
Roofline: A Throughput

Oriented Performance Model
Lenny Oliker

Jack Deslippe, Tuomas Koskela, Samuel Williams
Lawrence Berkeley National Laboratory, USA

Roman Belenov, Zakhar Matveev, Philippe Thierry
Intel Corporation

Why Use Performance Models or Tools?

 Identify performance bottlenecks

 Motivate software optimizations

 Determine when we’re done optimizing

• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

 Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

Performance Models

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

 Many different components can contribute to kernel run time.

 Some are characteristics of the application, some are characteristics of

the machine, and some are both (memory access pattern + caches).

Performance Models

 Can’t think about all these terms all the time for every application…

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

Computational

Complexity

Performance Models

 Because there are so many components, performance models often

conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

Roofline

Model

Williams et al, "Roofline: An Insightful Visual Performance Model For

Multicore Architectures", CACM, 2009.

Performance Models

 Because there are so many components, performance models often

conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware

Accelerators", ISCA, 2017.

Performance Models

 Because there are so many components, performance models often

conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP

model - one step closer towards a realistic model for parallel

computation", SPAA, 1995.

Performance Models

 Because there are so many components, performance models often

conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM,

1996.

!

Roofline Model:
Arithmetic Intensity and Bandwidth

Performance Models / Simulators

 Historically, many performance models and simulators tracked latencies

to predict performance (i.e. counting cycles)

 The last two decades saw a number of latency-hiding techniques…

• Out-of-order execution (hardware discovers parallelism to hide latency)

• HW stream prefetching (hardware speculatively loads data)

• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

 Effective latency hiding has resulted in a shift from a latency-limited

computing regime to a throughput-limited computing regime

Roofline Model

 Roofline Model is a throughput-

oriented performance model…

• Tracks rates not times

• Augmented with Little’s Law

(concurrency = latency*bandwidth)

• Independent of ISA and architecture (applies

to CPUs, GPUs, Google TPUs1, etc…)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor

Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

 One could hope to always attain

peak performance (Flop/s)

 However, finite locality (reuse) and

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s

(DRAM) Roofline

 One could hope to always attain

peak performance (Flop/s)

 However, finite locality (reuse) and

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

1 / Peak GFlop/sTime

#FP ops #Bytes / #FP ops / Peak GB/s
= max

(DRAM) Roofline

 One could hope to always attain

peak performance (Flop/s)

 However, finite locality (reuse) and

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

Peak GFlop/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s
= min

(DRAM) Roofline

 One could hope to always attain

peak performance (Flop/s)

 However, finite locality (reuse) and

bandwidth limit performance.

 Assume:

• Idealized processor/caches

• Cold start (data in DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth

(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s

Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

(DRAM) Roofline

 Plot Roofline bound using

Arithmetic Intensity as the x-axis

 Log-log scale makes it easy to

doodle, extrapolate performance

along Moore’s Law, etc…

 Kernels with AI less than machine

balance are ultimately DRAM

bound (we’ll refine this later…)

Peak Flop/s

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound

Roofline Example #1

 Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability

• Artifact of technology and money

• Unlikely to improve

 Consider STREAM Triad…

• 2 flops per iteration

• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

• AI = 0.083 flops per byte == Memory bound

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak Flop/s

Roofline Example #2

 Conversely, 7-point constant

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

A
tt

a
in

a
b
le

 F
lo

p
/s

7-point

Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)

0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

Hierarchical Roofline

 Real processors have multiple levels of

memory

• Registers

• L1, L2, L3 cache

• MCDRAM/HBM (KNL/GPU device memory)

• DDR (main memory)

• NVRAM (non-volatile memory)

 Applications can have locality in each

level

 Unique data movements imply unique AI’s

 Moreover, each level will have a unique

bandwidth

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline

 Construct superposition of

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the

minimum

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

Hierarchical Roofline

 Construct superposition of

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the

minimum

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

DDR bottleneck

pulls performance

below MCDRAM

Roofline

Peak Flop/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline

 Construct superposition of

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the

minimum

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

Hierarchical Roofline

 Construct superposition of

Rooflines…

 Measure a bandwidth

 Measure AI for each level of memory

• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …

DRAM)…

• … performance is bound by the

minimum

Peak Flop/s

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

MCDRAM

bottleneck pulls

performance below

DDR Roofline

Roofline Model:
Modeling In-core Performance Effects

Data, Instruction, Thread-Level Parallelism…

 Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

• w = x*y + z is a common

idiom in linear algebra

• Rather than having

separate multiple and

add instructions,

processors can use a

fused multiply add (FMA)

• The FPU chains the

multiply and add in a

single pipeline so that it

can complete FMA/cycle

Vector Instructions

• Many HPC codes apply

the same operation to a

vector of elements

• Vendors provide vector

instructions that apply

the same operation to 2,

4, 8, 16 elements…

x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8

vector operations/cycle

Deep pipelines

• The hardware for a FMA

is substantial.

• Breaking a single FMA

up into several smaller

operations and pipelining

them allows vendors to

increase GHz

• Little’s Law applies…

need FP_Latency *

FP_bandwidth

independent instructions

!

Data, Instruction, Thread-Level Parallelism…

 If every instruction were an ADD (instead

of FMA), performance would drop by 2x

on KNL or 4x on Haswell

 Similarly, if one failed to vectorize,

performance would drop by another 8x

on KNL and 4x on Haswell

 Lack of threading (or load imbalance) will

reduce performance by another 64x on

KNL.

Peak Flop/s

Add-only (No FMA)

No vectorization

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Poor vectorization

pulls performance

below DDR

Roofline

Superscalar vs. Instruction mix

 Define in-core ceilings based on

instruction mix…
Peak Flop/s

25% FP (75% int)

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

12% FP (88% int)

≥50% FP e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP

to get peak performance

Superscalar vs. Instruction mix

 Define in-core ceilings based on

instruction mix…
Peak Flop/s

50% FP (50% int)

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

100% FP e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP

to get peak performance

 e.g. KNL

• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be

FP to get peak performance

Superscalar vs. instruction mix

 Define in-core ceilings based on

instruction mix…
Peak Flop/s

50% FP (50% int)

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

100% FP e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP

to get peak performance

 e.g. KNL

• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be

FP to get peak performance

Superscalar vs. instruction mix

 Define in-core ceilings based on

instruction mix…
Peak Flop/s

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

 e.g. Haswell

• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP

to get peak performance

 e.g. KNL

• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be

FP to get peak performance

non-FP instructions

can sap instruction

issue bandwidth and

pull performance

below Roofline

Divides and other Slow FP instructions

 FP Divides (sqrt, rsqrt, …) might

support only limited pipelining

 As such, their throughput is

substantially lower than FMA’s

 If divides constitute even if 3% of the

flop’s come from divides,

performance can be cut in half.

 Penalty varies substantially between

architectures and generations (e.g.

IVB, HSW, KNL, …)

Peak Flop/s

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

6% VDIVPD

A divide in the inner

loop can easily cut

peak performance in

half

Roofline Model:
Modeling Cache Effects

Locality Walls

 Naively, we can bound AI using

only compulsory cache misses
Peak Flop/s

No FMA

No vectorization

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s

Compulsory Misses
AI =

Locality Walls

 Naively, we can bound AI using

only compulsory cache misses

 However, write allocate caches

can lower AI

Peak Flop/s

No FMA

No vectorization

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s

Compulsory Misses + Write Allocates
AI =

+
W

ri
te

 A
llo

c
a
te

Locality Walls

 Naively, we can bound AI using

only compulsory cache misses

 However, write allocate caches

can lower AI

 Cache capacity misses can have

a huge penalty

Peak Flop/s

No FMA

No vectorization

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s

Compulsory Misses + Write Allocates + Capacity Misses
AI =

+
W

ri
te

 A
llo

c
a
te

+
C

a
p
a
c
it
y
 M

is
s
e
s

Locality Walls

 Naively, we can bound AI using

only compulsory cache misses

 However, write allocate caches

can lower AI

 Cache capacity misses can have

a huge penalty

 Compute bound became

memory bound

Peak Flop/s

No FMA

No vectorization

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s

Compulsory Misses + Write Allocates + Capacity Misses
AI =

+
W

ri
te

 A
llo

c
a
te

+
C

a
p
a
c
it
y
 M

is
s
e
s

!

Roofline Model:
General Strategy Guide

General Strategy Guide

 Broadly speaking, there are three

approaches to improving

performance: Peak Flop/s

No FMA

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide

 Broadly speaking, there are three

approaches to improving

performance:

 Maximize in-core performance

(e.g. get compiler to vectorize)

Peak Flop/s

No FMA

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide

 Broadly speaking, there are three

approaches to improving

performance:

 Maximize in-core performance

(e.g. get compiler to vectorize)

 Maximize memory bandwidth

(e.g. NUMA-aware allocation)

Peak Flop/s

No FMA

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide

 Broadly speaking, there are three

approaches to improving

performance:

 Maximize in-core performance

(e.g. get compiler to vectorize)

 Maximize memory bandwidth

(e.g. NUMA-aware allocation)

 Minimize data movement

(increase AI)

Peak Flop/s

No FMA

A
tt

a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

C
u
rr

e
n
t
A

I

Constructing a Roofline Model

requires answering some

questions…

Questions can overwhelm users…

?
What is my

machine’s

peak flop/s?

?
What is my

machine’s

DDR GB/s?

L2 GB/s?

?
How much

data did my

kernel actually

move?

?
What is my kernel’s

compulsory AI?

(communication lower

bounds)

?
How many

flop’s did my

kernel actually

do?

?
How important is

vectorization or

FMA on my

machine?

?Did my kernel

vectorize?

?
Can my kernel

ever be

vectorized??How much did

that divide

hurt?

Properties of the

target machine

(Benchmarking)

Properties of an

application’s execution

(Instrumentation)

Fundamental

properties of the

kernel constrained

by hardware

(Theory)

We need tools…

Node Characterization?

 “Marketing Numbers” can be

deceptive…

• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

 LBL developed the Empirical

Roofline Toolkit (ERT)…

• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

Cori / KNL

SummitDev / 4GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Instrumentation with Performance Counters?

 Characterizing applications with performance counters can be

problematic…

x Flop Counters can be broken/missing in production processors

x Vectorization/Masking can complicate counting Flop’s

x Counting Loads and Stores doesn’t capture cache reuse while counting

cache misses doesn’t account for prefetchers.

x DRAM counters (Uncore PMU) might be accurate, but…

x are privileged and thus nominally inaccessible in user mode

x may need vendor (e.g. Cray) and center (e.g. NERSC) approved

OS/kernel changes

Forced to Cobble Together Tools…

 Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…

• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters

• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters

 Accurate measurement of Flop’s (HSW) and

DRAM data movement (HSW and KNL)

 Used by NESAP (NERSC KNL application

readiness project) to characterize apps on Cori…

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division

CRD is LBL’s Computational Research Division

NESAP is NERSC’s KNL application readiness project

LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Initial Roofline Analysis of NESAP Codes

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

w/Tiling	

w/Tiling+Vect	

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

w/Tiling	

w/Tiling+Vect	
1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

SELL	

SB	

SELL+SB	

nRHS+SELL+SB	

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

SELL	

SB	

SELL+SB	

nRHS+SELL+SB	

1	

10	

100	

1000	

10000	

0.01	 0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

1	RHS	

4	RHS	

8	RHS	

1	

10	

100	

1000	

10000	

0.01	 0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

1	RHS	

4	RHS	

8	RHS	2
P

 H
S

W
K

N
L

MFDn PICSAREMGeo

Nuclear physics Geophysical imaging Particle/laser interaction

Evaluation of LIKWID

 LIKWID provides easy to use wrappers

for measuring performance counters…
 Works on NERSC production systems

 Minimal overhead (<1%)

 Scalable in distributed memory (MPI-friendly)

 Fast, high-level characterization

x No detailed timing breakdown or optimization advice

x Limited by quality of hardware performance counter

implementation (garbage in/garbage out)

 Useful tool that complements other tools

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x
1

T
)

H
P

G
M

G
 (

4
P

x
8

T
)

C
o

m
b

u
s
to

r
(3

2
P

x
1

T
)

C
o

m
b

u
s
to

r
(4

P
x
8

T
)

M
F

IX
 (

3
2

P
x
1

T
)

N
y
x
 (

3
2

P
x
1

T
)

N
y
x
 (

4
P

x
8

T
)

P
e

le
L

M
 (
3

2
P

x
1

T
)

W
a

rp
X

 (
3

2
P

x
1

T
)

W
a

rp
X

 (
4

P
x
8

T
)

B
a
n

d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

https://github.com/RRZE-HPC/likwid

Intel Advisor

 Includes Roofline Automation…

 Automatically instruments applications

(one dot per loop nest/function)

 Computes FLOPS and AI for each

function

 AVX-512 support that incorporates masks

 Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)

 Automatically benchmarks target system

(calculates ceilings)

 Full integration with existing Advisor

capabilities

Memory-bound, invest into

cache blocking etc

Compute bound: invest

into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Tracking Optimization Behavior

BerkeleyGW: Optimization

process for Kernel-C (Sigma

code):

1. Refactor (3 Loops for

MPI, OpenMP, Vectors)

2. Add OpenMP

3. Initial Vectorization (loop

reordering, conditional

removal)

4. Cache-Blocking

5. Improved Vectorization

(Divides)

6. Hyper-threading

BerkeleyGW is a material science application that is dominated by dense linear algebra, including distributed

matrix multiplication, inversion, diagonalization, and contraction and fast fourier transforms (FFT).

 This material is based upon work supported by the Advanced Scientific Computing Research Program

in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

 This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

 This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-

05CH11231.

 Special Thanks to:

• Zakhar Matveev, Intel Corporation

• Roman Belenov, Intel Corporation

Acknowledgements

