
ERLANGEN REGIONAL

COMPUTING CENTER

Georg Hager
Erlangen Regional Computing Center (RRZE)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Germany

PASC’18

July 2-4, 2018, Basel, Switzerland

Performance Engineering – Why and How?

2

 A possible definition

 Target metrics

 Performance, runtime

 Scalability

 Power dissipation, energy consumption

 Any resource utilization

Performance Engineering in scientific computing

July 2, 2018 | PASC'18 | Georg Hager

Performance Engineering is a process to study and

possibly optimize computer programs in

view of a target metric.

Performance Engineering as a Process

July 2, 2018 | PASC'18 | Georg Hager

4

Performance Engineering Process: Analysis

Pattern

Microbenchmarking
Hardware/Instruction

set architecture

Algorithm/Code

Analysis

Application

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance

patterns are

typical

performance-

limiting motifs

The set of input data indicating

a pattern is its signature

July 2, 2018 | PASC'18 | Georg Hager

5

Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn

July 2, 2018 | PASC'18 | Georg Hager

6

Performance Engineering Process: Optimization

Optimize for better

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Improves

Performance

Step 3 Optimization: Improve utilization of bottleneck resources.

July 2, 2018 | PASC'18 | Georg Hager

Improves

Performance

Performance Patterns

July 2, 2018 | PASC'18 | Georg Hager

8

Performance pattern classification

1. Maximum resource utilization

(computing at a bottleneck)

2. Hazards

(something “goes wrong”)

3. Work related

(too much work or too inefficiently done)

July 2, 2018 | PASC'18 | Georg Hager

DOI: 10.1007/978-3-642-36949-0_50

http://dx.doi.org/10.1007/978-3-642-36949-0_50

9

Patterns (I): Bottlenecks & hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Bandwidth saturation
Saturating speedup across

cores sharing a data path

Bandwidth meets BW of suitable

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of

cycles to specific instruction

count(s) (FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume
Simple bandwidth performance

model much too optimistic

Low BW utilization / Low cache hit

ratio, frequent CL evicts or

replacements (CACHE, DATA,

MEM)
Latency-bound

access

Micro-architectural

anomalies

Large discrepancy from simple

performance model based on

LD/ST and arithmetic

throughput

Relevant events are very

hardware-specific, e.g., memory

aliasing stalls, conflict misses,

unaligned LD/ST, requeue events

2d-5pt

Kahan

summation in

L1 cache

spMVM RHS

access

July 2, 2018 | PASC'18 | Georg Hager

LD-after-ST

aliasing conflict

10

Patterns (II): Hazards

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

False sharing of cache

lines

Large discrepancy from

performance model in parallel case,

bad scalability

Frequent (remote) CL evicts

(CACHE)

Bad ccNUMA page

placement

Bad or no scaling across NUMA

domains, performance improves

with interleaved page placement

Unbalanced bandwidth on

memory interfaces / High remote

traffic (MEM)

Pipelining issues
In-core throughput far from design

limit, performance insensitive to

data set size

(Large) integral ratio of cycles to

specific instruction count(s), bad

(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss

ratio (BRANCH)

No parallel

initialization

Loop-carried

dependency

July 2, 2018 | PASC'18 | Georg Hager

Random

branching

11

Patterns (III): Work-related

Pattern Performance behavior
Metric signature, LIKWID

performance group(s)

Load imbalance / serial

fraction
Saturating/sub-linear speedup

Different amount of “work” on the

cores (FLOPS_*); note that

instruction count is not reliable!

Synchronization overhead

Speedup going down as more cores

are added / No speedup with small

problem sizes / Cores busy but low

FP performance

Large non-FP instruction count

(growing with number of cores

used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good

scaling across cores, performance

insensitive to problem size

Low CPI near theoretical limit /

Large non-FP instruction count

(constant vs. number of cores)

(FLOPS_*, DATA, CPI)

Code

composition

Expensive

instructions

Similar to instruction overhead

Many cycles per instruction (CPI)

if the problem is large-latency

arithmetic

Ineffective

instructions

Scalar instructions dominating in

data-parallel loops (FLOPS_*,

CPI)

Low-workload

OMP loops

C/C++ aliasing

problem

July 2, 2018 | PASC'18 | Georg Hager

triangular

dMVM

C++ abstractions

gone awry

DIV, SQRT in

inner loop

Performance Models

July 2, 2018 | PASC'18 | Georg Hager

13

What data/knowledge can a model be based on?

1. Only documented hardware properties

+ hypotheses

 Purely analytic model

2. Hardware properties + (some)

microbenchmark results + hypotheses

 (Partly) phenomenological model

3. Measured performance/speedup data

+ hypotheses

 Curve-fitting analytic model

Getting a little more specific

July 2, 2018 | PASC'18 | Georg Hager

white

box

gray

box

black

box

14

Models and insights

July 2, 2018 | PASC'18 | Georg Hager

Purely predictive

analytic model

 Direct insight into

bottlenecks from

first principles

 Model failures

challenge model

assumptions or

input data

 Refinements lead

to better insights

Phenomenological

analytic model

 Insight with some

“uncharted

territory”

 Model failure

points to

inaccurate or

unsuitable

measurements

Curve-fitting

model

 Yields predictions

 Model failure may

indicate short-

comings of fitting

approach

 Refinements by

using more fit

parameters

white box gray box black box

White- and Grey-Box Models

July 2, 2018 | PASC'18 | Georg Hager

16

Examples for white-/gray-box models

𝑆 𝑁 =
1

𝑠 +
1 − 𝑠
𝑁 + 𝑐(𝑁)

Amdahl’s Law with

communication

𝑇𝑃𝑡𝑃 = 𝑇𝑙 +
𝐿

𝐵

Hockney model for

message transmission

time

serial fraction

program speedup latency

msg. length

bandwidth

𝑇exec = max 𝑇calc, 𝑇data

Roofline model for loop

code execution time

time for computation

time for data transfer

𝑇exec = 𝑓(𝑇𝑛𝑂𝐿, 𝑇data, 𝑇𝑂𝐿)

ECM model for serial

loop code execution

time

non-overlapping execution

time for data transfer

overlapping execution

July 2, 2018 | PASC'18 | Georg Hager

17

Motivation for white-box

analytic modeling

 Advantages of white-box models

 Identification of universality

 Identification of governing mechanisms

 Insight via model nature

 Insight via model failure

 White-box models

 Determine bottlenecks and influencing factors

 Design space exploration: What would happen if resource X were

improved?

July 2, 2018 | PASC'18 | Georg Hager

18

 Original ECM model:

 Refined model of shared resources

Example: Refining the execution-cache-memory

(ECM) performance model

July 2, 2018 | PASC'18 | Georg Hager

DOI: 10.1007/978-3-319-92040-5_2

https://dx.doi.org/10.1007/978-3-319-92040-5_2

Black-Box Models

July 2, 2018 | PASC'18 | Georg Hager

20

Motivation for black-box

analytic modeling

 White-box models are based on strict

assumptions, e.g.:

 Full overlap of execution & data transfer

 Steady-state, i.e., ignore wind-up effects

 Hardware simplifications

 Black-box models have much fewer restrictions

 Anything that works is allowed

 Still some assumptions possible

 Black-box performance models

 Determine influencing factors

 Deliver target metric predictions for analysis of inaccessible parameter

intervals

July 2, 2018 | PASC'18 | Georg Hager

© F. Wolf

© F. Wolf

© F. Wolf

ERLANGEN REGIONAL

COMPUTING CENTER

Julian Hammer

Holger Stengel

Jan Eitzinger

Gerhard Wellein

Johannes Hofmann

Moritz Kreutzer

Thank You.

Bavarian Network for HPC

