> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline: A Throughput
Oriented Performance Model

Lenny Oliker

Jack Deslippe, Tuomas Koskela, Samuel Williams
Lawrence Berkeley National Laboratory, USA

Roman Belenov, Zakhar Matveev, Philippe Thierry
Intel Corporation

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

» Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

-~
rrrrrrr

BERKELEY LAB

Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).

#FP operations

Cache data movement
DRAM data movement
PCle data movement
Depth

MPI| Message Size
MPI| Send:Walit ratio

VV #MPI1 Wait's Networ

Flop/s

Cache GBJ/s
DRAM GB/s
PCle bandwidth
OMP Overhead

Networ
Networ

K Bandwidth
K Gap

K Latency

Performance Models

= Can't think about all these terms all the time for every application...

Computational _ __ __ ______ o _______

Complexity i #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
VV #MPI| Wait's Network Latency

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.
C T UCD ArmArat . Clam e A Roofline
: #FP operations Flop/s : Vodel
'Cache data movement Cache GB/s

:\DRAM data movement

PCle bandwidth
OMP Overhead

PCle data movement
Depth

MPI| Message Size
MPI Send:Wait ratio

VV #MPI1 Wait's Networ

Williams et al, "Roofline: An Insightful Visual Performance Model For
Multicore Architectures", CACM, 20009.

Networ
Networ

K Bandwidth
K Gap

K Latency

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.

#FP operations
Cache data movement
DRAM data movement

QI EEE EEE I I BN B EEE S BN EEE EEE BEE EEE BN BEE BEE SEE EEE EEE BEE BEE BEE SEE BEE EEE BEE SEE BEE BEE BEE BEE BEE B B B S e .

PCle bandwidth

MPI| Message Size
MPI| Send:Walit ratio

VV #MPI1 Wait's Networ

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware
Accelerators", ISCA, 2017.

Flop/s

Cache GB/s
DRAM GB/s

N\
|
|

OMP Overhead :

Networ
Networ

- S S S S S DS S B S B S B S B S B B B S B B B B B B B B B e B e s e e e

K Bandwidth
K Gap

K Latency

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.

#FP operations

Cache ¢
DRAM ©

PCle o

ata movement
ata movement
ata movement

' MPI Send:Wait ratio

1
\

model - one step closer towards a realistic model for parallel

computation”, SPAA, 1995.

#MPI Wait's

Alexandrov, et al, "LogGP: incorporati\ng fofgmeSsages Nt the CogP”

Flop/s

Cache GBJ/s
DRAM GB/s
PCle bandwidth
OMP Overhead

Networ
Networ

_______ Networ

< Bandwidth | _LogGP
« Gap /
K Latency ,

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s

\
DRAM data movement DRAM GE «\odeagg
PCle data movement PCle banc @\9\‘ 6‘50 «\é\"'
A\
Depth OMP C 6998 (0‘0\3

MPI Message Size Network B 3“69
MPI| Send:Wait ratio NetworkGag
VV #MPI| Wait's Network Lat¢icy .

Culler, et al, "LogP: a practical model of parallel computation”, CACM,
1996.

r:'—:>| ’I/I\I‘ B E R K E L EY LAB ﬁ U.S. DEPARTMENT OF
Y/ ENERGY

EEE

Roofline Model:

Arithmetic Intensity and Bandwidth

Performance Models / Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

Out-of-order execution (hardware discovers parallelism to hide latency)
HW stream prefetching (hardware speculatively loads data)
Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

Roofline Model

= Roofline Model is a throughput-
oriented performance model...
« Tracks rates not times

’\| | COMPUTATIONAL RESEARCH

BERKELEY LAB

CRD PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—
Home » Performance and Algorithms Research » Research » Roofline

Performance and Algorithms Research
° Augmented with Little’s Law ano anee - Roofline Performance Model

ALGORITHMS

RESEARCH Roofiine is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on

— * - Research multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
C O n C u r re n C — ate n C a n WI t (i assess the quality of attained performance by combining locality, bandwidth, and different parallelization paradigms into a single
— performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
limitations.
» » A = Arithmetic Intensity

. I n d e e n d e n t Of I SA a n d a rC h I te Ct u re a I I e S GGGGG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofiine total data movement (byles). A BLAS-1 vector-vector increment (x(il+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SSSSS / 24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex

1 oooooo transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

tO C P U S G P U S G O O I e T P U S etC Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would

]] L) LI] limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte
A A A
Google:
&
Twitter
Oo(1) O(log(N)) O(N)
=

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

~

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor "\l.ﬂ
Processing Unit”, |SCA, 2017. BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [(GBS
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)

(HFP ops / Peak GFlop/s
Time = max <

_#Bytes / Peak GB/s

(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: | (65
ldealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
Time 1/ Peak GFlop/s
#FP ops MaX~
P _#Bytes | #FP ops / Peak GB/s

(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [(GBS
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
#FP ops _ . _ Peak GFlop/s
Time
€ _(#FP ops / #Bytes) * Peak GB/s

(DRAM) Roofline

CPU
(compute, flop/s)

DRAM Bandwidth

= One could hope to always attain
neak performance (Flop/s)

= However, finite locality (reuse) and
pandwidth limit performance.

= Assume: [(GBS
* |dealized processor/caches DRAM
« Cold start (data in DRAM) (data, GB)

" Peak GFlop/s
GFlop/s = min <

_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)

(DRAM) Roofline

= Plot Roofline bound using

Arithmetic Intensity as the x-axis I /
= Log-log scale makes it easy to Peak Flop/s :
doodle, extrapolate performance !
along Moore’s Law, etc... é
= Kernels with Al less than machine 5
balance are ultimately DRAM < DRAN-bound | Compute-bound
bound (we’'ll refine this later...) <
Arithmetic Intensity (Flop:':Byte) g

Roofline Example #1

= Typical machine balance is 5-10

A
flops per byte...
40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
« Unlikely to improve ?OL
[
ko)
®)
&
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;1<N;i++){
z[i] = x[i] + alpha*Y[i];
} ! >
_ _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
Al = 0.083 flops per byte == Memory bound

~

,,,,,,, ﬂ

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...

« 7 flops
« 8 memory references (7 reads, 1 store) per point
« Cache can filter all but 1 read and 1 write per point
« Al =0.44 flops per byte == memory bound,
but 5x the flop rate

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1l;j++){
for(i=1;i<dim+1;i++){
new[k]J[j][i] = -6.0*o1d[k 1[j I[i 1]
+ old[k 1[j J[i-1]

old[k J[j 1[i+1]
old[k J[j-1][1]
old[k J[j+1][1]
old[k-11[3 I[i]
old[k+1]1[3 1[1 1;

Attainable Flop/s

Peak Flop/s

Gflop/s < Al * DRAM GB/s

7-point
Stencil

RIAD

0.083 0.44
Arithmetic Intensity (Flop:Byte)

-~

rreeeer 61

BERKELEY LAB

Hierarchical Roofline

» Real processors have multiple levels of
memaory
* Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
« DDR (main memory)
« NVRAM (non-volatile memory)

= Applications can have locality in each
level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

-~
fffffff

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... c%;
DRAM)... = DDR Bound
= DDR AI*BW <
... performance is bound by the < VICDRAM AIBW
minimum

Arithmetic Intensity (Flop:Byte)

-~
rrrrrrr

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth . Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... c%;
DRAM)... T

. ...performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

-~
rrrrrrr

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple é
Al's and multiple bounds (flops, L1, L2, ... cié MCDRAM bound
DRAM)... 3 O e
. ...performance is bound by the <
minimum

™
rrrrrrr

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

A
Rooflines...
= Measure a bandwidth Peak Flop/s
= Measure Al for each level of memory 4
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... 5
DRAM)... g
. ...performance is bound by the < Sy bottieneck nulls
minimum performance below
DDR Roofline

™
rrrrrrr

BERKELEY LAB

r:'—:>| ’I/I\I‘ B E R K E L EY LAB ﬁ U.S. DEPARTMENT OF
Y/ ENERGY

EEE

Roofline Model:

Modeling In-core Performance Effects

Data, Instruction, Thread-Level Parallelism...

= Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

e W=X*Y+zIisSgcommon
idiom in \neg” algebra

mudtiply and add in a
single pipeline so that it
can complete FMA/cycle

Vector Instructions

« Many HPC codes apply

the same operation to a
vector of elements

* Vendors provide vector

Instructions that apply
the same operation to 2,
4, 8, 16 elements...

X [0:7] *y [0:7] + z [0:7]

 Vector FPUs complete 8

vector operations/cycle

Deep pipelines

The hardware for a FMA
IS substantial.

Breaking a single FMA
up into several smaller
operations and pipelining
them allows vendors to
Increase GHz

Little’'s Law applies...
need FP_Latency *
FP_bandwidth
Independent instructions

-~
U
rrrrrrr

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

= |f every instruction were an ADD (instead

A
of FMA), performance would drop by 2x
on KNL or 4x on Haswell Peak Flop/s
= Similarly, if one failed to vectorize, © Add-only{No FMA)
performance would drop by another 8x 2
on KNL and 4x on Haswell S
. . . S
= Lack of threading (or load imbalance) will g
reduce performance by another 64x on -
Poor vectorization
KN L pulls performance
below DDR
Arithmetic Intens Roofline

-~
oy

BERKELEY LAB

Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell s
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

25% FP (75% int)

12% FP (88% int)

Attainable Flop/s

-~
fffffff

BERKELEY LAB

Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell Peak Flop/s ' o: Ep

e 4-issue superscalar
 Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

50% FP (50% int)

25% FP (75% int)

Attainable Flop/s

-~
fffffff

BERKELEY LAB

Superscalar vs. Instruction mix

= Define in-core ceilings based on
instruction mix...

= e.g. Haswell o toowr
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

50% FP (50% int)

25% FP (75% int)

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

-~
fffffff

BERKELEY LAB

Superscalar vs. Iinstruction mix

= Define in-core ceilings based on
instruction mix...

] e_g_ Haswe” Peak Flop/s
* 4-issue superscalar
* Only 2 FP data paths

* Requires 50% of the instructions to be FP
to get peak performance

« e.g. KNL

e 2-ISSue superscalar
« 2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

25% FP (75% int)

Attainable Flop/s

non-FP instructions
can sap instruction
iIssue bandwidth and
pull performance
below Rooflin

Arithmetic Intensity

~

BERKELEY LAB

Divides and other Slow FP instructions

= FP Divides (sqrt, rsqrt, ...) might
support only limited pipelining

= As such, their throughput Is Peak Flop/s
substantially lower than FMA's

= |f divides constitute even if 3% of the
flop’s come from divides,
performance can be cut in half.

» Penalty varies substantially between
architectures and generations (e.g.
IVB, HSW, KNL, ...)

6% VDIVPD

Attainable Flop/s

A divide in the inner
loop can easily cut
peak performance in
half

Arithmetic Intensity

r:'—:>| ’I/I\I‘ B E R K E L EY LAB ﬁ U.S. DEPARTMENT OF
Y/ ENERGY

EEE

Roofline Model:

Modeling Cache Effects

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

Peak Flop/s

Attainable Flop/s

__ #Flop’s
~ Compulsory Misses

Al

™
rrrrrrr

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s

2]
can lower Al g
T8
L
8 o
= =] <
£ No vectc rigaﬂog*
< =T
gz
©
13

Arithmetic Intensity (Flop:Byte)
__ #Flop’s
~ Compulsory Misses + Write Allocates

Al

~
fffffff

BERKELEY LAB

Locality Wallls

= Naively, we can bound Al using

A
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al 8 . 0 FMA
. . m %
= Cache capacity misses can have 2 2
g OY % 21z
a huge penalty E §> No vectcrigaﬂo%f‘
* HE
& =
- AR
Arithmetic Intensity (Flop:Byte)
Al = #Flop's

~ Compulsory Misses + Write Allocates + Capacity Misses

-~
fffffff

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al

= Cache capacity misses can have
a huge penalty

» Compute bound became
memory bound

Attainable Flop/s

__ #Flop’s
~ Compulsory Misses + Write Allocates + Capacity Misses

Al

BERKELEY LAB

r:'—:>| ’I/I\I‘ B E R K E L EY LAB ﬁ U.S. DEPARTMENT OF
Y/ ENERGY

EEE

Roofline Model:

General Strategy Guide

General Strategy Guide

= Broadly speaking, there are three X
approaches to improving
performance: Peak Flop/s

Attainable Flop/s

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable Flop/s

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Attainable Flop/s

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

= Minimize data movement :
(I nNncrease A|) Arithmetic Intensity (Flop:Byte)

Attainable Flop/s

Compulsory Al

r:'—:>| ’I/I\I‘ B E R K E L EY LAB ﬁ U.S. DEPARTMENT OF
Y/ ENERGY

EEE

Constructing a Roofline Model
requires answering some
questions...

Questions can overwhelm users...

Properties of.-the
target machine

Fundamental
properties of the
- kernel constrained
by hardware

Properties of an
(Benchmarking) application’s execution

(Instrumentation)
(Theory)

~

A
freeeer ""

BERKELEY LAB

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

We need tools...

Node Characterization?

10000 Cori / KNL

= “Marketing Numbers” can be

deceptive... o e

* Pin BW vs. real bandwidth

« TurboMode / Underclock for AVX o # o0 —{SUMmMitDev / 4GPUs

« compiler failings on high-Al loops. 5t omues oo
= LBL developed the Empirical

Roofline Toolkit (ERT)...

* Characterize CPU/GPU systems

« Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

~

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Instrumentation with Performance Counters?

= Characterizing applications with performance counters can be
problematic...

X Flop Counters can be broken/missing in production processors
X Vectorization/Masking can complicate counting Flop’s

X Counting Loads and Stores doesn’t capture cache reuse while counting
cache misses doesn’t account for prefetchers.

X DRAM counters (Uncore PMU) might be accurate, but...
X are privileged and thus nominally inaccessible in user mode

X may need vendor (e.g. Cray) and center (e.g. NERSC) approved
OS/kernel changes

Forced to Cobble Together Tools...

= Use tools known/observed to work on NERSC’s N
Cori (KNL, HSW)... NERSC [gmessiiiiee

HOME ABOUT SCIENCEATNERSC ~ SYSTEMS MUY NEWSGPUBLICATIONS RE&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intens

MEASURING ARITHMETIC INTENSITY

Arithmetic intensity is a measure of

 Used Intel SDE (Pin binary instrumentation +
emulation) to create software Flop counters

Used Intel VTune performance tool (NERSC/Cray

Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B
calculation. Some modern processors such as Intel's Ivy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not

approved) to access uncore counters eI Sty

i s of is is
critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space If tracing is enabled for
more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.

» Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

» Used by NESAP (NERSC KNL application T

= -global_region will include any threads spawned by a process (needed for OpenMP)

readiness project) to characterize apps on Cori... . P

| $ srun -n 4 -c 6 sde -ivh -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -

* Where:
o -ivbls used to target Edison's Ivy Bridge ISA (use -hsw for Cori's Haswell processors)
« -d specifies to only collect dynamic profile information

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division -
.ﬁ

CRD is LBL's Computational Research Division ”,ml
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) ——

NESAP is NERSC’s KNL application readiness project

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

2P HSW

KNL

Initial Roofline Analysis of NESAP Codes

MEDn

1000003
10002
3 e===Roofline@ModelZ
o
Q 100m = =wo/FMAE
Ll
O B 1RHSE
108 A ARHSE
@ 8RHSE
1 1 T 1
0.017 0.13 10 100

ArithmeticntensitydFLOP/byte)z

1000003
10003
3 e===Roofline@ModelZ
a
Q 1o00m = =wo/FMAE
Ll
O B 1RHSE
10@ .
: L 4RHSE
@ 8RHSE
1 1 T 1
0.013 0.1 1R 1003

ArithmeticntensitydFLOP/byte)z

Nuclear physics

EMGeo

10000

e===Roofline@Model?
= =\wo/FMAR

i Original@

A SELLE

¢ SBQ
12 . | i SELL+SB@

0.13 1@ 108 © NRHS+SELL+SB@

ArithmeticntensitygdFLOP/byte)z

1000z

1000

GFLOP/s@

108

10000

e===Roofline@Model?
= =wo/FMAZ
i Original@
A SELLE
¢ SBQ
12 . | i SELL+SB@
0.1@ 18 108 < NRHS+SELL+SBE
ArithmeticntensitydFLOP/byte)z

1000z

10001

GFLOP/s@

108

Geophysical imaging

10000

1000z

1000

GFLOP/s@

PICSAR

e==Roofline@ModelZ

=
S = ewo/FMAZ
© A M Original®
102 o A w/Tiling®
10 . @ w/Tiling+Vect@
0.13 12 10@

Particle/laser interaction

ArithmeticntensitydFLOP/byte)z

~
. A
(rreeer |"|

BERKELEY LAB

Evaluation of LIKWID

= LIKWID provides easy to use wrappers AR op o 1 et actefiration
for measuring performance counters. .. =5
v" Works on NERSC production systems Am —~Rooline
v Minimal overhead (<1%) éz‘%
v Scalable in distributed memory (MPI-friendly) £
v Fast, high-level characterization é o4
X No detailed timing breakdown or optimization advice @
X Limited by quality of hardware performance counter 16
Implementation (garbage in/garbage out) o
» Useful tool that complements other tools g g ; g 2 ; EZ E E i
s 3
https://github.com/RRZE-HPC/likwid oy

BERKELEY LAB

https://github.com/RRZE-HPC/likwid

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v" Computes FLOPS and Al for each
function

nalytics | Assemiy | & Recommendations | & Why No Vectorkation?
I rarha hlackinn ate
ik &5 B &z @ O Start Survey Analysis | »| & (@

Start Survey Analysis
Start Trip Counts and FLOP Analysis

Start Roofline Analysis .

Start Memory Access Patterns Analysis Threads v]m| Loads and stores -

Start Dependencies Analysis / '
Fean: -

Welcorne | @000 X

(@ | Elapsed time: 8.80s
FILTER: [

HlSummary & Survey &

AN

AV X-512 support that incorporates masks

v Integrated Cache Simulator! | —= - | Comroemsreare
(hierarchical roofline / multiple Al’s) 0l swtt 2 g - R
v Automatically benchmarks target system P T R T oA

(Source |Top Down | Code Analytics | Assermbly |Q Recormmendations | @ Why No Vectorization?

(calculates ceilings)

Address |Line Assembly Total Time Y Self Time

/ - . . - - . |function » 0x4107d0 Block 1: 146029716 © '
0x4107d0 492 hg %rb 0.020: 0.020:
Full integration with existing Advisor SIS e oy

capabilities

Ox4107d4 452

sub $0x210, %rsp

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Technology Preview, not in official product roadmap so far.

~

BERKELEY LAB

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Tracking Optimization Behavior

BerkeleyGW: Optimization

Haswell Roofline Optimization Path KNL Roofline Optimization Path
process for Kernel-C (Sigma
2 ~e- Peak * -ePeark (HBM) COdeE):
== - |LP == Peak (DDR)
== - AVX ¢ =o_|LP(HBM)
- BGW ——_ILP (DDR) 1. Refactor (3 Loops for

" " ~e=- AVX (HBM) MPI, OpenMP, Vectors)

o a ~e= - AVX (DDR)

9 O ° —BGW@ODR 2 Add Opean_D _

G = -=-scw Hem) 3. Initial Vectorization (loop
reordering, conditional
removal)

2 4. Cache-Blocking
1 L
0012 5012 5 1 2 510 2 5100 0012 5042 5 1 2 5102 5100 5. Im_prgved Vectorization
Arithmetic Intensity Arithmetic Intensity (Divides)

6. Hyper-threading

BerkeleyGW is a material science application that is dominated by dense linear algebra, including distributed
matrix multiplication, inversion, diagonalization, and contraction and fast fourier transforms (FFT).

-~

rreeeer :ﬂ

BERKELEY LAB

~

A
freeeer

' BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-ACO02-
05CH11231.

Special Thanks to:
« Zakhar Matveev, Intel Corporation

« Roman Belenov, Intel Corporation

