks to:

• Zakhar Matveev, Intel Corporation

• Roman Belenov, Intel Corporation

Acknowledgements


