
3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 1

Sergei Shudler 1, Alexandru Calotoiu1, Torsten Hoefler2, Felix Wolf1

Isoefficiency in Practice:
Configuring and Understanding the
Performance of Task-based Applications

1 TU Darmstadt, 2 ETH Zürich

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 2

Task-based programs

§ Task-based paradigms: Cilk, OmpSs, OpenMP,…

§ Scheduling managed by the runtime system

§ Example:

fib(5)

fib(3)fib(4)

fib(2)fib(3)

#pragma omp task shared(x)

x = fib(n – 1);

#pragma omp task shared(y)

y = fib(n – 2);

#pragma omp taskwait

return x + y;

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 3

Efficiency of task-based applications –
performance issues

Task graph Core countInput size

const. efficiency =
S
p

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 4

Efficiency of task-based applications –
performance issues (2)

Task graph Core countInput size

const. efficiency =
S
p

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 5

Efficiency of task-based applications –
performance issues (3)

Input size Resource contentionCore count

const. efficiency =
S
p

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 6

Task dependency graph (TDG)

§ Nodes – tasks, edges – dependencies

§ – processing elements, input size

§ – all the task times (work)

§ – longest path (depth)

§ – average parallelism

§ – execution time

§ – speedup

1
0

p,n

T1(n)

T∞(n)

T1 = 45
T∞ = 25

6

17 3

475

2

Tp(n)

Sp(n) =
T1(n)
Tp(n)

π (n) = T1(n)
T∞(n)

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 7

TDG rules

§ Work rule: or:
• Ignore super-linear speedups for simplicity

§ Depth rule: or:
• Cannot execute faster than the critical path

§ In summary:

Tp(n) ≥
T1(n)
p

Tp(n) ≥ T∞(n)

Sp(n) ≤ p

Sp(n) ≤ π (n)

Sp(n) ≤min p,π (n){ }

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 8

Efficiency & isoefficiency

§ Efficiency is defined as:

§ Isoefficiency binds together the core count
and the input size for a specific,
constant efficiency:
• A contour line on the efficiency

surface

§ Example: Mergesort
•

• Surface depicts

E(p,n) =
Sp(n)
p

≤min 1, π (n)
p

"
#
$

%
&
'
= Eub(p,n)

n = fE (p)

π (n) = logn

Isoefficiency functions

Eub(p,n)

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 9

Modeled efficiency functions

– reflects actual
performance

– contention-
free replays

– upper bound
based on avg. parallelism

Eac (p,n)

Ecf (p,n)

Eub(p,n)

Δcon = Ecf (p,n)−Eac (p,n)

Δstr = Eub(p,n)−Ecf (p,n)
Structural discrepancy:
characterizes the optimization
potential

Contention discrepancy:
shows how severe the resource
contention is

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 10

Modeling workflow

#pragma omp task
…
#pragma omp task
…
#pragma omp taskwait

Instrument
code (OmpSs

runtime)

Benchmark run /
task replay

…

…

Measurement
results

Empirical multi-
parameter performance

modeling:

Efficiency models π (n),T∞(n),E(p,n)

n

p

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 11

Contention-free replay engine

§ Uses OmpSs runtime API

§ Replay on multiple threads

§ No actual code execution (busy-waiting)

§ Respects dependencies

§ Same scheduling policy

§ Minimum memory accesses

void execute_task(double t)
{

double elapsed = 0;
while(elapsed < t)
//…

}

//…

nanos_create_wd_compact(…)

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 12

Mj

main() {
foo()
bar()
compute()

}
Instrumentation

Performance measurements

Input

Output

Mi

Extra-P

Human-readable, multi-parameter
performance models of all functions

Performance modeling with Extra-P

f (x1,.., xm) = ck xl
ikl ⋅ log2

jkl (xl)
l=1

m

∏
k=1

n

∑
A. Calotoiu, et al.: Fast Multi-Parameter
Performance Modeling (CLUSTER ’16)

www.scalasca.org/software/extra-p/download.html

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 13

Experiments setup

§ Barcelona OpenMP Task Suite (BOTS) +
Barcelona Application Repository (BAR)
• Cholesky, FFT, Fib, NQueens, Sort,

SparseLU, Strassen

§ NUMA node with four Intel Xeon E7-4890
v2 processors
• 60 cores in total

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 14

Depth and average parallelism models
(excerpt)

Application (origin)

Cholesky (BAR)

FFT (BAR)

Nqueens (BOTS)

Sort (BOTS)

SparseLU (BAR)

Strassen (BOTS)

T∞(n) π (n)

Ο(n2.75 logn) Ο(n0.67 logn)
Ο(n1.75 logn) Ο(n)

Ο(n2 logn) Ο(n2.875 logn)
Ο(n)

Ο(n1.75 logn)
Ο(n0.75)

Ο(n0.75 logn)
Ο(n2 logn)

Ο(n)

grows faster or as fast asT∞(n) π (n)

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 15

Efficiency & isoefficiency models (excerpt)

Cholesky Fibonacci

Cholesky models Fibonacci models
Eac =1.09− 0.51 p +3.11⋅10−2 p logn

Ecf =1.14− 0.54 p +3.4 ⋅10−2 p logn

Eub =min 1, 2.29+ 2.35 ⋅10
−3n() p−1{ }

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn() p−1{ }

C − Af (p)+Bf (p)g(n) -- C: max, -Af(p): reduction, Bf(p)g(n): gain

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 16

Efficiency & isoefficiency models (excerpt)

Sort Strassen

Sort models Strassen models

C − Af (p)+Bf (p)g(n) -- C: max, -Af(p): reduction, Bf(p)g(n): gain

Eac = 0.99− 9.2 ⋅10
−3 p1.5 + 2.29 ⋅10−4 p1.5 logn

Ecf =1.0− 4.61⋅10
−2 p0.75 +1.62 ⋅10−3 p0.75 logn

Eub =min 1, 3.53+3.32 ⋅10
−2 n() p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 0.25n
0.75() p−1{ }

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 17

For example (Strassen):

Let E = 0.8 and p = 60:

After solving:

Co-design aspects

0.8 =1.55−1.02 ⋅600.25 + 4.59 ⋅10−2 ⋅600.25 logn

n = 83,600

App. Model Input size for p = 60, E = 0.8

Fibonacci

51

51

49

Strassen

83,600 x 83,600

12,680 x 12,680

1,200 x 1,200

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn() p−1{ }

Eub =min 1, 0.25n
0.75() p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 18

Addressed questions

Fundamental scalability
limitations in a task-

based program

Poor scaling caused by
resource contention

overhead

Further optimization
potential: dependencies,
scheduling, granularity

Input size for a given core
count

Core count for a given
input size

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 19

Acknowledgements

§ Catwalk project within SPPEXA (DFG’s Priority Program
1648 “Software for Exascale Computing”)

§ Score-E project (BMBF)

§ Prima-X project (US DoE)

§ TU Darmstadt University Computing Center

§ OmpSs team at Barcelona Supercomputing Center

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 20

References (partial list)

[1] Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Felix Wolf: Isoefficiency in Practice:
Configuring and Understanding the Performance of Task-based Applications. In Proc. of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
Austin, TX, USA, pages 1-13, ACM, February, 2017

[2] Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin
Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. In Proc. of the 2016 IEEE
International Conference on Cluster Computing (CLUSTER), Taipei, Taiwan, pages 1-10, IEEE
Computer Society, September 2016

[3] Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube, Felix Wolf: Exascaling
Your Library: Will Your Implementation Meet Your Expectations?. In Proc. of the International
Conference on Supercomputing (ICS), Newport Beach, CA, USA, pages 1-11, ACM, June 2015

[4] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance
Modeling to Find Scalability Bugs in Complex Codes. In Proc. of the ACM/IEEE Conference on
Supercomputing (SC13), Denver, CO, USA, pages 1-12, ACM, November 2013

2015

2017

3/8/18 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 21

Thank you!

